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Abstract
Purpose of review The review is focused on “digital health”, which means advanced analytics based on multi-modal data. The
“Health Care Internet of Things”, which uses sensors, apps, and remotemonitoring could provide continuous clinical information
in the cloud that enables clinicians to access the information they need to care for patients everywhere. Greater standardization of
acquisition protocols will be needed to maximize the potential gains from automation and machine learning.
Recent findings Recent artificial intelligence applications on cardiac imaging will not be diagnosing patients and replacing
doctors but will be augmenting their ability to find key relevant data they need to care for a patient and present it in a concise,
easily digestible format.
Summary Risk stratification will transition from oversimplified population-based risk scores to machine learning-based metrics
incorporating a large number of patient-specific clinical and imaging variables in real-time beyond the limits of human cognition.
This will deliver highly accurate and individual personalized risk assessments and facilitate tailored management plans.

Keywords Cardiac imaging . Artificial intelligence . Big Data . Decision support system . Personalized medicine . Electronic
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Introduction

Today’s health care system, in the US and throughout the
world, is still entering the 21st century. Costs remain high,
there are great inefficiencies, and, for a large segment of the
population globally, access to care is inadequate.

Our health care enterprises tend to focus on treating acute
illness rather than improving and maintaining the health and

wellness of populations. A powerful catalyst for change in the
health care system—digital health— is happening now (Fig. 1).

Health care stakeholders are seeking disruptive innovation to
transform the US health care sector in the years ahead. In New
England Journal of Medicine Catalyst’s most recent New
Marketplace survey, the Insights Council members, comprised
of executives, clinical leaders, and clinicians, make it abundantly
clear that they believe innovation will come from beyond tradi-
tional health care organizations.

A significant difference emerges when respondents consid-
er whether buyers are willing to pay for solutions. Most nota-
bly, health care IT (eg, Clinical Decision Support Systems-
CDSS, etc.) rises to the top of the list, named by half of re-
spondents. Hospitals and health systems are second (46%).

Digital Health

Today, “digital health” means advanced analytics based on
multi-modal data. The “Health Care Internet of Things” uses
sensors, apps, and remote monitoring to provide continuous
clinical information and data in the cloud that enables clinicians
to access the information they need to care for patients in their
home, their office, or 300 miles away, and to collaborate with
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specialists in another country. It means embracing the machine
as an integral part of the health care team, and automating rou-
tine procedures and processes so that clinicians can focus on the
most complex and critically ill patients. and using deep learning
platforms to provide actionable tools at the point of care so
clinicians canmore efficiently and effectively diagnose and treat
patients. It means automating billing, documentation, and regu-
latory processes so that the clinicians can focus on meeting
every patient’s needs. Finally, digital health means caring for
one patient at a time while also caring for millions of patients
simultaneously.

Electronic Health Record (EHR) and Big Data

The overload of huge amount of patient clinical and imaging
electronic information represents a big problem for physician.
From its origin, the Electronic Medical Record (EMR) has
captured all sorts of data about a patient not previously record-
ed, creating a possible solution. In the coming years, all these
data, which include imaging and diagnostics systems data, lab
values, waveforms, data automatically downloaded from im-
plantable electrophysiology devices as well as hospital admis-
sion, discharge and transfer (ADT) data will significantly in-
crease in a bidirectional way where patients can upload their
own data and imaging to their EMRs [1] (Dave Fornell,
Feb 24, 2017; https://www.itnonline.com/article/how-
artificial-intelligence-will-change-medical-imaging).

The transition to electronic medical records and availability
of patient data has been associated with increases in the vol-
ume and complexity of patient information, as well as an
increase in medical alerts and increased expectations for rapid
and accurate diagnosis and treatment [2].

Masafumi Kitakaze published an interesting article on the
particular trends in cardiovascular disease in Asia and Japan,
highlighting the need for epidemiological studies that permit
an accurate recognition of risk factors, as well as their distri-
bution and synergistic effects, in order to achieve a short- and
medium-termmodification thereof and effective prevention of
ischemic heart disease and heart failure at the primary, second-
ary, and tertiary levels. The author also suggests that Big Data
and data mining may be ways of obtaining it, but is skeptical
about the chances of immediate applications [3].

There are irreversible technological realities that are essen-
tial for every cardiologists to know, such as:

& High performance computing (HPC) using parallel pro-
cessing to run advanced applications quickly, efficiently,
and reliably

& The number of supercomputer centers that employ co-
processors and accelerators has doubled in the past 2 years

& HPC resources in the cloud are increasingly available as a
consumer service

& We are reaching new technology platforms (eg, International
Data Corporation) which consists of mobile computing,
cloud services, Big Data, analytics, and social networks

The Internet of Things (IOT) is an accelerator of innovation
and growth of the other components, through the development
of new solutions based on intelligent embedded devices that
go beyond the telecommunications industries, transforming
various economic fields (finance, transportation, healthcare,
location-based services, construction, etc.).

The combination ofArtificial Intelligence, BigData, andmas-
sively parallel computing offers the potential to create a revolu-
tionary way of practicing evidence-based, personalized
medicine.

Fig. 1 Disruptive Innovation
Healthcare. (From USA GE
industry source)
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Health care needs the transformative power of digital skep-
ticism and hype; required for the medical community to em-
brace a world where data, machines, and analytics must be
employed to deliver higher quality, more efficient care.

Artificial Intelligence

Artificial intelligence (AI) has captured the imagination and
attention of doctors over the past years as several companies
and large research hospitals work to perfect these systems for
clinical use [4, 5]. The first concrete examples of how AI (also
called deep learning, machine learning, or artificial neural net-
works - ANN) will help clinicians are now being commercial-
ized. These systemsmay offer a paradigm shift in how clinicians
work in an effort to significantly boost workflow efficiency,
while at the same time improving care and patient throughput.

AI will not replace doctors but will significantly increase
their ability to apply clinical appropriateness and reduce errors
by easy analysis or EMR format key variables display. For
example, when a radiologist receives a cardiac CTscan to read,
the AI systemwill analyze the image and rapidly identify warn-
ing findings from the image, and combining them with clinical
information and suggesting further management to be done. In
the case of chest pain evaluation, AI system checks for:

– Prior specific exams to prior cardiac history
– Prior imaging tests of the chest
– Prior reports for that imaging
– Prior cardiac procedures
– Recent lab test results
– Clinical data from the event requiring the scan

This rapidly collected information would otherwise take
too long to collect by any physician; it saves time in the daily
workload [1].

The final diagnostic and clinical suggestion on the further
management could be reached by implementation of a
Clinical Decision Support System as the final application to
be used [6].

Machine Learning

Artificial Intelligence “AI” has rapidly gone from science fic-
tion fantasy to trendy buzz word to business application. Let’s
take a quick look at the evolution of artificial intelligence, and
what the latest developments mean for health.

“Machine learning” is a fascinating and eminently practical
application of artificial intelligence that enables computers to
detect patterns and learn new functions without being explic-
itly programmed. Essentially, customer service widgets capa-
ble of mimicking human interaction [7, 8] .

Strictly defined, “artificial intelligence” is exhibited by any
device that perceives its environment and takes actions to
maximize its success of achieving a goal. In the case of
healthcare, analyzing the relationship between prevention or
imaging and treatment techniques, and accomplishing optimal
patient outcomes. In other words, an “intelligent machine”
that approximates human cognition to help stakeholders
throughout the patient journey.

Recently morphing from hope to hype to hero, AI for
healthcare has rapidly exploded across the full spectrum of
health system services, with dozens of startups in patient data
and risk analytics, medical research, imaging and diagnostics,
lifestyle management and marketing, mental health, emergen-
cy room and surgery, in-patient care and hospital manage-
ment, drug discovery, virtual assistants, wearables, clinical
decision support Softwares, and numerous other specialties
ripe for “intelligent machines” (Fig. 2).

When compared with the common definition of machine
learning – the practice of teaching a computer how to identify
patterns and use these patterns to iterativelymaximize its chances
of success without explicit programming – it is clear that AI and
machine learning are, in fact, somewhat different [9].

It may seem like a pedantic semantic argument, but for data
scientists and clinical practitioners, the distinction is real and
important.

Machine learning is about recognizing patterns. With more
data and more opportunities to make increasingly granular
distinctions based on the successes and failures of the past, a
machine learning tool can improve its accuracy iteration after
iteration without being told by a human what to do next.

But while machine learning simply serves up results, arti-
ficial intelligence must take pattern recognition one step fur-
ther by planning a future action based on previous results,
calculating the probability of that action producing a positive
outcome, and executing the action with the highest likelihood
of achieving maximum success based on a wide range of
constantly changing and often poorly defined parameters into
a more detailed suggested action to be possibly executed [10].

Clinical Decision Support Software

Nowadays, any healthcare reform tends to satisfy guidelines
and to match appropriate use criteria when imaging and ther-
apy are taken into account, in order to reduce costs
reimborsement. Clinical decision support software (CDSS)
implementation seems to favorably contribute to the matter
[11–13]. Even in presence of antibodies from clinicians who
believe CDSS substitute doctors, if well integrated into the
clinical workflow and accepted by territorial health system,
it may help hospital and medical personnel to follow the right
way on patients, to avoid unnecessary tests and consequently
to reduce healthcare costs.
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CDSS is supposed to help clinicians do more with less by
identifying at-risk patients, eliminating inappropriate proce-
dures, and to help physicians adhere to practice guidelines. It
is unreasonable to expect physicians to remember hundreds of
pages of ever-changing appropriate use criteria (AUC), which
is where CDSS can offer an instant resource. In addition, the
software records data that can be mined for information, such
as benchmarking to target education and quality improve-
ment, or to see patterns of use over time [14, 15] .

The CDSS can help physicians to identify patients at
risk with as few tests as possible, deleting inadequate
procedures, for adhering to published guidelines. It is
virtually impossible for clinicians to deal with all pub-
lished papers and hundred of pages regarding evolution
of the single discipline. Furthermore CDSS Big Data
could be extracted easily for comparative analysis

towards the increase of quality and to follow up models
adopted in clinical routine [16].

In cardiology, the main use of a CDSS software is to rap-
idly and automatically identify whether the diagnostic test is
useful for the patient at that moment with that clinical symp-
tom. The software is based on two typical approaches: appro-
priate use criteria and published guidelines, both treated infer-
entially by a machine learning algorythm [17].

A significant example of a software to help clinicians re-
main up to date on the criteria and make it easier for them to
implement these standards is a working progress in terms of
clinical validation study (ARTICA project) [18]; (Marco
Mazzanti et al.; personal communication)

The CDSS may be considered as a second set of eyes. It
could be used at point-of-care in real time during clinical
workflow or for interpreting medical images. The integrated

Fig. 2 Core AI companies bring their algorithms to healthcare. (Adapted from: CBInsights; https://www.cbinsights.com/research/artificial-intelligence-
startups-healthcare/.)
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report engine embedded with the software monitors all re-
sponses into the system and compares them with a clinical
database. It also assesses possible differences of the clinician
with previous medical record of the same patient. For exam-
ple, CT angiography system assembles more than 160 expert
rules derived from quality equipments throughout the whole
world. So their suggestions help to decrease the learning curve
and ensure clinicians adjournment with the latest trends [19].

Artificial Intelligence and Cardiac Imaging

Several studies and academic articles recently published offer
updates regarding the use of AI in cardiology. AI techniques
have recently been applied in cardiovascular medicine to ex-
plore novel genotypes and phenotypes in existing diseases,
improve the quality of patient care, enable cost-effectiveness,
and reduce readmission and mortality rates. Over the past
decade, several machine-learning techniques have been used
for cardiovascular disease diagnosis and prediction. Each
problem requires some degree of understanding of the prob-
lem, in terms of cardiovascular medicine and statistics, to ap-
ply the optimal machine-learning algorithm. That is the reason
for why, in the near future, AI will result in a paradigm shift
toward precision cardiovascular medicine.

Dudchenko and coworkers very recently wrote a systemat-
ic review in decision support systems in cardiology. The aim
of this work was to identify the most common approaches
used in the intelligent decision support systems employed in
the diagnosis of cardiovascular diseases and identify accuracy
of these systems. Forty-one relevant publications were includ-
ed in the review using Scopus and Web of Science.
Knowledge base and fuzzy logic and ANN is the most com-
monly used approach to diagnosis and prediction. The accu-
racy of the considered systems reaches 98% [20••].

Noninvasive cardiac imaging plays a critical role in the diag-
nosis, outcome prediction, and management of patients with
cardiovascular disease. The quality and amount of imaging data
acquired with each scan are continuously increasing in all mo-
dalities, including nuclear cardiology, echocardiography, com-
puted tomography (CT), and magnetic resonance imaging
(MRI).

To date, the most fully automated approaches have been
developed for nuclear cardiology, likely because of the lower
image resolution and therefore simpler image analysis.
However, advanced methods for other widely used cardiac
modalities are being rapidly developed.

Piotor Slomka in his review focuses on the efforts in full
automation of the widely used clinical imaging techniques and
on the efforts to derive the final diagnosis or prognosis by such
automated techniques [21••].

Myocardial perfusion SPECTand PET imaging (MPI) play
a crucial role in the diagnosis and management of coronary

artery disease, providing key information concerning myocar-
dial perfusion and ventricular function.

Currently, when automated processing methods are
employed, a common workflow is that the physician performs
a final quality control check and overview in his concluding
report. However, with advancingmachine intelligence, this final
human check may also become a surplus requirement. Instead,
software tools could provide this final quality check and in fact
offer a more sophisticated, reproducible conclusion drawn from
comparison with not just one physician’s career experience but
with massive ever-increasing training databases. Given the ever-
abundant need for cost-effective diagnostic and treatment algo-
rithms, supplanting the physician to achieve completely auto-
mated image processing, data analysis, quality control check,
and final interpretation is not just an inspiring technical chal-
lenge but a valid option for reducing costs. It could be an im-
minent reality if this strategy is actively pursued by researchers
and developed over the coming years. The visual analysis in this
study was performed in four steps. In the final step, the physi-
cians had all the clinical information available. Despite that, we
can see that the overall diagnostic accuracies of the physician
reading and the computer analysis are similar.

Echocardiography is widely available, does not utilize any
ionizing radiation, and can be performed at the bedside. As a
result, it is the most widely used noninvasive imaging tech-
nique in cardiology.

The acquisition of ultrasound images is still usually per-
formed in 2D using several standardized views. The correct
alignment of those views presents a challenge for
sonographers. 3D-mode cardiac echo, which can be obtained
with more complex transducers, solves this problem by the
acquisition of volumes containing the myocardium. The 3D
mode has the potential to derive more accurate and new quan-
titative parameters but suffers from reduced temporal resolu-
tion and image quality compared to the 2D mode. Ultrasound
imaging is constantly being improved by vendors who intro-
duce new generation traducers (2D and 3D), faster electronics,
and novel signal/ image processing methods.

For 3D transthoracic echocardiography, fully automated
quantification software was developed that simultaneously de-
tects Left Ventricle (LV) and left atrium (LA) based on the
detection of endocardial surfaces. In one approach, a model
template describing the initial global shape and LV and LA
chamber orientation is defined based on a large database of
prior scans and followed by a patient-specific adaptation [22].
Once the model adapts to a current dataset, ventricle volumes,
ejection fractions (EFs), 2D views, and other parameters are
derived from the 3D model and used for the cardiac function
evaluation. The automatic model shows an excellent correlation
with manually derived volumes from a single-beat 3D echocar-
diography in challenging atrial fibrillation patients [23].

In recent years, quantitative values derived from echo se-
quences such as strain or strain rate have been shown to
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provide added diagnostic value. Two general approaches can
be used to measure strain; they are based on tissue Doppler
imaging (TDI) and speckle-tracking echocardiography (STE).

Sengupta et al. wrote a paper regarding cognitive machine
learning, a pilot study for differentiating constrictive pericar-
ditis from restrictive cardiomyopathy [24].

They hypothesized that a similar process using a cognitive
computing tool would be well suited for learning and recalling
multidimensional attributes of speckle tracking echocardiog-
raphy data sets derived from patients with known constrictive
pericarditis and restrictive cardiomyopathy.

This study demonstrates feasibility of a cognitive machine-
learning approach for learning and recalling patterns observed
during echocardiographic evaluations. Incorporation of
machine-learning algorithms in cardiac imaging may aid stan-
dardized assessments and support the quality of interpreta-
tions, particularly for novice readers with limited experience.

Suctit Narula et al. published an original investigation in
machine-learning algorithms to automate morphological and
functional assessments in 2D echocardiography [25]. They
used supervised machine learning with an ensemble of three
different machine-learning algorithms. This approach entails
techniques that create multiple models that are then combined
to produce improved results. Such approaches attempt to de-
cipher clinically useful information from noisy cardiac ultra-
sound motion and deformation data.

Jamil Tajik also wrote an excellent editorial review, where
he reminds that cardiologists of the bygone era always carried
calipers in their pocket so they could make painstaking mea-
surements of P-, Q-, R-, S-, and T-wave durations and R-R
cycle variability. Now, a half-century later, machine learning
for echocardiography image interpretation is on its way. The
current workflow of echocardiographic examination (30 to 60
minutes), analysis of images by sonographers (15 to 30 mi-
nutes), and final integration and reporting by cardiologists (10
to 20 minutes) is a very time-consuming and inefficient pro-
cess. To this end, automated computer analysis of echocardio-
graphic images will be a most welcome new change.

Developments of such automated systems will reduce inter-
observer variability and cognitive errors, increase efficiency,
and further enhance the value of echocardiography [26••].

Coronary CT angiography (CTA) has recently emerged as a
useful diagnostic test in selected stable but symptomatic pa-
tients needing noninvasive assessment of the coronary arteries.

However, standard visual interpretations have been
shown to have a high rate of false-positive findings,
which can lead to unnecessary additional testing and
increased overall cost. Over the last few years, several
automated methods have been developed for standard-
ized, semi-automated quantification of noncalcified and
calcified plaques, and lumen measures from coronary
CTA [27–29], with research studies supporting this ap-
proach [30, 31].

The CTA tools are not yet fully automated to the level
achieved in nuclear cardiology, and still require significant
time of a skilled operator for the contour adjustments.
Nevertheless, it is probably a matter of time when these
methods reach a much higher level of automation, such as
seen in nuclear cardiology studies. Unsupervised methods
for the automated detection of subtle and significant coronary
lesions from CTA have recently been demonstrated [32].

Furthermore, methods for semi-automated measurements
of epicardial coronary fat from non-contrast CT have also
been developed and validated (Fig. 3) [33]; developments of
fully automated methods are currently in progress. These ad-
ditional CT applications can in the future add to the compre-
hensive automated image assessment by this modality.

Several applications of machine learning have been pro-
posed for feature extraction and segmentation of cardiology
images. Machine learning techniques can be utilized for auto-
matic identification of lesions on coronary CTA images. For
example, improvements for automatic lesion localization have
been demonstrated by support vector machine method, which
integrated several quantitative geometric and shape features
(including stenosis, minimum luminal diameter, circularity,
eccentricity), resulting in high sensitivity, specificity, and

Fig. 3. Semi-automated measurements of epicardial coronary fat from non-contrast CT. (Reprinted from: Dey D, et al. Atherosclerosis.
2010;209(1):136-141, with permission from Elsevier) 34]
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accuracy (93%, 95%, 94%) (Fig. 4) [34]. Very recently, deep
learning techniques have been applied for the identification of
calcified plaques on CTA images, demonstrating improved
accuracy over the existing methods [35].

MRI A standard clinical cardiac MRI (CMR) scan requires
1 hour of imaging time, followed by significant time for image
post-processing. Many automated approaches for CMR heart
segmentation have been described [21••]; however, large-
scale clinical adoption of fully automated analysis methods
for CMR analysis has not yet occurred. Attempts at analysis
automation are complicated by the variety of different CMR
pulse sequences, scanning parameters, and imaging protocols
– each of which is tailored to the individual patient and the
particular clinical question. Despite these limitations, there is a
vast amount of ongoing work attempting to overcome these
challenges and automate the key steps in CMR workflow.

There are examples of successful in-house custom software
solutions for small uniform datasets. For example, Tarroni et al.
successfully demonstrated near-automated evaluation of stress/
rest perfusion CMR using image noise density distribution for
endocardial and epicardial border detection combined with
non-rigid registration (n = 42) [36]. Noise characteristics of
the blood pool and myocardium were used to facilitate auto-
mated endo-/epicardial contouring. The only manual step was
the placement of a seed point inside the LV cavity in a single
frame and identification of the anterior RV insertion point.
Contrast enhancement time curves were automatically generat-
ed and used to calculate perfusion indices. Automated analysis
of one sequence required <1 min and resulted in high-quality
contrast enhancement curves both at rest and stress, showing
expected patterns of the first-pass perfusion – compared with at
least 10 minutes, and often 30 minutes, for manual processing.

Accordingly, a machine learning solution to facilitate auto-
mated segmentation to obtain consistent measurements, and to
save clinicians' time, is highly desirable. Initial approaches
incorporating deep learning strategies have been demonstrated
for the segmentation of CMR images [37– 39].

Conclusion

The learning healthcare system uses IT and health Big-Data
infrastructure to adhere to published scientific evidence at the
Point-of-Care, and in the meantime it may take into account
feedback and insights from that care to promote innovation in
healthcare delivery and to fuel new registries and discoveries.

It is likely that within 5-years the level of automation for
analysis and interpretation will be significantly raised, com-
pared with what is possible today. It is likely that entirely
unsupervised extraction of all image parameters will be pos-
sible for nuclear cardiology, and minimal supervision will be
required for other modalities. Greater standardization of ac-
quisition protocols will be needed to maximize the potential
gains from automation and machine learning.

The transition to electronic medical records and availability
of patient data has increased the volume and complexity of
patient information and medical alerts, with raised expecta-
tions for rapid and accurate diagnosis and treatment. The
greater risk for possible consequent diagnostic and therapeutic
errors could be approached and solved by AI/CDSS/machine
learning applications that will likely assist physicians with
timely differential diagnosis of disease, treatment option sug-
gestions, and recommendations, and, in the case of medical
imaging, with cues in image interpretation. It can reduce cost,
and ultimately improve the quality of healthcare. In 2017 for
instance in the US, referring physicians must use appropriate-
ness criteria when ordering advanced imaging for Medicare
patients. CDSS will become a critical part of this process also
contributing to the medical imaging chain from ordered study
to communicating results, to achieve best practices.

This goal will require significant support from the vendors
but also from the medical centers, to facilitate data sharing.
Fully quantitative diagnostic and risk stratification scores will
be developed for clinicians, and these will become integrated
with the imaging software. Risk stratification will transition
from oversimplified population-based risk scores to machine

Fig. 4 Automatic identification
of coronary lesions from coronary
CT angiography by an algorithm
based on machine learning. An
example of lumen segmentation
with lesion detection. (With
permission from: Kang D, et al. J
Med Imaging. 2015; 2:014003)
35]
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learning-based metrics incorporating a large number of clini-
cal and imaging variables in real-time beyond the limits of
human cognition; this will deliver highly accurate and indi-
vidual personalized risk assessments and facilitate tailored
management plans. However, the clinical translation of these
exciting techniques will depend on many factors outside of
technological progress, such as aspects related to logistics,
legal issues, standardization, and reimbursement.
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