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Abstract
Purpose of Review The current definition of heart failure
is mainly based on an inappropriate measure of cardiac
function, i.e., left ventricular ejection fraction (LVEF).
The initial sole entity, heart failure with reduced ejec-
tion fraction (HFrEF, LVEF <40%), was complemented
by the addition of heart failure with preserved ejection
fraction (HFpEF, LVEF ≥50%) and most recently, heart
failure with mid-range ejection fraction (HFmrEF, LVEF
40–49%). Initially, HFpEF was believed to be a purely
left ventricular diastolic dysfunction. Pathophysiological

concepts of HFpEF have changed considerably during
the last years. In addition to intrinsic cardiac mecha-
nisms, the heart failure pathogenesis is increasingly con-
sidered as driven by non-cardiac systemic processes in-
cluding metabolic disorders, ischemic conditions, and
pro-inflammatory/pro-fibrotic or immunological alter-
ations. Presentation and pathophysiology of HFpEF is
heterogeneous, and its management remains a challenge
since evidence of therapeutic benefits is scarce. Up to
now, there are no therapies improving survival in pa-
tients with HFpEF.
Recent Findings Several results from clinical and preclini-
cal interventions targeting non-cardiac mechanisms or non-
pharmacological interventions including new anti-diabetic
or anti-inflammatory drugs, mitochondrial-targeted anti-
oxidants, anti-fibrotic strategies, microRNases incl.
antagomirs, cell therapeutic options, and high-density lipo-
protein-raising strategies are promising and under further
investigation.
Summary This review addresses mechanisms and available
data of current best clinical practice and novel approaches
towards HFpEF.
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Introduction

The current definition of heart failure (HF) is mainly
based on an inappropriate measure of cardiac function,
i.e., left ventricular ejection fraction (LVEF), mostly
based on echocardiographic assessments. The initial sole
entity, HF with reduced ejection fraction (HFrEF, LVEF
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<40%) was complemented by the addition of HF with
preserved ejection fraction (HFpEF, LVEF ≥50%) 15 years
ago, and most recently, HF with mid-range ejection frac-
tion (HFmrEF, LVEF 40–49%) was added [1].

In the US alone, 5.7 million adults suffered from HF
in 2012 [2]. Half of the patients with symptoms of HF
have a preserved ejection fraction (HFpEF) and half of
the patients have a reduced ejection fraction (HFrEF).
These numbers are thought to increase in the future due
to an expected rise in the prevalence of HFpEF in a
constantly ageing population. This underlines the huge
public health need for the development of therapies to
alter the natural history of patients with HFpEF.

In the last decades, there has been a tremendous ad-
vance in treating patients with HFrEF, resulting in a
declining mortality due to inhibition of the renin angio-
tensin aldosterone system (RAAS), β blockage,
device therapy, and recently neprilysin inhibition [3].
Unfortunately, application of most of those therapies to
patients with HFpEF has been unsuccessful in altering
long-term results of these patients, where 5-year survival
rates can be as poor as 50% [4]. The lack of efficacy of
these therapies might underscore the fundamental differ-
ences between both these phenotypically distinct forms
of HF as well as our incomplete understanding of the
pathophysiology.

Initially, HFpEF was believed to be a purely LV dia-
stolic dysfunction. Pathophysiological concepts of HFpEF
have changed considerably during the last years: in addi-
tion to intrinsic cardiac mechanisms, HF pathogenesis is
increasingly considered as driven by non-cardiac systemic
processes including metabolic disorders, pro-inflammato-
ry/pro-fibrotic or immunological alterations. Recently, a
paradigm shift for HFpEF development has been pro-
posed. The new paradigm presumes that a high prevalence
of comorbidities such as overweight/obesity, diabetes
mellitus, chronic obstructive pulmonary disease, and
salt-sensitive hypertension induce a systemic pro-
inflammatory state causing coronary microvascular endo-
thelial inflammation and vascular rarefication. Coronary
microvascular endothelial inflammation then reduces
nitric oxide (NO) bioavailability, cyclic guanosine
monophosphate content, and protein kinase G (PKG) ac-
tivity in adjacent cardiomyocytes. Low PKG activity then
favors hypertrophy development and increases resting ten-
sion due to hypophosphorylation of titin. Finally, both
stiff cardiomyocytes and interstitial fibrosis contribute to
high diastolic left ventricular (LV) stiffness and HF devel-
opment [5•,6••,7] (Fig. 1). None of the established heart
failure medications like renin-angiotensin aldosterone in-
hibitors and beta blockers targeting a neuroendocrine ac-
tivation were effective in clinical trials to overcome the
involved pathophophysiological mechanisms. In the

following, we summarize new pharmacological as well
as cell and molecular-based HF therapy approaches for
HFpEF.

New Developments Among Causal Therapy
Strategies for HFpEF

Neurohumoral activation plays a central part in the pathology
of HFpEF and has been the main focus in the initial treatment
of HFpEF. In recent years, however, our understanding of the
pathologies involved in the development of HFpEF evolved
and includes now disorders in calcium homeostasis, regula-
tion of the energy homeostasis, disorders in matrix regulation,
inflammation, angiogenesis, and oxidative stress (Table 1).

Regulation of the Calcium Homeostasis

Dysregulation of the intracellular calcium homeostasis can
lead to a significant LV systolic and diastolic dysfunction
[31] by interfering with functions of the ryanodine receptor
(RyR2) [32], SERCA2a or the sodium-potassium pump [33].

Although there are currently no patient data available, an-
imal studies have shown that the RyR2 stabilizer, K201 [19],
the sodium-potassium pump inhibitor, SES0400 [34], and
strategies that improve the functions of SERCA2A [35], all
can improve diastolic function.

Regulation of the Energy Homeostasis

It has been shown that in some HFpEF patients, chronically
increased β-adrenergic stimulation and an insulin resistance is
present, leading to an unfavorable cardiac metabolism situa-
tion in addition to a limited energy production [36]. A major-
ity of HFpEF patients also suffer from diabetes. In this regard,
incretins and SGLT2 inhibitors may possibly represent an ad-
ditional therapeutic option in the future for diabetic and non-
diabetic HFpEF patients.

Another strategy includes the restoration of mitochondrial
energy metabolism by the so-called Szeto-Schiller (SS) pep-
tides like elamipretide (MTP-131).

Incretins

The glucagon-like peptide 1 (GLP-1) is a hormone of the
incretin family that is released out of the alimentary canal after
sugar loading [37]. GLP receptors have also been shown to be
present in the heart [38]. The stimulation of myocardial GLP
receptors leads to an increased sugar assimilation of the heart
activating especially myocyte glycolysis [39]. This metabolic
pathway can be stimulated by two pharmacological therapy
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strategies: by GLP-1 analogues like exenatide, semaglutide,
liraglutide, or by dipeptidyl peptidase 4 inhibitors (DPP-IV)
such as sitagliptin, saxapliptin, or linagliptin.

Exenatide was found to be able to improve cardiac diastolic
function in diabetic patients [21, 22] and two large phase III
trials showed the improvement in prognosis in diabetic pa-
tients with cardiovascular risk with semaglutide [23] and
liraglutide [24]. Similarly, DPP-IV inhibitors are under inves-
tigation with respect to LV diastolic function. In a small study
focusing on non-diabetic patients having non-ischemic car-
diomyopathy, it was observed that sitagliptin improved myo-
cardial glucose assimilation [25]. Linagliptin and sitagliptin
were also able to improve diastolic function in diabetic
HFpEF patients with chronic kidney disease [26]. Studies will
have to be awaited in order to check whether or not an

incretin-based therapy approach with diabetic and/or non-
diabetic patients having HFpEF can lead to any improvement
of the symptoms or prognosis.

Sodium-Glucose Cotransporter 2 Inhibitors

Sodium-glucose cotransporter-2 (SGLT2) inhibitors, in-
cluding empagliflocin, dapagliflozin, and canagliflozin,
are now widely approved anti-hyperglycemic therapies.
Moreover, the results of the EMPA-RREG OUTCOME
trial revealing a relative risk reductions of 38% in car-
diovascular mortality, 35% reduction in hospitalization
for HF, and a 32% reduction in death from any cause
using empagliflocin in patients with type 2 diabetes risk
have raised the possibility that mechanisms beyond the

Fig. 1 Scheme illustrating the
pathophysiological mechanisms
underlying HFpEF.
Comorbidities like renal failure,
metabolic syndrome, and COPD
induce systemic inflammation
and result in multiorgan damage
with microvascular endothelial
inflammation and subsequent
myocardial stiffness and cardiac
fibrosis
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anti-hyperglycemic actions were observed in the trial
[27]. It has been shown that under conditions of mild,
persistent hyperketonemia, similar to those during treat-
ment with SGLT2 inhibitors, the heart freely takes up β-
hydroxybutyrate and oxidizes it in preference to fatty
acids [40]. This in turn improves the transduction of
oxygen consumption into work efficiency at the mito-
chondrial level. In addition, SGLT2 inhibition is typically
followed by hemoconcentration and this in turn enhances
oxygen release to the tissues, thereby establishing a pow-
erful synergy with the metabolic substrate shift.
Empagliflozin is now recommended in diabetic HF pa-
tients by the ESC in combination with metformin (IIA
recommendation; [41]). Studies are ongoing in non-
diabetic patients with HFrEF and HFpEF.

Mitochondria-Targeting Peptides

HF represents a mismatch between supply and demand of
ATP. This mismatch may result from damaged mitochon-
dria, decreased mitochondrial production of ATP includ-
ing increased workload to the myocardium following is-
chemia, hypertension, or diastolic dysfunction [42, 43].
Damaged mitochondria can augment the generation of
ROS. Dysfunction of mitochondria increases the risk for
a large number of human diseases, including HF follow-
ing ischemic heart disease, cardiomyopathies, and cardiac

hypertrophy [28]. Current treatments all rely on “energy
sparing” by decreasing workload. Targeting mitochondrial
plasticity to improve ATP supply may provide an alterna-
tive approach to the treatment of HF including HFpEF.

Elamipretide

New mitochondria-targeted antioxidant peptides were
developed able to restore the mitochondrial electron
transport chain to optimize efficiency of electron trans-
port and restore cellular bioenergetics [44, 45]. The first
of these compounds (SS-31; also named MTP-131,
elamipretide (Bendavia™)) has entered into clinical de-
velopment and is studied in phase II clinical trials for
HFrEF and HFpEF. However, elamipretide was not able
to reduce infarct size in a phase II trial in patients with
acute ST-elevation myocardial infarction (EMBRACE
STEMI study [28]).

Matrix Regulation

Changes in the structures within the extracellular matrix
(ECM) can also affect diastolic function. The myocardial
ECM is composed of three important constituents, fibrillar
protein, proteoglycans, and basement membrane proteins,
whereby it has been shown that themost important component

Table 1 Overview of new
pharmacological treatment
strategies in HFpEF

Name Mechanism Target

AVE3085 [8] Activator of endothelial NO-synthase NO-cGMP-PK signalling pathway
Sodium nitrite [9, 10] Inorganic nitrate-nitrite pathway
Inorganic nitrate [11]

LCZ696 [12] AT-1 antagonist/neprilysin inhibitor

Sildenafil [13] Phosphodiesterase-5 inhibitor
Bosentan [14]

Riociguat [15] cGMP stimulation

Sitaxsentan [16] ETA antagonist Endothelin receptor
Macicentan [17] ETA and ETB antagonist

Anakinra [18] IL-1 antagonist Cytokine inhibition

K201 [19] Ryanodin receptor (RyR2) stabilizers Intracellular calcium homeostasis

Pioglitazon [20] PPAR-y receptor Modulation of myocardial energy
Exenatide [21, 22] GLP-1 analogue
Semaglutide [23]

Liraglutide [24]

Sitagliptin [25, 26] Dipeptidyl peptidase 4 inhibitors
Linagliptin [26]

Empagliflocin [27] Sodium-glucose cotransporter-2 inhibitors

Elamipretide [28] Mitochondria-targeted antioxidant peptide Restoration of mitochondrial
energy metabolism

Alagebrium [29] “Cross-link breaker” Matrix regulation
Lysyl oxidase-like 2

Antibody [30]
Inhibition of lysyl oxidase-like 2
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within the ECM that contributes to the development of HFpEF
is fibrillar collagen [46]. The regulatory control of collagen
biosynthesis and degradation has at least three major determi-
nants: transcriptional regulation, posttranslational regulation,
including collagen cross-linking, and enzymatic degradation
by matrix metalloproteinases (MMPs) [47]. Pharmacological
attempts at MMP inhibition have been found to be over-
simplistic and unsuccessful. Future strategies must recognize
the diversity of this matrix proteolytic system including its
regulation by endogenous inhibitors (TIMPs) [48].

Cross-Link Breakers

Advanced glycation end products (AGEs), molecules formed
during a non-enzymatic reaction between proteins and sugar
residues, which accumulate in the human body with age, dia-
betes, renal failure, and enhanced states of oxidative stress, form
“cross-links” between matrix proteins like collagen, laminin,
and elastin [49], leading to increased rigidity and diastolic dys-
function. Alagebrium chloride, a cross-link breaker, was exam-
ined in a small study involving 23 older patients having HFpEF
and showed an improvement of diastolic function after 16weeks
[29]. Whether or not these results can also be confirmed subse-
quently depends on the undertaking of larger studies.

Lysyl Oxidase-Like 2 Inhibition

Lysyl oxidase-like 2 (LOXL2) belongs to the LOX family,
which comprises copper-dependent extracellular enzymes that
catalyze lysine-derived cross-links of collagen and elastin.
Dysregulation of LOXL2 has been linked to many diseases,
including cancer, pro-oncogenic angiogenesis, fibrosis, and
heart diseases. LOXL2 is essential for interstitial fibrosis and
mechanical dysfunction of stressed hearts. Particularly, in-
creased LOXL2 expression leads to upregulated TGF-β2 pro-
duction, triggering the formation and migration of
myofibroblasts with enhanced collagen deposition and cross-
linking in the hypertrophic regions of stressed hearts.
Antibody-mediated inhibition of LOXL2 in mice has been
shown to greatly reduce stress-induced cardiac fibrosis and
chamber dilatation, improving systolic and diastolic functions
[30]. Further studies are in preparation to prove different con-
cept strategies of cross-link breaking in HFpEF.

Nitric Oxide Metabolism and Vascular Homeostasis

Recently, it was shown that disorders of intracellular nitrogen
monoxide-cGMP-PKG (NO-cGMP-PKG) signal cascade
which are brought on by oxidative stress are present in
HFpEF [50] and lead to the development of concentric remod-
elling, increased cardiomyocyte stiffness, and an increase of
cardiac fibrosis [50, 51]. These findings might lead to the

development of new therapy options by specifically interven-
ing in this mechanism via NO donors, phosphodiesterase-5
inhibitors, orally available soluble guanylate cyclase stimula-
tors, or by an additional neprilysin inhibition.

eNOS Enhancer, Sodium Nitrite, Sodium Nitrate

However, activators of endothelial NO synthase (eNOS), like
the eNOS transcription amplifier AVE3085, have been exam-
ined at least in animal experiments and yielded promising
results [8]. In contrast to organic nitrates, the inorganic
nitrate-nitrite pathway represents an important alternative
route to restore NO signalling in HFpEF [9]. Acute infusion
of sodium nitrite was shown in a placebo-controlled trial of
patients with HFpEF to preferentially reduce diastolic LV
pressures and pulmonary artery pressures during exercise
while restoring cardiac output reserve towards normal. Part
of this benefit was mediated by vasodilation, but evidence
for a direct myocardial benefit, such as increased stroke work,
was also observed [52]. Similar effects were seen by inhaled
sodium nitrate [10]. Another recent study found that inorganic
nitrate (precursor to nitrite), delivered as 1 week of once-daily
beetroot juice consumption, improved submaximal exercise
endurance [11].

AT1 Receptor Antagonism and Neprilysin Inhibition
by LCZ696

LCZ696, a molecule consisting of the AT1 receptor antagonist
valsartan and a neprilysin inhibitor, has been shown to stimu-
late the NO-cGMP-PKG signal cascade and might therefore
play an important role in the pathomechanism of HFpEF.
Furthermore, neprilysin inhibition prevents also the degrada-
tion of GLP-1, which allows the hypothesis that LCZ696 may
affect also cardiacmetabolism. The PARAMOUNTstudy [12],
a phase II study, investigated the role of LCZ696. The primary
endpoint, a decline in NT-proBNP levels after 12 weeks was
reached in the LCZ696 group, and in addition after 36 weeks, a
reduction of the atrium volumes and an improvement in the
NYHA classification were observed. At the moment, the effect
of LCZ696 on the mortality of HFpEF patients is being inves-
tigated in the phase III PARAGON-HF trial.

Phosphodiesterase-5 Inhibitors

Patients having a pulmonary hypertension often also have a
diastolic dysfunction of the left ventricle most probably due to
a septum shift from right to left [53]. Not only an improvement
of the pulmonary pressure but also of the diastolic function
was observed in 44 patients having HFpEF (>50%) and
primary pulmonary hypertension after 1 year of
phosphodiesterase-5 inhibitor sildenafil treatment [13].
However, these results could not be confirmed in the
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placebo-controlled RELAX study in which older HFpEF pa-
tients without primary pulmonary arteriopathy had been treat-
ed with sildenafil [54]. After a treatment of 24 weeks, no
improvement of the strain capacity, neither of the diastolic
function nor of left ventricular remodelling, could be
observed. The application of sildenafil in HFpEF patients
without additional primary pulmonary hypertension can there-
fore not recommended.

cGMP Stimulators

Novel classes of drugs were discovered which enhance cGMP
production by targeting the NO receptor soluble guanylate
cyclase (sGC). These compounds, the so-called sGC stimula-
tors and sGC activators, are able to increase the enzymatic
activity of sGC to generate cGMP independently of NO and
have been developed to target this important signalling cas-
cade in the cardiovascular system. One advantage of using this
entails the finding that cGMP can be produced even where
there is a diminished bioavailability of NO. Available clinical
data with, e.g., riociguat and vericiguat, novel direct sGC
stimulators, look promising in the treatment of HFrEF [55].
The DILATE-1 trial examined the use of riociguat in patients
with HFpEF and pulmonary hypertension [15]. The primary
outcome was peak decrease in mean PAP up to 6 h after
administration. While there was no significant change in the
primary outcome (P = 0.6), riociguat 2 mg significantly in-
creased SV and cardiac index and decreased systolic blood
pressure and right ventricular end-diastolic area. Recently, it
was shown that vericiguat was well tolerated in HFpEF pa-
tients and did not change NT-proBNP at 12 weeks compared
with placebo but was associated with improvements in quality
of life. Further studies are ongoing to investigate the effects of
this drug class in HFpEF [56].

Endothelin Antagonists

Endothelin (ET) receptors have been shown to be able to
increase LV hypertrophy and to cause matrix accumula-
tion. ET antagonists have been successfully used in the
treatment of pulmonary hypertension and their potential
role in the treatment of HFpEF has recently been evaluat-
ed. In a phase 2 study, the ETA antagonist sitaxsentan was
investigated for a period of 24 weeks. Although there were
no improvements in either diastolic function or in LV mass,
there was a significant improvement in the exercise toler-
ance of the patients [16]. Interestingly, in a recent animal
study, the dual ETA and ETB antagonist macicentan led to
an improvement in diastolic function by abrogating ad-
verse cardiac remodelling via anti-hypertrophic mecha-
nisms and by reducing stiffness [17]. Further studies are
pending to determine whether ETA/B receptor antagonists
may be useful in the treatment of HFpEF.

Inflammation

Patients with HFpEF exhibit signs of chronic myocardial in-
flammation [57]. Endothelial activation enables immigration
of activated inflammation cells that can activate the local cy-
tokine cascade. Increased cardiac expression of TGF-β stim-
ulates the formation of pro-inflammatory myofibroblasts,
which release collagens and chemokines [58–60]. In the small
D-HART study, the effect of the IL-1 inhibitor anakinra was
examined over a period of 14 days in 12 HFpEF patients, who
had increased plasma C-reactive protein levels (>2 mg/dl). In
this study, load capacity and C-reactive protein levels im-
proved compared to placebo [18]. Whether HFpEF patients
without signs of systemic inflammation may benefit from
such intervention remains to be shown. Similarly, new adhe-
sion molecule antagonists targeting integrins (ICAM or
VCAM) are under investigation as well as the role of colchi-
cine to prevent myocardial invasion of inflammatory cells.
Colchicine, traditionally used to treat gout [61], has recently
been shown to be successful for the treatment of different
inflammatory cardiac disorders, including stable coronary ar-
tery disease [62] and postpericarditomy syndrome [63]. Its
broad anti-inflammatory actions, comprising the inhibition
of neutrophil chemotaxis, adhesion and mobilization, the re-
duction in superoxide production and the inhibition of
inflammasomes and IL-1β production, together with its anti-
fibrotic and endothelial-protective features [64], make colchi-
cine an attractive therapeutic agent for the treatment of
HFpEF.

New Non-Pharmacological Therapy Approaches
for HFpEF

Cell Therapy

T Regulatory Cells

T regulatory cells, a subpopulation of CD4+ cells, consti-
tuting 5–10% of the peripheral T cells, play a pivotal role
in the induction and maintenance of immune homeostasis
and tolerance [65]. Studies in HF [66] and in comorbidities
underlying HFpEF such as diabetes mellitus [67], obesity
[68], and chronic obstructive pulmonary disease [69] have
demonstrated that T regulatory cells can be quantitatively
and/or qualitatively impaired and/or were insufficient to
balance the immune system. Experimental studies in
mouse models of HF [70, 71] have shown the potential of
adoptive transfer of T regulatory cells to reduce cardiac
inflammation and fibrosis. New technologies make adop-
tive transfer of T regulatory cells as therapeutic option
feasible in patients [72], opening the avenue for T regula-
tory cell therapy in HFpEF patients.

70 Page 6 of 12 Curr Cardiol Rep (2017) 19: 70



Mesenchymal Stromal Cells, PLX, and CardAPs

The pathophysiological mechanisms underlying HFpEF
[50, 51] on the one hand and the broad spectrum of
cardioprotective effects of mesenchymal stromal cells
(MSC) on the other hand, including their pro-
angiogenic [73], endothelial-protective [74], immuno-
modulatory [75–78], and anti-fibrotic features [76], and
their ability to be used allogenically [79], make MSC an
attractive cell type for the treatment of HFpEF. MSC are
most commonly derived from the bone marrow but can
be isolated from almost any organ. Placental-derived
MSC, termed PLX, are stable adhesive stromal cells iso-
lated from full-term human placentae, cultured on car-
riers, and expanded in a bioreactor [80]. They have been
successfully used for the treatment of experimental
hindlimb ischemia [74] and myocardial infarction [73].
Cardiac-derived proliferating cells (CardAPs, former
CAPs) are endomyocardial biopsy-derived stromal cells
[81] with MSC-like properties [82–84]. Intravenous ap-
plication of both MSC (PLX) and CardAPs is associated
with limited cardiac MSC/CardAPs engraftment and in-
duces systemic immunomodulation. These findings to-
gether with the existence of the cardiosplenic axis, i.e.,
the homing of immune cells from the spleen towards the
heart and their subsequent role in cardiac remodelling
[85], support the hypothesis that the cardioprotective ef-
fects of MSC/CardAPs following intravenous application
are partly due to their systemic immunomodulatory ef-
fects (Fig. 2), a hypothesis which also accounts for reg-
ulatory T cells (see infra). The relevance of low-grade
inflammation in HFpEF [86] and in comorbidities under-
lying HFpEF [87] further stresses the benefit of a
systemic/intravenous over a solely cardiac-directed cell
approach. So far, in t racoronary appl ica t ion of
cardiosphere-derived cells, heart cell products with anti-
fibrotic, anti-inflammatory, and angiogenic properties
[88] has been shown to reverse HFpEF in rats by de-
creasing cardiac fibrosis and cardiac inflammation (car-
diac macrophages and leukocytes) despite persistent hy-
pertension and cardiac hypertrophy [89]. Further studies
investigating the potential of intravenous MSC/CardAPs
in HFpEF models are warranted.

MicroRNAs

MicroRNAs (miRNAs) are a class of conserved small non-
coding RNA (21–25 nucleotides in length) that regulate gene
expression by base-pairing to the complementary mRNA se-
quences resulting in transcript degradation or translational in-
hibition [90]. miRNA are important epigenetic regulators of
cardiac function. They are implicated in cardiac development
and influence genes that are important for HF [91]. Circulating

miRNA profiles have been identified to differ between
HFpEF from HFrEF (miR-30c, miR-146a, miR-221, miR-
328, and miR-375 [130]; miR-125a-5p, miR-190a, miR-
550a-5p, and miR-638 [92, 93]). However, the role of circu-
lating miRNAs as biomarkers in HFpEF is still not clear [94].
miRNAs can be in vivo targeted by synthetic molecules
(antagomirs and miRNA mimics) [95, 96]. Their potential as
therapeutic target for the treatment of HF and specifically
HFpEF is currently under investigation [97]. Patient-specific
iPS-induced cardiomyocytes offer a model disease system to
determine miRNA-mediated mechanisms towards the disease
phenotype [98].

High-Density Lipoprotein-Raising Strategies

Epidemiological and clinical studies have consistently
demonstrated an inverse correlation between high-
density lipoprotein (HDL) cholesterol levels and the in-
cidence of ischemic cardiovascular diseases [99]. The
primary mechanism for this protective effect of HDL
has been attributed to its role in reverse cholesterol trans-
port, i.e., the centripetal transport of excess cholesterol
from peripheral tissue towards the liver for excretion into
bile or to steroidogenic organs for steroid hormone syn-
thesis. However, the cardiovascular-protective effects of
HDL are reaching far beyond. HDL have direct anti-
inflammatory [100, 101], anti-oxidative [102], anti-
apoptotic [100, 103], pro-angiogenic [104, 105], anti-
fibrotic [100, 106], immunomodulatory [107], and anti-
diabetic [108] features, so-called pleiotropic effects,
which may contribute in their protective effect against
atherosclerosis and ischemic heart disease and explain
their protective potential in endothelial dysfunction and
non-ischemic heart disease. Low plasma HDL is in fact
an independent predictor of endothelial dysfunction in
healthy individuals and diabetic patients [109] and a
common biomarker for several inflammatory disorders
including diabetes mellitus, obesity, atherosclerosis, sys-
temic lupus erythematosus, and rheumatoid arthritis, in-
dicating a link between HDL and immunity. The broad
spectrum of protective effects of HDL including their
immunomodulatory properties [107] makes HDL-raising
strategies interesting to prevent or counteract HFpEF. An
increase of HDL via gene transfer with apolipoprotein A-
I, the main apolipoprotein of HDL, has been shown to
improve diastolic function in LDL receptor-deficient
mice involving an increase in endothelial progenitor cell
and an improved myocardial vascularity [105]. The fail-
ing clinical trials with HDL-raising pharmaca [110], the
complexity of the HDL proteome and dysfunctionality of
HDL under stress and diabetic conditions [108], and the
success of LDL cholesterol-lowering proprotein
convertase subtilisin/kexin type 9 (PCSK9) inhibitors
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has dempered the HDL field and the development of
novel HDL-raising pharmaca. In the attendance for fur-
t he r HDL- inc r ea s i ng t r e a tmen t op t i on s , non -
pharmacological strategies including exercise [111] and
Mediterranean diet [112] known to increase HDL levels
form an attractive alternative counteracting the develop-
ment of HFpEF.

Conclusion

The management of and clinical research in patients with
HFpEF remains an ongoing challenge. HFpEF is a heteroge-
neous syndrome. Therefore, clinical management and future
clinical trials mandate an individualized, phenotype-specific
approach instead of a “one-size-fits-all” strategy. Options to
improve patients’ symptoms and quality of life include control
of fluid overload, heart rate, risk factors, and comorbidities.

Recently, our understanding of the pathological processes
involved in HFpEF has led to the discovery of new treatment
targets and holds promise for more specific treatment options
of HFpEF in the future (Table 1). Some strategies, such as

LCZ696, have already been successfully studied in a phase-
II trial [12]; other potential treatment targets, e.g., involving
cGMP stimulation, mitochondria-targeted antioxidant pep-
tides, new devices, or the role of anti-diabetic drugs like
empagliflozin in normoglycaemic patients are currently inves-
tigated. The results of these studies will have an important
contribution to our understanding of the pathophysiology of
HFpEF and will help in generating new hypothesis and new
future treatment strategies.
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Fig. 2 Hypothetical scheme
illustrating how mesenchymal
stromal cells, PLX, CardAPs, and
regulatory T cells following
intravenous application exert
cardioprotective effects in
HFpEF. Mesenchymal stromal
cells (MSC), PLX, CardAPs, and
regulatory T cells (Tregs) exert
cardioprotective effects after
intravenous application via (1)
direct cardioprotective and
systemic immunomodulation
which involves (2) modulation of
the cardiosplenic axis, i.e.,
reduction of homing of pro-
inflammatory cells towards the
heart. The impact of MSC, PLX,
CardAPs, and regulatory T cells
(Tregs) on low-grade
inflammation in non-cardiac
tissues including the lung, gut,
adipose tissue, and skeletal
muscle cannot be excluded and
warrants further investigation
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