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Abstract Myocardial infarction remains the commonest
cause of premature death worldwide with coronary athero-
sclerotic plaque rupture often initiating the event. Despite an
ever-expanding repertoire of cardiovascular imaging tech-
niques, the race is still on to identify atherosclerotic lesions
at high-risk of rupture: the so-called vulnerable plaque. Con-
ventional imaging modalities such as stress testing and coro-
nary angiography have consistently failed to identify such
plaques, leading to the increasing appreciation that plaque
rupture relates to factors other than just the degree of luminal
stenosis. Indeed the focus has recently shifted to molecular
imaging, in an attempt to directly target the pathological
disease processes leading to rupture and thereby localize
high-risk lesions. Histological data indicate that inflammation,
necrosis and early stage microcalcification are key imaging
targets by which to achieve this aim. Here, we discuss how
these processes are related, focusing on the rationale and
evidence supporting 18F-fluoride positron emission tomogra-
phy as a novel non-invasive imaging technique for the iden-
tification of vulnerable atherosclerotic plaque.
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Introduction

Cardiovascular diseases remain the commonest cause of death
worldwide. The majority of these deaths are attributed to
sudden atherosclerotic plaque rupture resulting in myocardial
infarction or stroke [1]. However prediction of cardiovascular
events is difficult because most are caused by atherosclerotic
plaques that are non-flow limiting and therefore missed by
conventional diagnostic modalities such as myocardial stress
testing or invasive coronary arteriography. However, these
high-risk plaques, the so-called vulnerable plaque, do have
certain histopathological characteristics, which potentially can
be targeted using modern imaging technology. Indeed the race
is now on to identify these high-risk plaques in vivo using
both invasive and non-invasive modalities [2, 3••, 4].

The Vulnerable Plaque

The concept of the vulnerable plaque was first introduced by
James Muller in 1989 when he described ‘hemodynamically
insignificant, albeit dangerous lesions’ [5], that he believed
were at high risk of rupturing and causing myocardial infarc-
tion. Since thenmultiple observational studies have confirmed
that most of the plaques causing myocardial infarction are
non-flow limiting at the time of antecedent coronary arteriog-
raphy. However pioneeringwork over the last two decades has
now established that ruptured plaques do have certain key
histopathological features including: the presence of a large
necrotic core, a thin fibrous cap (<65 μm), a positively
remodelled vessel, macrophage infiltration resulting in plaque
inflammation, hypoxia leading to neovascularization and fi-
nally early stage microcalcification (Fig. 1) [6–11]. Moreover
it is widely postulated that intact high-risk plaques are likely to
demonstrate the same pathophysiological features immediate-
ly before a clinical plaque rupture event, so that identification
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of these characteristics may be of use prospectively. Recent
technological advances, coupled with the failure of percuta-
neous coronary intervention to reduce myocardial infarction
in patients with stable angina [12] has renewed interest in
detecting these plaques in vivo. Indeed, this has been de-
scribed by many as the ‘holy grail’ of clinical cardiology [1,
2, 3••, 13].

The Link Between Inflammation and Calcification

Inflammation plays a critical role in the formation, progres-
sion, and rupture of atherosclerotic plaques and is typically
characterized by the presence of macrophages within the
plaque lipid core (Fig. 1) [6–11]. In an attempt to clear lipid
from the vessel intima, these macrophages set up an inflam-
matory cycle that ultimately proves difficult to contain, lead-
ing to progressive matrix degradation and plaque destabiliza-
tion. Indeed ongoing macrophage infiltration and cell death
along with accelerated lipid accumulation contribute to an
enlarging necrotic core that becomes progressively more in-
flamed and hypoxic. Moreover these cells secrete pro-

inflammatory cytokines (including interleukin-1, monocyte
chemotactic protein-1 and tumour necrosis factor-alpha) and
matrix metalloproteinases, which actively weaken the fibrous
cap: the only barrier between this highly thrombogenic lipid
core and the vessel lumen. Fortunately this is where body
defence mechanisms are believed to respond, triggering a
calcific healing response that attempts to subdue and wall
off this inflamed necrotic environment, thereby reducing the
risk of plaque rupture.

Calcification occurs widely in the body and frequently
occurring as a healing response to intense necrotic inflamma-
tion. This is perhaps best exemplified by tuberculosis where
the body attempts to wall off the intense necrotic inflammation
associated with caseating granulomata using calcification.
Similar mechanisms are believed to occur within coronary
atheroma, with calcification occurring as a healing response
to intense inflammation within the necrotic core. However in
these arteries, calcification appears to have a bi-phasic re-
sponse, with each stage associated with markedly different
plaque characteristics and clinical consequences. The latter
phase of macroscopic calcification is readily imaged using
standard x-ray angiography and CT, and is widely believed

Fig. 1 The relationship between inflammation, biphasic calcific response
and adverse cardiovascular events. a Typical features of a vulnerable
plaque: The initial stages of plaque inflammation and vulnerability are
associated with macrophage influx into a large lipid core. By this stage,
other features of plaque vulnerability such as positive remodelling, thin-
ning of the fibrous cap, are observed. b Microcalcification within the
necrotic core: Cell death occurring within the lipid core as a consequence
of necrosis and apoptosis triggers microcalcification. This is a high risk
plaque type that is ripe to rupture. This can have two consequences:

successful plaque calcification by walling off the inflamed area, or
initiation of plaque rupture with subsequent thrombotic occlusion. This
is the plaque type that is believed to be have avid 18F-fluoride uptake on
PET/CT. c Plaque rupture with thrombotic occlusion of the lumen
resulting in myocardial infarction. d Plaque stabilization with successful
healing of the necrotic core with obvious macrocalcification that can be
detected with conventional imaging modalities such as computed tomog-
raphy and X-ray angiography
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to impart stability to the plaque. Indeed by this stage the
healing process has often successfully subdued inflammation
within the vessel wall and separated it from the contents of the
vascular lumen. By contrast the earlier phase of micro-
calcification is not visible using standard non-invasive imag-
ing techniques and is associated with plaque instability and an
increased risk of rupture (Table 1) [14, 15]. The likely expla-
nation is that at this early time-point the healing process has
not yet been effective and that the inflamed necrotic environ-
ment triggering calcification still exists within the plaque. This
risk of plaque rupture related to inflammation therefore per-
sists. However recent data have indicated that in addition
micro-calcification might itself increase the propensity to
rupture, acting as a focal point that intensifies mechanical
stresses on the surface of the cap. Either way a technique
capable of directly imaging active ongoing micro-
calcification and differentiating it from dormant macroscopic
areas would hold real promise as a means of improving our
understanding of plaque biology and in identifying high-risk
atheroma.

Although there have been significant advances in our un-
derstanding as to why atherosclerotic plaques calcify, the
exact molecular mechanisms underpinning this observation
remain unclear. Multiple potential pathways have been pro-
posed although often these have been established using
models of vascular medial calcification. Calcification in the
coronary arteries is almost uniquely intimal with medial and
adventitial involvement occurring only rarely in conditions
such as renal failure. Calcification activity in the intima ap-
pears to be closely related to inflammation and cell death
within the necrotic core. Several putative pathways have been
proposed linking these entities [16–21]. First and most obvi-
ously, necrosis of foam cells, vascular smooth muscle cells
and other cells in the inflammatory plaque milieu leads to the
release of large quantities of phosphate and calcium which
may lead to spontaneous dystrophic calcification (as observed
in infarctions, haematomas and scars). Second, inflammation

may trigger osteogenic metaplasia in a variety of cell types
(VSMC, endothelial cells, etc.) which make a phenotypic
switch to osteoblast like cells under the influence of RUNX-
2 transcription and become capable of roughly recapitulating
skeletal osteogenesis in the plaque matrix. Third, circulating
osteoprogenitors may be recruited to the plaque before under-
going maturation to classical osteoblasts. Fourth, cells under-
going programmed cell death within the plaque may provide
calcifying substrate through the release of apoptotic bodies.
Fifth and finally, macrophages themselves may provide the
substrate for calcification by directly releasing matrix vesicles
(the key and final executors of ordered tissue mineralization)
into the extracellular matrix. Aikawa et al. have published the
key and highly elegant longitudinal experiments in a mouse
model that have conclusively demonstrated the link between
inflammation and calcification [14]. They showed that mac-
rophage infiltration is closely associated with osteogenic ac-
tivity (as assayed by accumulation of OsteoSense; a
bisphosphonate-conjugated to a fluorescent reporter). They
(and others) have also shown that apoptotic bodies and matrix
vesicles that contain calcium orthophosphate nanocrystals
execute this early calcific process [20, 22, 23].

Positron Emission Tomography

Combined positron emission and computed tomography
(PET/CT) is a modern non-invasive imaging technique that
combines functional information from PET with the fine an-
atomical detail provided by CT, allowing the activity of spe-
cific pathological processes to be studied within even small
structures in the body. This technique has been widely used in
the clinical assessment of patients with cancer for many years,
resulting in the widespread availability of PET/CT scanners
[24]. Recent technological advances including ECG-gating,
improved PET resolution and fusion with detailed CT angi-
ography of the coronary vessels, has allowed translation of
this technology into the heart. Theoretically any pathological
process can be studied dependent on a suitable radiotracer
being developed, so that potentially each of the established
characteristics associated with high-risk plaque may be
targeted. However to date the majority of studies investigating
coronary atherosclerosis have utilized the tracers 18F-
fluorodeoxyglucose (18F-FDG) and 18F-fluoride as markers
of inflammation and micro-calcification respectively. Whilst a
comprehensive discussion of 18F-FDG activity in the vascu-
lature is beyond the scope of this review, it has become clear
that whilst an excellent tracer for imaging vascular inflamma-
tion and perhaps hypoxic inflammation in the aorta and carot-
id arteries, utilization of this tracer in the coronary arteries is
problematic. In particular, difficulty has arisen from uptake of
this tracer by the adjacent myocardium, which frequently
obscures the coronary signal. Whilst ultimately this problem

Table 1 Key differences between micro and macrocalcification

Microcalcification Macrocalcification

Size <5 μm >5 μm

Stage of calcification Early Late

Inflammation Persistent Healed

Surface area High Low

Exposed hydroxyapatite High Low

Risk of rupture High risk of rupture Low risk of rupture

Computed Tomography/
X-ray angiography

Undetectable Detectable

18F-fluoride binding on
positron emission
tomography

Avid binding Low binding
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may be rectified using advanced motion correction algorithms
and attempts to switch myocardial metabolism away from
glucose, further work is required before 18F-FDG is likely
to prove useful in the coronary circulation. By contrast 18F-
fluoride demonstrates an excellent signal to noise ratio in the
coronary arteries as it is not taken up by adjacent structures
and is rapidly cleared from plasma moreover it already ap-
pears capable of providing important clinical information with
respect to coronary plaque biology.

Mechanism of 18F-Fluoride PETActivity

18F-Fluoride is a PET tracer with favourable pharmaco-
kinetic properties, first introduced by Blau and co-
workers in 1962 for the study of bone disease [25–27].
After an intravenous injection, approximately 70 % of
18F-fluoride is plasma based with the remaining 30 %
found in erythrocytes. Because of its small size and
negligible protein binding, 18F-fluoride demonstrates al-
most complete clearance from the blood stream on first
pass [28–30], resulting in low blood-pool activity. This
coupled with its specificity for bone and vascular calci-
fication ensures that it provides excellent signal to noise
in these tissues with little contamination from adjacent
structures.

The mechanism of 18F-fluoride uptake in bone is well
established. First it diffuses via the capillary network into the
bone extracellular fluid. Then it exchanges with hydroxyl
groups on exposed regions of hydroxyapatite crystal on the
bone surface, forming fluoroapatite. The intensity of the signal
depends both on the bone blood flow but also upon the surface
area of exposed hydroxyapatite, which is increased in regions
of new bone formation and remodelling [25–27]. As a conse-
quence 18F-fluoride has been extensively utilized as a marker
of bone turnover and used to study various bone related
clinical conditions such as Paget’s disease [31, 32], osteopo-
rosis [33, 34], renal osteodystrophy [14], fracture healing [35],
and osteonecrosis [36]. Moreover, 18F-fluoride PET has be-
come widely established as the most sensitive imaging mo-
dality for the detection of malignant bone involvement, lead-
ing to its widespread and commercial availability [37–41].

We believe that very similar mechanisms underlie the
uptake of 18F-fluoride in the vasculature. Given the nature
of the tissue, blood supply is not likely to be a major factor.
However like bone, hydroxyapatite is also the key structural
component of vascular calcium, so that arterial 18F-fluoride
uptake is likely to relate closely to the available surface area of
this crystal. Transmission electron microscopy studies have
demonstrated that during the early stages of calcification
hydroxyapatite crystals are nanosized, very thin and long
[42]. This results in a much larger surface area of hydroxyap-
atite for 18F-fluoride binding in the early stages of

microcalcification compared to macroscopic calcification in
which much of the hydroxyapatite is internalized and not
accessible to the tracer. The hypothesis that 18F-fluoride
preferentially binds to vascular micro-calcification activity
has been strongly supported by some early yet detailed pre-
clinical work performed by our collaborators at Cambridge
University and will no doubt be the subject of intensive future
study [43].

Clinical Studies Examining Vascular 18F-Fluoride
Activity

Derlin et al. first described the vascular uptake of 18F-fluoride
in 2010 in a retrospective analysis of patients with malignancy
[44]. The authors noted increased 18F-fluoride uptake in large
vessels such as the aorta, carotids and femoral vessels in about
three quarters of the patients studied. Interestingly, only a fifth
of all calcified plaques on CT demonstrated increased 18F-
fluoride uptake, highlighting even at this early stage that 18F-
fluoride provides different information to the presence of
calcium on CT. Subsequent work by the same group retro-
spectively compared the distribution of 18F-fluoride and 18F-
FDG uptake in oncology patients [45] and suggested that 18F-
fluoride signal in the femoral vessels correlated with the
calcified plaque burden and cardiovascular risk factors [46].
Beheshti and colleagues first described 18F-fluoride activity
localizing to the heart [47] whilst we and other groups have
confirmed increased 18F-fluoride activity in the aorta and
importantly in the valves of patients with aortic stenosis
[48••, 49], where it acts as a marker of calcification activity
and predicts disease progression [50].

Coronary 18F-NaF PET Identifies High Risk Patients

We first described 18F-fluoride uptake in the coronary arteries
as a novel marker of plaque biology in subjects with and
without aortic valve disease [51••]. This demonstrated the
feasibility and excellent reproducibility of this tracer in the
coronary vasculature.Moreover increased uptake of this tracer
localized to individual coronary plaques and importantly iden-
tified patients at increased cardiovascular risk, with those
subjects having increased Framingham risk scores and prior
MACE event rates. This study also confirmed that, as in the
aorta, 18F-fluoride provided different information to the pres-
ence of coronary calcium on CT. Indeed we observed that
>40 % of patients with coronary artery calcium scores >1000
Agatston Units did not have 18F-fluoride uptake, suggesting
the ability of 18F- fluoride to distinguish between dormant
pacified calcific disease and metabolically active ongoing
micro-calcification.
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Coronary 18F-Fluoride PET as a Marker of High-Risk
Atherosclerotic Plaque

Perhaps the key incidental observation from our initial study
came from a patient with aortic stenosis admitted with an
inferior non-STelevation myocardial infarction [51••]. Intense
coronary 18F-fluoride uptake was localized to the exact site of
the culprit lesion in this patient, despite them having severe
three vessel disease and widespread coronary calcium on CT.
Based on this observation and the wider results of this pre-
liminary study, we designed a subsequent trial to investigate
18F-fluoride activity in patients with stable and unstable cor-
onary artery disease [52••]. Our hypothesis was that 18F-
fluoride would identify high-risk vulnerable plaques in pa-
tients with stable angina and ruptured plaques in patients with
myocardial infarction.

We examined 40 patients with stable angina referred for
invasive angiography, who all underwent 18F-NaF PET/CT
imaging alongside CT coronary angiography, invasive coro-
nary angiography and intravascular ultrasound. Increased
18F-fluoride activity localized to individual coronary plaques
in ~40 % of patients. These plaques had multiple high-risk
features on intravascular ultrasound and CT including micro-
calcification, positive remodelling and a large necrotic core. It
was not possible to undertake histological analysis of the 18F-
fluoride signal in these patients. However instead we demon-
strated that increased 18F-fluoride activity colocalized with
histological evidence of increased macrophage accumulation,
cell death and calcification activity in carotid endarterectomy
specimens. These data would indicate that 18F-fluoride iden-
tifies high-risk atherosclerotic plaque. However the real ques-
tion is whether these plaques go on to cause myocardial
infarction. Ultimately this will require prospective studies
but we examined this issue retrospectively, investigating
18F-fluoride uptake in 40 patients who had recently sustained
a type 1 myocardial infarction. We observed increased 18F-
fluoride uptake at the site of the culprit plaque in 93% of these
patients. Indeed activity was around 30 % higher in the culprit
plaque than the maximum activity recorded anywhere else in
the coronary vasculature and was independent of coronary
artery stenting.

Conclusions and Future Directions

In combination we believe that the clinical studies to date have
demonstrated that 18F-fluoride provides complementary in-
formation to the presence of calcium on CT and that this
technique is able to identify high-risk and ruptured coronary
atherosclerotic plaques. It therefore holds major promise as a
method of identifying vulnerable plaque and in improving
upon current methods for the prediction of myocardial infarc-
tion. Indeed if confirmed then this approach may have a

significant role to play in our future approach to the treatment
of coronary artery disease.

Two major questions still need to be addressed before the
potential of 18F-fluoride can be realized. First the mechanism
for 18F-fluoride uptake in the vasculatures needs to be con-
firmed over and above the work we have already performed in
the aortic valve and carotid arteries. Second the ability of 18F-
fluoride to predict myocardial infarction needs to be addressed
in the context of a prospective observational study, ideally in a
high-risk population.

We believe that it is improbable that all coronary plaques
with increased 18F-fluoride activity will go on to cause a
myocardial infarction. Indeed calcification is often likely to
prove successful in stabilizing the plaque and even when
rupture does occur this will be sub-clinical in the majority of
cases (Fig. 1). As a consequence individual plaque-directed
treatment strategies are also unlikely to be effective. Instead
we believe that the future role of 18F-fluoride will be in
identifying the vulnerable patient. Those subjects with evi-
dence of metabolically active coronary atheromawho are at an
increased risk of myocardial infarction and would therefore
benefit from some of the newer medical therapies that appear
to have profound effects on coronary plaque biology but do so
at great expense.
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