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Abstract The 9p21.3 locus was the first to yield to genome-
wide association studies (GWAS) seeking common genetic
variants predisposing to increased risk of coronary artery
atherosclerotic disease (CAD). The 59 single nucleotide
polymorphisms that show highest association with CAD
are clustered in a region 100,000 to 150,000 base pairs
5′ to the cyclin-dependent kinase inhibitors CDKN2B
(coding for p15ink4b) and CDKN2A (coding for p16ink4a

and p14ARF). This region also covers the 3′ end of a
long noncoding RNA transcribed antisense to CDKN2B
(CDKN2BAS, aka ANRIL for antisense noncoding RNA
at the ink4 locus) whose expression has been linked to
chromatin remodeling at the locus. Despite intensive
investigation over the past 7 years, the functional sig-
nificance of the 9p21.3 locus remains elusive. Other
variants at this locus have been associated with glaucoma,
glioma, and type 2 diabetes mellitus, diseases that impli-
cate tissue-resident macrophages. Here, we review the
evidence that genetic variants at 9p21.3 disrupt tissue-
specific enhancers and propose new insights to guide future
studies.
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Introduction

Coronary artery disease (CAD) is the leading cause of
death in the world, according to World Health Organi-
zation statistics [1]. Although fewer than 5 % of indi-
viduals show symptoms of CAD before the age of 50
[2], intravascular ultrasound revealed that 1 in 6 adoles-
cents and 85 % of persons over the age of 50 have
measurable coronary atherosclerosis [3]. Modifiable risk
factors such as high blood cholesterol, diabetes, high
blood pressure, smoking, and obesity contribute to the
risk of CAD [4], but genetic risk is equally important
[5]. The notion that common genetic variants could
contribute to the risk of CAD was borne out by the
discovery of the first common CAD risk variant to be
discovered by the genome-wide association study
(GWAS) approach, located on chromosome 9 at 9p21.3
[6–8].

The 9p21 risk alleles are carried by 75 % of the world
population (excluding black Africans) and confer risk for
coronary atherosclerosis independently of known risk
factors [6–8]. To date, more than 40 loci have been
reported to contribute to CAD risk [9], but the 9p21.3
locus remains the second most significant (after LPA,
encoding lipoprotein (a)). The population-attributable
risk of CAD conferred by homozygosity for the 9p21.3
risk allele is 21 % [10]. It is important to realize that this
is on the same order of magnitude as the population-
attributable risk of hypertension (28 % in men and 29 %
in women) [11] or of elevated total cholesterol (27 % in
men and 34 % in women) [11]. The quest to identify the
mechanism whereby the 9p21.3 confers risk for CAD has
been ongoing for the past 7 years, and progress has been
limited. Here, we will review what we know about the
9p21.3 locus and how evidence has gradually emerged to
point to possible mechanisms.
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Atherosclerosis—a Common Inflammatory Disease
of Arteries

CAD is an age progressive disease caused by atherosclerosis
of the coronary arteries, an inflammatory condition in which
the artery becomes occluded due to the accumulation of fatty
material called plaque. Plaque is an aggregate of cholesterol
and triglycerides taken up by tissue macrophages within
the vessel wall to form foam cells [12]. Macrophage foam
cells produce high levels of inflammatory cytokines and
chemokines. That macrophages accumulate at atheroscle-
rotic lesions is well documented [13], but the prevailing
view that this is due to monocytes being recruited by local
production of chemokines [14–20] has recently been chal-
lenged with evidence that recruited monocytes account for
only about 15 % of the proliferating macrophages in
atherosclerotic lesions [21]. Indeed, several recent studies
indicate that tissue macrophages, while exhibiting distinct
mature differentiated phenotypes, are endowed with the
capacity for self-renewal similar to that of stem cells [22].
Genetic variants that influence macrophage self-renewal by
affecting cell cycle control genes would be expected to affect
the severity of atherosclerosis plaque formation.

The 9p21.3 Genetic Risk Locus Promotes Atherosclerosis
Rather Than Myocardial Infarction

We reported that the 9p21.3 risk alleles associated with angio-
graphic CAD [8], whereas the deCODE Genetics group
reported that it associated with myocardial infarction (MI)
[7], and the Wellcome Trust Case Control Consortium found
that it associated with CAD broadly defined (but predomi-
nantly recruited from patients with MI) [6]. It is well recog-
nized that MI occurs on a substrate of coronary atheroscle-
rosis. Thus, it was unclear whether these risk alleles promote
the deposition of atherosclerotic lesions (CAD per se) or the
formation of vulnerable plaque that are prone to rupture
triggering thrombosis and MI. To address this question, we
conducted a cross-sectional survey of 1714 patients with
angiographically documented CAD and found that the risk
allele associated with severity of CAD as measured by the
number of occluded coronaries rather than MI among cases
with pre-existing CAD [23•]. Shortly thereafter, the same
finding was also reported by Patel et al. [24] who examined
2334 angiographic CAD cases. A recent meta-analysis com-
prising 21 studies and 33,673 subjects with angiographic
data and MI status also confirmed that the 9p21.3 risk locus
increases the burden of coronary atherosclerosis but not the
risk of MI in the presence of underlying CAD [25]. Other
vascular phenotypic manifestations of the 9p21.3 risk locus
include abdominal aortic aneurysm [26–29], intracranial

aneurysm [30, 31], the ankle-brachial pressure index, an
indication of peripheral vascular disease [32], late onset
Alzheimer’s disease and vascular dementia [33], and ische-
mic stroke [34–37]. Thus, these findings are consistent with
an effect of the 9p21.3 risk alleles to stimulate coronary
atherosclerosis. Whether the effect is mediated through res-
ident macrophages of the vessel wall or by modifying the
cellular properties of arterial vascular smooth muscle cells
(VSMCs) or a combination thereof remains unclear.

The 9p21 Risk Locus Disrupts a Tissue-Specific Enhancer

The genetic risk locus at 9p21.3 consists of a cluster of 59 linked
single nucleotide polymorphisms (SNPs) over a 53,202 bp
region (Fig. 1). A growing consensus is that 1 or several of
the 59 linked SNPs alter the DNA sequence and disrupt or
create transcription factor binding sites that would alter the
control of regional gene expression. The nearest protein coding
genes are the cyclin-dependent kinase inhibitors CDKN2A
(coding for p16ink4a and p14ARF) and CDKN2B (coding for
p15ink4b) that lie about 100,000 base pairs upstream of the
9p21.3 locus. In addition, we find methylthioadenosine phos-
phorylase (MTAP) and much farther upstream nearly the entire
type I interferon gene cluster.

We identified several functional enhancer elements at the
9p21 region [38•]. Deletion of the same region in the mouse
genome was associated with reduced expression of Cdkn2a
and Cdkn2b mRNAs, demonstrating the presence of regula-
tory enhancers at this locus [39••]. A recent study published in
Nature by Kelly Frazer’s group [40•] used the technique of
chromatin conformation capture and identified short- and
long-range interactions between sequences at the 9p21.3 locus
and sequences in the vicinity of the genes encoding CDKN2A
andCDKN2B andmethylthioadenosine phosphorylase (MTAP)
in the short range, and between IFNW1 and interferon-α21
(IFNA21), in the long range, approximately 1million base pairs
upstream on chromosome 9. This finding is remarkable be-
cause it suggests that the influence of the enhancer sequences at
9p21.3 act at considerably greater distances than previously
thought. Although these authors did not examine the expres-
sion of the type I interferon genes, a more recent study failed to
find association between the circulating levels of various type 1
interferons, including IFNA21, and the 9p21 risk allele geno-
type in healthy individuals [41•]. Whereas these findings cast
doubt as to the significance of the long-range interactions
between the 9p21 risk alleles and distant enhancers, the effect
of the 9p21.3 locus may reflect a tissue-specific enhancer or a
disease-associated effect that has not yet been replicated in
cultured cells. A recent study performed expression profiling
of 9p21.3 genotypedmonocyte-derivedmacrophages in culture
and remarkably, found differential expression of genes not at
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the 9p21.3 locus, but rather of the chemokines CCL8 and
CCL2 and the lectins CLEC4E and CLEC5A [42•]. This study
also did not find significant changes in type 1 interferon ex-
pression by 9p21.3 genotype.

Haplotype Analysis Reveals Multiple Phenotypes
at the 9p21.3 Locus

Tissue-specific enhancers are typically located at some
distance from gene promoters [43]. If the 9p21.3 CAD
risk locus disrupts sequences of a tissue-specific enhancer
that control tissue-resident macrophage proliferation in the
arterial wall and worsen coronary atherosclerosis, might
other regions of the 9p21.3 locus affect cellular functions
in other tissues?

Whenwe further examined the 9p21.3 locus for association
of specific haplotypes (groups of co-inherited SNPs) to
different phenotypes we found 2 haplotypes, the well-
known locus tagged by rs1333049 that associated with
atherosclerosis and another tagged by rs518394 closer to
CDKN2B that associated with MI, but only among cases
of clinically significant (>50 % stenosis) angiographic CAD
who were carriers of the rs1333049 non-risk allele [44•]
(Fig. 1). Another surprise was that the MI haplotype was
inversely associated with the severity of coronary atheroscle-
rosis, suggesting that it exerts its effect on a minimal burden
of plaque. A SNP linked to this region was previously
associated with elevated platelet reactivity [45•]. Intriguingly,
recent evidence points to a cross-talk between platelets and

macrophages to clear blood borne bacterial pathogens, so that
this dual haplotype may relate to an important component of
the innate immune response [46].

Macrophages are the progeny of the myeloid lineage that
includes Kupffer cells of the liver, tissue-resident macro-
phages of arteries, adipose tissue and pancreas, and microglia
of the central nervous system. Genome-wide association
studies have identified several diseases affected by polymor-
phisms at the 9p21.3 locus, including primary open angle
glaucoma (PAOG) [47] and normal pressure glaucoma (NPG)
[48, 49], glioma [50, 51], and type 2 diabetes (T2D) [52, 53]
(Fig. 1). It is intriguing that in every case tissue macrophages
are implicated in the disease process. Microglia worsen the
outcome of glaucoma [49, 54, 55], glioma is often difficult to
distinguish from gliosis [56], a condition in which microglia
proliferate in response to pathogens [57], and in type 2
diabetes, where inflammatory macrophages proliferate in
the vicinity of islets [58].

Mice hemizygous for Mtap (with 1 copy of Mtap deleted)
were found to have more significant atherosclerotic lesions
when bred on a susceptible background [59]. Whether this
observation is the result of deficientMTAP function or reflects
altered chromatin remodeling due to loss of one allele remains
to be determined.

Chromatin Remodeling at the 9p21.3 Locus

CTCF binding sequences are found between the CDKN2A
gene and the antisense ANRIL transcript forming a bidirectional

Fig. 1 The 9p21.3 locus is a hotbed of haplotypes linked to several
diseases: are these cell-specific enhancers? The coronary artery disease
(CAD, in red) haplotype block spans 53,000 bp and includes 59 linked
SNPs. Other GWAS loci include 1 for primary open angle glaucoma/
normal pressure glaucoma (POAG/NPG) spanning 63,000 bp, another for
glioma spanning 28,000 bp, and 1 for type 2 diabetes mellitus (T2D)
spanning approximately 12,000 bp. It is noteworthy that the POAG/NPG
and glioma haplotypes are partially dependent (eg, rs2157719 for

glaucoma and rs4977756 for glioma have a D’ of 0.905, r2=0.718 and
a LOD score of 31.79 according to HapMap). Similarly, the Glioma and
CAD haplotypes are also partially dependent (rs4977756 of the glioma
haplotype and rs1333049 of the CAD haplotype have a D’ of 0.824, an
r2=0.422 and a LOD score of 16.53). In contrast, the T2D haplotype is
independent of the other haplotypes (eg, rs1333049 and rs10811661 have
a D’ of 0.018, r2=0 and LOD score of 0)

Curr Cardiol Rep (2014) 16:502 Page 3 of 8, 502



promoter [60–62]. Expression of ANRIL and CDKN2A are
both dependent on CTCF [61]. CTCF is a multifunctional
transcription regulator that can not only activate 1 gene, but at
the same time prevent inappropriate activation of another gene
on the same chromosomal region. Thus, CTCF also acts as an
insulator [63]. CTCF binds to unmethylated DNA target se-
quences. CTCF contains 11 zinc fingers and through its ability
to bind DNA and homodimerize, CTCF can bring together
distant sequences to form higher order chromatin structure [64].
CTCF has been implicated in long range intra- and even inter-
chromosomal interactions [64, 65].

CTCF binds and activates the CDKN2A locus in a manner
that is sensitive to DNA methylation [61, 62]. DNA methyl-
ation is not restricted to imprinted genes but is widely present
across the genome [66, 67]. Importantly, increased genomic
DNA methylation has been described in atherosclerotic
lesions [68] and in peripheral lymphocytes of patients with
CAD relative to controls [69]. The 9p21 CAD risk locus
enhancer sequences located within the 3′ region of the
ANRIL gene strongly upregulate transcription of ANRIL,
and alter the levels of its multiple alternatively spliced
isoforms [38•, 40•]. As a consequence, components of
the polycomb repressor complex (PRC1 and PRC2) are
recruited to the ANRIL transcript and silence gene expres-
sion from the CDKN2A locus, in part by histone 3 lysine
27 trimethylation by polycomb complex protein EZH2
[70, 71]. EZH2 also recruits the DNA methyltransferase
DNMT1 [72] and this would also increase DNA methyl-
ation and inactivation of the CDKN2A locus. Zhuan et al.
found that methylation of CDKN2B and elevated expres-
sion of ANRIL were associated with coronary artery dis-
ease in a Chinese angiographic study, but this was not
tightly correlated to the 9p21 risk genotype [73]. This
result suggests that allele-specific methylation is unlikely
to participate in gene regulation at the 9p21.3 locus.

When cells differentiate or age they typically stop pro-
liferating, and this requires activation of the cyclin depen-
dent kinase inhibitors like p16ink4a [74]. Deletion of the
9p21.3 syntenic region in the mouse reversed cellular se-
nescence of primary fibroblasts and VSMCs [39••]. Primary
cultures of human arterial VSMCs showed reduced expres-
sion of p16ink4a and p15ink4b and increased cellular prolif-
eration [75•]. Thus, the 9p21.3 locus appears to cause loss
of CDKN2A and CDKN2B suppression. Activation of the
CDKN2A locus requires displacement and eviction of
PRC1 and PRC2, and the chromatin remodeling protein
BRG1 plays a critical role in this process [76]. BRG1 interacts
with CTCF and participates in remodeling long range interac-
tions at the major histocompatibility complex locus [77].
BRG1 is also known to interact with several transcription
factors, including GATA1 [78], STAT2 [79], and TEAD1
[80], so that these transcription factors are good candidates
to regulate chromatin structure at the 9p21.3 locus.

The Nature of the Altered Regulatory Sequences
at the 9p21.3 Risk Locus

We reported that the risk allele of one of the SNPs (rs1333045)
alters a TGFβ consensus sequence within an enhancer and
reduced its function [38•]. Although we have not formally
tested whether this is a true functional TGFβ site, this result
suggests that sequences at or in the vicinity of this SNP are
functional. A different hypothesis was proposed by the Frazer
group. They suggested that another SNP (rs10757278)
disrupts a putative binding site for the signal transducer
of activated T cells 1 (STAT1), the transcription factor that
mediates IFN-γ-inducible gene expression [40•]. However,
our recent study showed that the upregulated expression
of p15ink4b and p16ink4a in response to IFN-γ was not
affected by the 9p21.3 risk allele, and in fact occurs largely
by a posttranscriptional mechanism [81•]. Thus, a differ-
ential response to IFN-γ does not account for the 9p21
risk effect.

TGFβ Signaling Inhibits Macrophage Foam Cell
Formation

TGFβ is a cytokine that inhibits macrophage foam cell for-
mation [82–84]. Low levels of plasma TGFβ are associated
with a poor outcome in CAD [85]. Expression of a dominant
negative mutant of the TGFβ receptor increases foam cell
formation and worsens atherosclerosis [86]. Conversely,
over-expression of TGFβ in macrophages reduces foam cell
formation and atherosclerosis [87]. Together, these findings
establish TGFβ as a potent anti-atherogenic factor.

What underlies the anti-atherogenic effect of TGFβ? Evi-
dence suggests this comes about several ways. TGFβ sup-
presses the uptake and accumulation of oxidized LDL-
cholesterol in macrophages by lowering the expression of
the scavenger receptor CD36 [82, 83]. TGFβ also increases
the export of cholesterol from macrophages by upregulating
the expression of the cholesterol transporter ABCA1 [82, 84].
Macrophage proliferation also contributes to atherosclerosis.
Ablation of the cell cycle inhibitor p27Kip1 in hematopoietic
progenitors accelerates macrophage proliferation and athero-
sclerosis [88]. Conversely, TGFβ blocks proliferation of
human macrophages derived from myeloid cells stimulated
by macrophage-colony stimulating factor (M-CSF) [89].
TGFβ has been shown to activate the expression of the
cyclin-dependent kinase inhibitors CDKN2B (p15ink4b) and
CDKN2A (p16ink4a) [90–92]. Of these TGFβ-responsive
genes, only CDKN2A and CDKN2B are located in the vicinity
and are under the direct control of the 9p21.3 genetic risk locus.
Thus, genetic polymorphisms like rs1333045 that disrupt
TGFβ-responsive elements at the 9p21.3 risk locus would be
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predicted to interfere with TGFβ-mediated suppression of mac-
rophage or VSMC proliferation and worsen atherosclerosis.

TEAD Transcription Factors Interact with SMAD3
and Cooperate in TGFβ Signaling

TGFβ signaling activates SMAD transcription factors to
regulate gene expression. TGFβ-responsive genes can be
activated directly by SMADs through SMAD-responsive
elements, or by other transcription factors via their inter-
action with SMAD proteins [93]. For example, TEAD
transcription factors interact with SMAD3 and mediate
TGFβ-dependent gene activation [94–96]. Recent evidence
shows that TEAD/SMAD interaction controls proliferation
of self-renewing cells [97] and that selective knockdown
of TEAD transcription factors affects cellular senescence
though a p16inka-dependent pathway. Of particular interest,
the activation of p14ARF by TGFβ2 in the eye is abrogated by
deletion of the 9p21.3 risk locus syntenic region on mouse
chromosome 4 [98•].

TEAD transcription factors are one of a small group of
transcription factors that not only can regulate expression of
genes in the proximity of TEAD-binding regulatory promoter/
enhancer elements (in the short-range) [99], but can also
activate genes at a distance by recruiting chromatin remodel-
ing proteins [80, 100]. A recent study found that a chromatin
remodeling protein is recruited to 2 TEAD binding sites
within the 9p21.3 risk locus [100]. This result shows that
TEAD factors are present at the 9p21.3 risk locus and may
participate in its long-range regulation of gene expression.

Conclusions

The mechanism whereby the 9p21.3 locus confers increased
susceptibility to coronary atherosclerosis remains elusive.
SNPs likely disrupt specific regulatory sequences within
tissue-specific enhancers. Identifying these functional SNPs
and the cells in which they are functional is a challenge not
just for atherosclerosis but for other diseases that also associ-
ate with this locus.
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