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Abstract Recent studies involving HDL-raising therapeu-
tics have greatly changed our understanding of this field.
Despite effectively raising HDL-C levels, niacin remains of
uncertain clinical benefit. Synthetic niacin receptor agonists
are unlikely to raise HDL-C or have other beneficial effects
on plasma lipids. Despite the failure in phase 3 of 2 CETP
inhibitors, 2 potent CETP inhibitors that raise HDL-C levels
by >100 % (and reduce LDL-C substantially) are in late
stage clinical development. Infusions of recombinant HDL
containing ‘wild-type’ apoA-I or apoA-I Milano, as well as
autologous delipidated HDL, all demonstrated promising
early results, and remain in clinical development. A small
molecule that causes upregulation of endogenous apoA-I
production is also in clinical development. Finally, upregu-
lation of macrophage cholesterol efflux pathways through
agonism of liver X receptors or antagonism of miR-33
remains of substantial interest. The field of HDL therapeu-
tics is poised to transition from the ‘HDL-cholesterol hy-
pothesis’ to the ‘HDL flux hypothesis’ in which the impact
on flux from macrophage to feces is deemed to be of greater

therapeutic benefit than the increase in steady-state concen-
trations of HDL cholesterol.
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Introduction

Despite aggressive LDL-reducing therapy, there remains sub-
stantial residual cardiovascular risk [1, 2]. The strong inverse
association of plasma levels of high density lipoprotein (HDL)
cholesterol with coronary artery disease (CAD) led to the
development of the “HDL cholesterol hypothesis” that inter-
vention to raise HDL cholesterol will result in reduced risk of
CAD. The most popular mechanistic theory underlying the
HDL cholesterol hypothesis has been the concept of “reverse
cholesterol transport”; that HDL promotes cholesterol efflux
from arterial macrophage foam cells and transports it to the
liver for biliary excretion [3]. Recent discoveries have
provided new insights into the complex metabolic and
anti-atherosclerotic pathways of HDL. However, recent
studies – including 2 randomized, placebo-controlled
intervention trials [4••, 5] and a large genetic associa-
tion analysis [6••] – call for a careful re-examination of
the HDL cholesterol hypothesis. Here we review the
current status of HDL-targeted therapies in the context
of a re-evaluation of the HDL cholesterol hypothesis.

Niacin and Niacin Receptor Agonists

Nicotinic acid, or niacin, is themost effective HDL-raising drug
currently on the market. In addition to raising HDL-C levels,
niacin reduces triglycerides (TG), LDL-C, and lipoprotein(a)
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[Lp(a)]. New published clinical data involving niacin and its
effects on lipids over the last 2 years has primarily
involved studies of combination therapy as well as with
co-administration with laropiprant, an antagonist of the
prostaglandin receptor that mediates niacin-induced
flushing. In a multiple-arm study in hyperlipidemic
patients, the addition of extended-release niacin (ER-
niacin) to the combination of ezetimibe/simvastatin sig-
nificantly improved multiple lipid parameters compared
with ezetimibe/simvastatin alone [7]. Metabolic syn-
drome patients randomized to ER-niacin in combination
with laropiprant lowered TG and LDL-C and increased
HDL-C significantly compared with placebo [8]. The combi-
nation of niacin/laropiprant plus a statin compared with dou-
bling of the statin dose showed that combination treatment
was associated with a significantly greater decrease in TG and
LDL-C and a significantly greater increase in HDL-C [9]. An
analysis of 4 trials of niacin/laropiprant revealed that this
combination led to significantly larger decreases in TG,
LDL-C, non-HDL-C, apoB, and Lp(a), and significantly
greater increases in HDL-C and apoA-I compared with pla-
cebo or active comparator [10].

There has been considerable work on the molecular
mechanisms of niacin action, both regarding its lipid and
atherosclerosis effects as well as its cutaneous side effects,
over the last several years. The discovery of the niacin
receptor GPR109A created substantial excitement with re-
gard to a better understanding of niacin’s molecular mech-
anisms of action. Activation of GPR109A on skin cells such
as Langerhans cells and keratinocytes promotes synthesis of
prostaglandin D2 (PGD2) and prostaglandin E2 (PGE2),
which subsequently induce cutaneous capillary vasodilation
by binding to DP1 and EP2/4 receptors [11–13]. Co-
administration of the DP1 antagonist laropiprant significant-
ly reduces but does not eliminate niacin-induced skin symp-
toms [14]. It is also clear that activation of GPR109A on
adipocytes mediates suppression of lipolysis and release of
free fatty acids [15].

Nevertheless, recent evidence strongly indicates that ac-
tivation of GPR109A does not mediate niacin’s effects on
plasma lipid and lipoprotein concentrations. Studies in a
partially “humanized” mouse model showed that niacin
reduces TG and LDL-C levels even when the GPR109A
receptor is genetically deleted [16••]. Even more compelling
are data in humans using synthetic agonists of GPR109A.
Administration of several synthetic GPR109A agonists in
humans effectively suppressed lipolysis and plasma free
fatty acids but had minimal to no effect on TG, LDL-C, or
HDL-C levels [16••, 17]. These results suggest that niacin
modulates plasma lipids through mechanism(s) independent
of its receptor GPR109A, and have brought into serious
question the wisdom of developing synthetic GPR109A
agonists as a therapeutic strategy. Interestingly, however,

activation of GPR109A by niacin mediates certain anti-
inflammatory effects such as macrophage recruitment into
atherosclerotic plaques and the peritoneum. Provocatively,
administration of niacin to atherosclerosis-prone mice de-
creased atherosclerotic plaques despite having minimal
effects on cholesterol levels; this effect was dependent on
expression of GPR109A in hematopoietic cells [18]. These
results suggest that niacin may inhibit atherogenesis through
activation of its receptor in macrophages or other hemato-
poietic cells and independently of effects on plasma lipid
levels.

While niacin clearly improves all major lipid fractions,
the major question has been whether it provides additional
cardiovascular benefit when added to a statin, particularly in
patients with low levels of HDL-C, and CAD. A random-
ized clinical trial in the pre-statin era in men with hypercho-
lesterolemia and CAD indicated clinical benefit with
reduction in cardiovascular event rates [19, 20]. Studies
using vascular imaging measures suggested a benefit of
combined simvastatin plus niacin on angiographic coronary
disease and on carotid intimal medial thickness [21, 22].
Indeed, in 2010 2 published meta-analyses of randomized
controlled trials of niacin concluded that niacin therapy was
associated with significant reduction in major coronary
events, stroke, and overall cardiovascular events, and led
to the regression of coronary atherosclerosis and carotid
intima thickness [23, 24].

Two trials were launched several years ago to test the
incremental benefit of niacin added to a statin in patients
with CAD and low HDL-C on cardiovascular events. The
Atherothrombosis Intervention in Metabolic Syndrome
With Low HDL/High Triglycerides: Impact on Global
Health Outcomes (AIM-HIGH) trial randomized 3414
statin-treated CAD patients with low HDL-C to niacin vs
placebo. The trial was halted early for futility: while niacin
modestly but significantly increased HDL-C levels, there
was no difference between the 2 groups in terms of CV
events [4••]. The Heart Protection Study 2 - Treatment of
High density lipoprotein to Reduce the Incidence of Vascular
Events (HPS2-THRIVE) trial is a much larger trial with an
arguably more appropriate comparative effectiveness design
[25], and is scheduled to report by the end of 2012 [26, 27].
Thus, at the current time the clinical benefit of niacin, partic-
ularly with regard to the benefit of its HDL-raising properties,
is uncertain.

Cholesteryl Ester Transfer Protein (CETP) Inhibitors

The cholesteryl ester transfer protein (CETP) exchanges
cholesteryl esters primarily from HDL for triglycerides pri-
marily from VLDL [28]. Genetic CETP deficiency causes
marked elevation in HDL-C levels, leading to the concept
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that pharmacologic inhibition of CETP would raise HDL-C
levels and, according to the “HDL cholesterol hypothesis,”
reduce cardiovascular risk. The first CETP inhibitor to be
tested in humans, torcetrapib, did substantially increase
HDL-C levels [29]. However, in a large clinical outcome
trial, subjects randomized to torcetrapib had increased car-
diovascular events and total mortality compared with those
allocated to placebo [30]. This outcome has been widely
attributed to off-target effects of torcetrapib, including in-
creased aldosterone production and raising of blood pres-
sure [31, 32].

The next CETP inhibitor to enter a phase 3 clinical
outcome trial was dalcetrapib. Less potent than torcetrapib,
it increased HDL-C by an average of about 25 %–30 % in
clinical trials [33–35]. The dal-PLAQUE trial tested the
effect of dalcetrapib on atherosclerotic plaques using arterial
positron-emission tomography (PET)/computed tomogra-
phy (CT) and magnetic resonance imaging (MRI). It fo-
cused largely on ruling out an adverse torcetrapib-like
effect and found no adverse effects on vessel wall/arterial
inflammation – but little evidence of beneficial effects [36].
The dal-VESSEL trial tested the effect of dalcetrapib on
vascular function and found no effect, adverse or beneficial,
on NO-dependent endothelial function, inflammation, or
oxidative stress [37]. Finally, the dal-OUTCOMES trial
was a phase 3 outcomes trial testing the effect of dalcetrapib
on cardiovascular events. It was terminated early due to
futility; no details have yet been reported. This result would
appear to challenge the simplistic HDL cholesterol hypoth-
esis that raising HDL-C will reduce cardiovascular risk, and
also poses additional questions about CETP inhibition as a
therapeutic strategy.

However, at least 2 CETP inhibitors, both more potent than
dalcetrapib, remain in clinical development. Anacetrapib
inhibits CETP by forming a tight reversible bond [38]. At a
dose of 150 mg daily it not only raises HDL-C by>100 % but
also reduces LDL-C by about 40 % and Lp(a) by up to 50 %
[39, 40]. In a phase 2b trial, 589 dyslipidemic patients were
administered anacetrapib, atorvastatin, or placebo in various
combinations with anacetrapib causing substantial increases
in HDL-C and apoA-I and reductions in LDL-C and apoB
[41•]. In a detailed study of lipoprotein subfractions, anace-
trapib increased largeHDL particles enrichedwith CE, apoA-I
and apoC-III [42]. There are also some data suggesting that
anacetrapib may improve HDL function and reverse choles-
terol transport. HDL from subjects who received 300 mg
anacetrapib daily for 8 weeks promoted greater cholesterol
efflux from foam cells than HDL from subjects given placebo
[43]. A detailed study in hamsters showed that anacetrapib
promoted macrophage-specific reverse cholesterol transport
(RCT) compared with placebo [44].

The Determining the Efficacy and Tolerability of CETP
Inhibition with Anacetrapib (DEFINE) trial randomized

1623 patients with CAD or at high-risk for CAD who had
achieved LDL-C treatment goals with statin therapy to
100 mg of anacetrapib or placebo [45, 46•]. Anacetrapib
treatment resulted in a 138 % increase in HDL-C, a 40 %
reduction in LDL-C, and a 36 % decrease in Lp(a) [46•].
After 76 weeks of follow-up, no increases in blood pressure,
serum aldosterone levels, or cardiovascular events were
observed. The Randomized Evaluation of the Effects of
Anacetrapib Through Lipid-modification (REVEAL) trial
is now enrolling and will randomize 30,000 subjects with
CAD, cerebrovascular atherosclerotic disease, or peripheral
artery disease to anacetrapib 100 mg, or placebo to formally
assess the impact on cardiovascular events. The estimated
study completion date is January 2017.

Evacetrapib is another potent CETP inhibitor in clinical
development. Administration of evacetrapib in a 12-week
randomized trial of 398 dyslipidemic patients in doses of
30–500 mg daily as monotherapy increased HDL-C from
54 %–129 % and decreased LDL-C from 14 %–36 %.
Addition of evacetrapib 100 mg daily to statin therapy
produced similar HDL-C increases and yielded further
LDL-C reductions [47•]. A large phase III clinical outcomes
trial is apparently planned to determine the effect of evace-
trapib in reducing cardiovascular events [48].

In summary, the first CETP inhibitor (torcetrapib) to
enter phase 3 increased CV events and mortality due most
likely to off-target effects. The second CETP inhibitor
(dalcetrapib) to enter phase 3 failed due to lack of efficacy
in reducing cardiovascular risk, with details still unknown.
There is a theoretical case to be made that CETP inhibition
may not be an optimal mechanism to target HDL. However,
at least 2 potent CETP inhibitors (anacetrapib and evacetra-
pib) are still in clinical development. In addition to raising
HDL-C levels considerably more than dalcetrapib, they also
substantially reduce LDL-C and Lp(a) levels. Thus, even if
the HDL-C raising is of marginal benefit, these potent CETP
inhibitors may reduce CV risk due to their effects on LDL-C
and Lp(a).

Infusions of apoA-I-Containing Recombinant HDL
Particles

ApoA-I is the most abundant protein in HDL. Lipid-poor
apoA-I is effective at promoting cholesterol efflux from
macrophages by serving as the preferred “acceptor” of cho-
lesterol from the adenosine triphosphate binding cassette
transporter 1 (ABCA1) transporter. Animal studies are
strongly supportive of the concept that overexpression or
injection of apoA-I can reduce or even regress atheroscle-
rotic plaque. Thus there is interest in the concept of infusing
apoA-I-containing recombinant HDL particles in humans.
Small clinical studies using coronary imaging support the
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concept of intravenous apoA-I infusion for reducing cardio-
vascular risk [49–51, 52•].

One approach uses apoA-I purified from human plasma
and complexed with phosphatidylcholine derived from soy-
bean, a preparation often termed “recombinant HDL”
(rHDL) [51, 53]. A randomized, placebo-controlled study
involved the administration in 145 patients with acute cor-
onary syndrome of 4 weekly infusions of this type of rHDL
(termed CSL-111). Serial intravascular ultrasound (IVUS)
was used to assess the impact on coronary atherosclerosis.
Infusion of rHDL was found to reduce atheroma volume by
3.4 % compared with baseline, although this was not sig-
nificantly different than placebo [51]. Another study in
patients with lower extremity peripheral artery disease uti-
lized a single CSL-111 infusion followed by percutaneous
superficial femoral artery revascularization 5-7 days follow-
ing CSL-111 infusion. There were significant reductions in
lipid content and endothelial adhesion molecule expression
in plaque excised by atherectomy [54]. Among patients with
diabetes, infusion of CSL-111 increased HDL-C up to 40 %,
inhibited ex vivo platelet aggregation, and reduced mono-
cyte activation and neutrophil adhesion [55, 56]. A reformu-
lated version of CSL-111, called CSL-112, has been
reported in preclinical studies to provide greater cholesterol
efflux capacity as well as reduced hepatotoxicity compared
with CSL-111, and is currently in clinical development [57].

ApoA-I Milano is a naturally-occurring mutation in
apoA-I that has a cysteine to arginine substitution at amino
acid 173. It is associated with very low levels of HDL-C, but
despite this is not associated with increased atherosclerotic
disease, giving rise to the concept that this mutant apoA-I
may actually be more anti-atherogenic [58, 59].
Recombinant apoA-I Milano complexed with phospholipid
has therefore also been studied for its effects on atheroscle-
rosis in animal models and in humans. In mice and rabbits it
has been shown to reduce atherosclerosis [60–63], though
not to a greater extent than wild-type rHDL [64–67]. In a
human study in subjects with CAD, 5 weekly doses of
apoA-I Milano rHDL or placebo were administered and
coronary atheroma was investigated by IVUS at the begin-
ning and end of the study. Total atheroma volume was
significantly reduced compared with baseline but no signif-
icant difference was observed with placebo [49]. ApoA-I
Milano-containing rHDL infusion is still being investigated.

Another approach to apoA-I infusion utilizes autologous
delipidated HDL [52•]. A device was invented that involves
collection of plasma by apheresis over 1.5–2 hours followed
by selective removal of lipids from HDL using organic
solvents. The delipidated HDL is subsequently reinfused
over 1 hour. In a non-human primate study this approach
resulted in a significant reduction in aortic atheroma volume
by IVUS [68]. In a clinical study of 28 patients with acute
coronary syndrome, 7 weekly infusions of autologous

delipidated HDL decreased total atheroma volume signifi-
cantly from baseline though not from the control group
[52•].

Upregulation of Endogenous apoA-I Production

Upregulation of endogenous apoA-I is conceptually highly
attractive. RVX-208 is a synthetic small molecule that
increases the transcription of the apoA-I gene. In a monkey
model, administration of the compound RVX-208 over ap-
proximately 2 months significantly increased plasma apoA-I
levels up to 60 % in a dose-dependent manner [69]. A small
human study showed a significant increase in plasma apoA-
I levels of 10 %, as well as augmentation of cholesterol
efflux capacity [69]. In a Phase 2 trial of RVX-208, 299
statin-treated CAD patients were randomized to placebo or 3
different treatment doses for 12 weeks. While there was an
increase in apoA-I levels compared with baseline, there was
no statistically significant change in apoA-I compared with
placebo [70•]. An ongoing phase 2b trial of RVX-208
involves 172 statin-treated patients randomized to placebo
or RVX-208 100 mg twice daily for 24 weeks [71]. In
another phase 2b trial, the effect of RVX-208 on coronary
atherosclerosis is being assessed by IVUS [72]. It will be of
substantial interest to determine whether this approach has
beneficial effects on coronary disease.

Enhancing Macrophage Cholesterol Efflux
Through Upregulation of ABC Transporters

Liver X receptors (LXRs) are nuclear receptors that act as
cholesterol sensors and regulate expression of genes in-
volved in cholesterol metabolism. Activation of LXRs by
natural and synthetic agonists has been demonstrated to
promote mobilization of intracellular cholesterol, increase
macrophage cholesterol efflux via macrophage ABCA1 and
ABCG1, and augment intestinal HDL generation [73–75].
Dyslipidemic hamsters treated with the LXR agonist
GW3965 had increased macrophage-to-feces RCT, but also
increased TG and LDL-C [76]. In a rabbit model of athero-
sclerosis, combination therapy with the LXR agonist LXR-
623, and simvastatin induced plaque regression, while sim-
vastatin alone, and LXR monotherapy at low and medium
doses attenuated plaque progression [77].

Therapeutic development of LXR agonists has been hin-
dered by hepatic steatosis and increased plasma triglyceride
concentrations reported in preclinical studies of these drugs
[78]. Dissociating LXR efficacy and toxicity might be possible
owing to the differential effects of LXR agonism by receptor
isoform and by tissue-specific effects. Administration of a
nonselective LXR agonist to LXRα-deficient mice stimulated
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macrophage ABCA1 expression and cholesterol efflux with-
out inducing fatty liver and with minimal upregulation of
hepatic triglyceride synthesis [79]. Liver-specific LXRα
knockout mice have increased atherosclerosis and decreased
RCT. Interestingly, synthetic LXR agonist rescue in these mice
still led to anti-atherogenic activity despite the lack of hepatic
LXRalpha; it also did not increase plasma TG but still in-
creased plasmaHDL [80]. The LXR agonist AZ876 decreased
atherosclerotic lesion size in APOE*3 Leidenmice at low dose
without increasing TG or causing liver steatosis; at high dose,
lesion size was decreased to an even greater degree and also
there were decreased cytokine levels/vessel wall inflammatory
markers, but with the addition of increased plasma TG [81].

A second approach to LXR agonist development might be
to selectively activate intestinal LXR. An intestine-specific
LXRα/β agonist, GW6340, promoted macrophage-specific
reverse cholesterol transport, augmenting the fecal excretion
of radiolabeled sterol by 52 % via increased intestinal HDL
production and intestinal excretion of HDL-derived cholesterol
[82].

Another mechanism for increasing ABCA1 and ABCG1
expression is through the microRNA miR-33. MicroRNAs
are short non-coding sequences of RNA that inhibit gene
expression by binding to complementary 3’ untranslated
regions of mRNAs and causing translational repression
and/or mRNA destabilization [83]. MiR-33 is encoded with-
in an intron of the gene encoding the sterol regulatory
element binding transcription factor 2 (SREBF2) and sup-
presses macrophage and hepatocyte expression of ABCA1
and ABCG1, thus reducing circulating HDL-C levels and
macrophage efflux to apoA-I [84]. Silencing of miR-33 with
an antisense oligonucleotide (ASO) was associated with
greater macrophage and hepatocyte expression of ABCA1
and increased HDL-C levels. In a mouse model of athero-
sclerosis, administration of an ASO to miR-33 significantly
increased HDL-C, promoted macrophage-specific reverse
cholesterol transport, and induced atheroma regression
[85••]. In a non-human primate model of dyslipidemia,
subcutaneous delivery of anti-miR-33 ASO over a 12-
week period increased HDL-C up to 50 % [86•]. Greater
macrophage cholesterol efflux was observed following in-
cubation of foam cells with serum obtained from treated
monkeys compared with equivalent volumes of serum iso-
lated from control monkeys, correlating with the HDL-C
levels in the 2 groups. Thus, anti-miR-33 therapy is another
potential approach to promoting macrophage cholesterol
efflux and RCT.

Conclusions

Recent events have brought into question the simple “HDL
cholesterol hypothesis” that raising HDL cholesterol levels

will reduce cardiovascular risk. The HPS2-THRIVE trial
with niacin and the trials with CETP inhibitors anacetrapib
and evacetrapib will provide the next wave of critical clin-
ical data of HDL-directed strategies in large contemporary
cohorts managed with aggressive medical therapy. It may be
time to modify the “HDL cholesterol hypothesis” to the
“HDL flux hypothesis”: Intervention to promote cholesterol
efflux and reverse cholesterol transport will reduce CAD
risk. Clinical outcomes studies of interventions that promote
cholesterol efflux and reverse cholesterol transport are ulti-
mately required to test this hypothesis.
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