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Introduction
Positron emission tomography (PET) has been used to
measure myocardial perfusion, metabolism, innervation,
and mechanical function for more than 20 years. Although
cardiac PET has been primarily a research tool, it is now
being used more frequently in the management of patients
with ischemic heart disease. The two major clinical appli-
cations of cardiac PET are regional myocardial perfusion
imaging (MPI) to determine the presence and severity
of coronary artery disease (CAD), and metabolic imaging
to differentiate viable from nonviable myocardium in
patients with ischemic left ventricular (LV) dysfunction.
The recent advances of cardiac PET in these two areas as
well as the potential future clinical applications of cardiac
PET are discussed.

Technical Aspects of Cardiac 
Positron Emission Tomography
Positron emission tomography takes advantage of
the unique decay scheme of the positron-emitting radio-
nuclides, which generate two 511 keV photons emitted at
an angle of approximately 180°. It is this colinearity of
photons of equal energy that permits localization (called
coincidence detection) of an annihilation event along the
line of coincidence by recording events at opposing detec-
tors within a given time window (typically 5–20 ns). This
detection scheme of electronic collimation offers the
advantage of improved sensitivity and resolution over
lead collimation, which is performed with conventional
single photon emission computed tomography (SPECT).
Moreover, because of this detection scheme, correction
for photon attenuation from overlying breast tissue or
diaphragm can be performed more accurately with PET
than with the current approaches being implemented
for SPECT. A second major attr ibute of  PET is  i ts
usage of tracers and physiologic compounds (Table 1). The
positron-emitting radionuclides of the biologically ubiqui-
tous elements oxygen (oxygen 15), carbon (carbon 11),
and nitrogen (nitrogen 13), as well as fluorine (fluorine
18), substituting for hydrogen, can be incorporated into
a wide variety of radiopharmaceuticals to measure
myocardial perfusion, metabolism, and innervation. The
short physical half life of the positron-emitting radio-
nuclides facilitates the performance of sequential studies
with a favorable radiation exposure to the subject when
compared with conventional single photon radionuclides.
However, because of the short physical half life of these
radionuclides and the fact that most of them are cyclotron-
produced, an on-site cyclotron is necessary in order to
perform such PET studies. Only in situations in which the
physical half life of the radionuclide is long enough to
permit delivery to PET sites without a cyclotron, such as in
the case of fluorine 18 (18F) (half life ~ 110 min), or in the
case of generator-produced positron-emitting radio-
nuclides such as rubidium 82 (82Rb), is the need for an on-
site cyclotron obviated.

An additional advantage of cardiac PET is its ability to
measure myocardial perfusion and metabolism in either
relative or absolute terms. In the former case, myocardial
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radiotracer activity is referenced to a myocardial wall that
is assumed to have normal radiotracer uptake. This is similar
to how myocardial SPECT imaging is performed. This
approach works fine in situations in which regional differ-
ences in perfusion or metabolism exist, typically in CAD.
However, the approach is of limited value in situations
in which the pathologic process is more diffuse, such as
in severe multivessel CAD or microvascular disease associ-
ated with diabetes mellitus or hyperlipidemia. PET can
also quantify myocardial perfusion in absolute terms
(ie, in mL/g/min) and metabolism (ie, in �mol/g/min). This
is done by analyzing the radiotracer kinetics in myocardium
using well-validated compartmental models. The strength
of this approach is that pathologic processes that effect
the heart in a more diffuse pattern can be detected. The
disadvantages of quantification are that it is more complex
to perform and it may have a greater degree in measurement
variability than relative estimates.

Myocardial Perfusion Imaging 
in the Management of Coronary 
Artery Disease Patients
Single photon emission computed tomography 
myocarial perfusion imaging
Currently, SPECT using either thallium 201 (201Tl) or the
technetium 99 (99Tc)–labeled perfusion tracers, sestamibi
and tetrofosmin, is the most commonly used method for
MPI [1]. Typically, myocardial perfusion at rest is compared
with perfusion during stress (induced with exercise or
pharmacologically). The ability of SPECT rest/stress MPI to

accurately diagnose CAD and to risk stratify patients with
this disease is well established. As a consequence, SPECT
MPI plays a central role in the management of patients with
CAD. Despite its importance in the management of patients
with CAD, SPECT MPI suffers from several disadvantages.
Photon attenuation can result in a distribution of radio-
tracer in myocardium consistent with infarction where none
exists and thus, decrease test specificity. Electrocardiographic
(ECG) gating and prone imaging help reduce the impact of
attenuation artifacts on image interpretation. Moreover,
attenuation correction algorithms are now being added to
the SPECT acquisition [2]. However, the experience with this
technology is limited and its ultimate usefulness in improv-
ing the accuracy of interpretation of SPECT MPI awaits
further study. Increased liver uptake of the 99mTc agents can
result in back-projection errors during the tomographic
reconstruction, leading to reduced radiotracer activity in
the inferior or other adjacent myocardial walls. This is a
particular problem during adenosine or dipyridamole stress
imaging because splanchnic blood flow is maintained,
as opposed to exercise in which it is reduced, leading
to increased liver uptake of tracer. Again, test specificity
is reduced. Concomitant submaximal exercise to reduce
splanchnic blood flow or repeat imaging to let the liver clear
the 99mTc radiotracer activity are approaches used to mini-
mize the effects of increased liver activity [3]. However,
many patients cannot exercise (which is why they are under-
going vasodilator stress testing) and repeat imaging can
result in a test duration of 4 to 5 hours. Moreover, given the
increasing prevalence of obesity (which will increase attenu-
ation artifacts) and advancing age (which will increase the

Table 1. Positron-emitting compounds currently used with PET for cardiac studies

Radionuclide Half life, min Compound Present use

Cyclotron-produced
Oxygen 15 2.04 H2O Blood flow

CO Blood volume
CO2 Blood flow
O2 Oxygen consumption

Nitrogen 13 10 NH3 Blood flow
Various amino acids Amino acid metabolism

Carbon 11 20.4 Acetate Oxygen consumption
Pyruvate Intermediary metabolism
Palmitate Fatty acid metabolism
Glucose Glucose metabolism

HED Norepinephrine distribution
MQNB Muscarinic receptors
Butanol Blood flow

Fluorine 18 110 Deoxyglucose Glucose metabolism
Dopamine Dopamine stores

FHTA Fatty acid metabolism
Generator-produced

Rubidium 82 1.25 RbCl Blood flow
Copper 62 9.73 Cu-ATSM Hypoxia

ATSM—diacetyl-bis(N4-methylthiosemicarbazone; FHTA—fluoro-6-thi-hepto-clecanoic acid; HED—hydroxyephedrine; MQNB—methylquinclidinyl 
benzilate; PET—positron emission computed tomography.
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need for vasodilator stress) in the American population,
the confounding of image interpretation by these artifacts
will only increase. Finally, with current SPECT cameras
it is difficult to obtain simultaneous stress perfusion and
LV functional information. Typically, one obtains stress
perfusion information and post-stress functional infor-
mation. PET MPI offers potential solutions to many of
these problems.

Cardiac positron emission tomography
Currently, cardiac PET is clinically approved to perform MPI
with nitrogen 13 (13N)-ammonia and 82Rb. 13N ammonia
is a cyclotron-produced, partially extracted perfusion radio-
tracer. 82Rb is also a partially extracted flow radiotracer that
is a potassium-analog with kinetics similar to 201Tl. It is
obtained from a commercially available generator. To assess
CAD, a typical study includes a transmission scan to correct
for photon attenuation, a rest imaging, and then imaging
during vasodilator stress induced with either dipyridamole
or adenosine [4]. Potentially, dobutamine could be used as
well. ECG gating can be performed both at rest and during
stress. Because of the requirements to begin imaging almost
immediately following tracer injection, and for the patient
to lie still during imaging, exercise is not feasible. Thus, the
additional diagnostic and prognostic information associ-
ated with the occurrence of angina, exercise duration, and
hemodynamic responses are lost. Due to the short physical
half life of these radiotracers, rapid sequential imaging
is possible. A 13N-ammonia study can be completed in
about 60 to 75 minutes, whereas an 82Rb study (half life
of 76 sec) requires about 30 to 45 minutes to complete.
An important consideration is that the patient remains in
the same position for the transmission and emission scans.
Misalignment of the transmission and emission scans will
lead to significant image artifacts. Strategies designed to
reduce this occurrence include using multiple localizing
low-energy lasers to ensure the patient is in the same
position or performing multiple transmission scans (such as
before and after the emission scan) in order to correct for
patient motion.

Because of its intrinsic advantage of being generator
produced, 82Rb has been more extensively studied than
13N-ammonia for the detection of CAD. However, with
either PET radiotracer, sensitivity ranges from 79% to 97%
and specificity has been reported at between 85% and
100%, when compared with coronary angiography [5–14].
Of note, nearly all of these studies occurred more than
10 years ago. Thus, comparisons with SPECT were only
performed using 201Tl without ECG gating, prone imaging,
or attenuation correction [8,13,14]. In these cases PET
imaging with either 82Rb or 13N-ammonia exhibited similar
sensitivity for detecting coronary disease. However, PET with
its superior correction for photon attenuation (particularly
in the inferior wall due to overlying diaphragm) exhibited
higher specificity compared with SPECT. In a small number
of studies, PET with 82Rb has been shown to accurately risk

stratify patients and provide additional prognostic informa-
tion over above clinical and angiographic findings [15]. In
addition, it has been suggested that PET MPI may be a more
cost-effective approach to evaluate for CAD than exercise
electrocardiography, SPECT MPI or coronary angiography in
patients with a low to intermediate pretest likelihood of
disease [16]. Of note, the capability of PET MPI to simulta-
neously measure myocardial perfusion and LV function has
been demonstrated. Thus, it may be possible to determine
when abnormalities in myocardial perfusion during stress
reflect solely abnormal vasodilator capacity (normal stress
wall motion) as opposed to frank ischemia (presence of a
stress wall motion abnormality).

Clearly, further studies are required to demonstrate
the usefulness of PET MPI compared with SPECT MPI in
the clinical management of the CAD patient. For example,
the accuracy of  PET MPI must be compared with
SPECT using the 99mTc agents and acquisition schemes
that incorporate ECG gating, prone imaging, and/or atten-
uation correction.

Positron Emission Tomography Myocardial 
Perfusion Imaging in Microvascular Disease
It is becoming increasingly apparent that abnormalities in
myocardial microvascular function are involved in the
pathogenesis of a variety cardiovascular disorders such
as hyperlipidemia, LV hypertrophy, diabetic heart disease,
and dilated cardiomyopathy. Moreover, abnormal micro-
vascular function may be an early manifestation of disease.
One example is in CAD in which abnormalities in
microvascular function precede the development of angio-
graphically significant epicardial stenoses. In addition
to characterizing the pathogenesis of disease, in many
cases identification of microvascular dysfunction likely
represents a stage of disease that may still be reversible. As
mentioned previously, current SPECT MPI approaches are
of limited value in this situation because in most cases
microvascular dysfunction is a diffuse process. Because
PET MPI can quantify myocardial perfusion in mL/g/min it
can be used to identify and quantify abnormalities in myo-
cardial microvascular dysfunction. Moreover, by perform-
ing these measurements during intravenous adenosine
or dipyridamole administration or during cold-pressor
testing the relative contributions of primarily endothelial-
independent vasodilation (in the former case) and endo-
thelial-dependent vasodilation (in the latter case) to
microvascular dysfunction can be determined. Demonstra-
tion that chronic hyperglycemia plays a key role in
the microvascular dysfunction of diabetics, that acute
homocysteinemia impairs myocardial microvascular
dilation and that myocardial vasodilator function is
impaired in otherwise healthy subjects with familial
combined hyperlipidemia are but three examples of the
potential usefulness of the quantitative PET MPI method
[17•,18,19]. PET measurements of microvascular function
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may the have potential to assign prognosis and demon-
strate the beneficial effects of therapies designed to reduce
impact of various contributors to microvascular dysfunc-
tion. For example, in patients with hypertrophic cardio-
myopathy, the degree of microvascular dysfunction as
measured by PET is a strong independent predictor of
clinical deterioration and death [20•]. In patients with
mild to moderate hypercholesterolemia and minimal
CAD, treatment with a statin results in an improvement in
the lipid profile that is paralleled by improved myocardial
vasodilator function [21••].

Cardiac Positron Emission Tomography 
for the Detection of Viable Myocardium
It is now apparent that in patients with CAD, the presence
of resting LV dysfunction can represent either irreversibly
damaged tissue or scar or tissue with the potential for func-
tional recovery. Irreversibly damaged tissue is considered
nonviable myocardium, whereas reversibly damaged tissue
is considered viable. The distinction has relevance because
restoration of perfusion to viable myocardium by coronary
artery bypass surgery or percutaneous coronary inter-
vention will likely result in improved systolic function,
whereas function will not improve in nonviable tissue. The
differentiation of viable from nonviable tissue is typically
needed in patients with ischemic cardiomyopathy in
whom the decision of high-risk coronary revascularization
as opposed to medical therapy or heart transplantation is
being contemplated. Thus, it is key that the magnitude
and extent of viable myocardium be determined accu-
rately. Metabolic imaging with cardiac PET is currently
considered the gold standard in this regard.

Assessment of Cardiac Metabolism
Under normal resting conditions the myocardium
produces energy from the oxidation of either fatty acids or
glucose and to a lesser extent lactate. The relative contribu-
tion of fatty acids or glucose to overall oxidative metabo-
lism is dependent upon a variety of factors such as the level
of fatty acids in the blood, insulin levels, and the level of
cardiac work. For example, under fasting conditions where
plasma fatty acid levels are elevated and insulin levels
are low, the myocardium oxidizes fatty acids primarily.
In contrast, in the postprandial state when insulin levels
rise slightly and plasma fatty acid levels decline, glucose
becomes a preferred oxidative substrate. Under conditions
of mild to moderate myocardial ischemia, oxidation of
fatty acids ceases and anaerobic metabolism supervenes.
Glucose becomes the primary substrate for both increased
anaerobic glycolysis and for continued, albeit diminished,
oxidative metabolism. With more marked reductions in
myocardial blood flow, myocardial oxidative metabolism
ceases, glycolysis diminishes via end-product inhibition,
and myocardial necrosis ensues. Consequently, the preser-

vation of myocardial glucose metabolism is a marker of
ischemic but viable myocardium.

Taking advantage of this metabolic switch, PET
imaging is performed typically using the glucose analog
18F-fluorodeoxyglucose (FDG). The initial uptake and
phosphorylation of FDG parallels that of glucose. How-
ever, unlike glucose, once phosphorylated, FDG is not
further metabolized and is retained within the myo-
cardium. Consequently, the higher the degree of FDG
accumulation in the myocardium the higher the level of
overall glucose metabolism. Viability assessments are
performed with PET and FDG in conjunction with measur-
ing myocardial perfusion. Perfusion can be measured with
either 13N-ammonia or 82Rb, as described above. Or
the assessments of regional perfusion can be performed
using conventional SPECT radiotracers. Identification of
viable and nonviable myocardium is based on the patterns
of metabolism in relation to perfusion [22]. Tissues are
identified as viable when myocardial perfusion is normal
regardless of the degree of FDG uptake. This most
likely represents a intermittent myocardial stunning [23].
However, when FDG uptake is increased in the presence of
a perfusion defect (perfusion-metabolic mismatch) this is
most consistent with myocardial hibernation and is also
indicative of viable tissue. In contrast, when there is a
concordant decrease in regional myocardial perfusion and
FDG uptake, the pattern is consistent with predominately
nonviable or necrotic myocardium. Of note, these defects
can be graded for their severity based on the level of FDG
uptake. For example, when FDG uptake is approximately
50% to 60% of peak activity, it would be most consistent
with a nontransmural myocardial infarction; whereas,
when FDG uptake is only 10% to 20% of peak activity this
is more consistent with transmural scar.

The accuracy of PET with FDG to predict improvement
in regional systolic function following coronary revascular-
ization was summarized recently [24]. This technique
demonstrated a sensitivity of 88%, a specificity of 73%, a
positive predictive value of 76%, and a negative predictive
value of 86%. These values compare favorably with SPECT
using either 201Tl or the 99mTc agents and dobutamine
stress echocardiography. The caveat here is that myocardial
viability detection with PET and FDG is much less accurate
in patients within 2 weeks of a myocardial infarction [25].
This is most likely due to the variable levels in myocardial
glucose use following ischemia with reperfusion. In
addition to demonstrating improvement in regional
systolic function, PET with FDG has shown that coronary
revascularization can have a favorable effect on global
LV function. Most importantly, PET and FDG studies in
patients with ischemic cardiomyopathy have demonstrated
that the presence of viable myocardium is marker of
high cardiac risk if coronary revascularization is not
performed. Indeed, a recent meta-analysis that included
PET and FDG, MPI with 201Tl, and low-dose dobutamine
echocardiographic methods to detect viable myocardium
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demonstrated that coronary revascularization of patients
with viable myocardium was associated with an 80%
reduction in annual mortality compared with a similar
group of patients treated medically [26••]. Moreover, in
these patients there was a direct relationship between the
severity of LV dysfunction present initially and the degree
of benefit with revascularization. Importantly, annual mor-
tality following revascularization was significantly higher
in patients with predominantly nonviable tissue (7.7%)
compared with patients with predominantly viable myo-
cardium (3.2%). Of note, there was no difference between
the three methods in predicting the magnitude of benefit
following revascularization. This would imply that PET
with FDG is no better that SPECT with 201Tl or low-dose
dobutamine stress echocardiography for evaluating
patients with ischemic cardiomyopathy for the presence of
viable myocardium. However, the detection of viable myo-
cardium is frequently required in obese patients with
severe LV dysfunction (ejection fraction value < 25%). It is
in this situation where the accuracy of SPECT and echo-
cardiographic approaches to differentiate viable from
nonviable myocardium declines. Consequently, it is in
these patients where PET with FDG is of most use.

Other Metabolic Applications
There is a rapidly growing body of evidence to suggest that
abnormalities in myocardial substrate metabolism play
a central role in a variety cardiac disorders. For example,
a decline in myocardial fatty acid metabolism with a shift
to glucose use is seen in the aging heart, LV hypertrophy,
and dilated cardiomyopathy. Conversely, an overdepen-
dence on fatty metabolism typifies the diabetic heart.
This loss in plasticity in myocardial substrate metabolism
may contribute to the diastolic and systolic dysfunction as
well as the adverse outcome observed in these conditions.
Until recently, this evidence was based on studies in
rodent models of these cardiac disorders where marked
alterations were observed in the gene expression of key
enzymes that regulate myocardial fatty acid and glucose
metabolism. Results of recent PET studies in humans have
shown the expected metabolic phenotype observed in
rodent models of aging, LV hypertrophy, dilated cardio-
myopathy, and diabetic heart disease occur in humans
with these conditions [27•,28–30]. Moreover, PET mea-
surements of metabolism have been able to show that
therapies designed to improve LV function are associated
with improvements myocardial metabolism. For example,
the improvment in LV remodeling and function by cardiac
resynchronization therapy in patients with dilated cardio-
myopathy is paralleled by a reduction in the regional
disparities in myocardial glucose metabolism [31]. More-
over, the salutary effects of endurance exercise training in
patients with dilated cardiomyopathy on exercise toler-
ance and LV function are associated with a decline in myo-
cardial oxygen consumption by both the right and left

ventricles and an improvement in LV efficiency [32••].
Thus, although the number studies are small, their results
demonstrate the potential clinical role PET measurements
of myocardial metabolism in patients with a variety of
cardiac disorders.

Myocardial Sympathetic 
Neurotransmitter Imaging
It is well recognized that abnormalities in the sympathetic
nervous system play a key role in the pathogenesis of a
wide range of cardiac disorders. For example, increased
adrenergic activity leading to down-regulation of myo-
cardial β-receptor function is a critical part of the patho-
physiology of congestive heart failure. Age-related decline
in cardiac function, hypertension-induced LV hypertrophy,
and diabetic heart disease are a few other examples of the
contribution of reduced myocardial sympathetic innerva-
tion to observed cardiac pathophysiology. In contrast,
the pattern of myocardial sympathetic innervation may be
as important as the degree of heterogeneity in LV sympa-
thetic innervation may correlate with arrhythmogenic
potential. Iodine 123 (123I) metaiodobenzylguandine
(MIBG) is the most commonly used SPECT radiotracer to
assess myocardial sympathetic innervation. MIBG is an
analogue of guanethidine and its cellular uptake is similar
to norepinephrine at the sympathetic nerve terminals.
Higher uptake of 123I MIBG correlates with higher adren-
ergic function. The most common PET radiotracer is
carbon 11 (11C)-hydroxyephedrine (HED), which is also
taken up in sympathetic nerve terminals. Again increased
tracer uptake indicating increased adrenergic activity.
Using this method has helped clarify the pathophysiology
of a variety of cardiac disorders. Numerous investigators
have shown that reinnervation of cardiac allografts occurs,
particularly in younger individuals in whom the transplant
procedure was uncomplicated and the rate of allograft
rejection was low [33]. It is well known that sympathetic
autonomic neuropathy is a marker of poor prognosis
patients with diabetes mellitus. Measurements of cardiac
sympathetic innervation in diabetic patients using PET
and 11C-HED have demonstrated that abnormalities in
sympathetic innervation are associated with impaired
myocardial vasodilator responses to sympathetic stimula-
tion, thus shedding light on the potential mechanism
responsible for the adverse outcome in these patients [34].
As mentioned above, the distribution of sympathetic
innervation may have relevance in cardiac disease, particu-
larly with respect to arrhythmias. Mutations in the genes
regulating sodium and potassium channels have been
implicated in the pathogenesis of arrhythmia in patients
with congenital long QT syndrome. Measurements of
sympathetic innervation with PET and 11C-HED demon-
strated a greater degree of heterogeneity in innervation in
the patients compared with controls, suggesting abnormal
sympathetic function amplifies the severity of disease
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[35••]. Beyond the mechanistic information the study
demonstrates the potential role of PET to characterize the
phenotype of newly identified genetic disorders.

Conclusions
It is likely that the clinical use cardiac PET will continue to
grow in the foreseeable future. The increasing prevalence of
metabolic syndrome and advancing age of the American
population will increase the demand for accurate pharma-
cologic stress testing for the management of patients with
CAD. Indeed, the need for efficient use of medical
resources will also require that false positive studies be
kept to a minimum. Through sharing of camera availabil-
ity, the rapid dissemination of PET cameras for oncologic
applications increases the availability of cardiac PET.
In addition, there is currently favorable reimbursement of
cardiac PET. That being said, more studies are needed to
demonstrate the superiority of cardiac PET MPI compared
with SPECT MPI. Technologic advances in cardiac PET will
also increase its potential clinical applicability. The recent
development of PET/CT holds the promise of integrating
information regarding coronary artery anatomy with
alterations in myocardial perfusion, metabolism, and
function. Obtaining all of this information in a single
examination will facilitate the management of cardiac
patients, particularly those with CAD. The quantitative
capability of cardiac PET will be used to improve our
understanding of disease processes that manifest as abnor-
malities in myocardial microvascular function and metab-
olism. Such information will be key in the development
and evaluation of new therapies designed to ameliorate
these abnormalities at a stage when disease reversal is still
possible. Finally, understanding the role of myocardial
innervation in various cardiac diseases will provide for a
more complete understanding of these processes and will
likely identify new targets for novel therapeutics.
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