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Introduction
The metabolic syndrome is characterized by a constellation
of abnormalities that represent major risk factors for both
type 2 diabetes mellitus and cardiovascular disease (CVD).
The resistance to insulin-mediated glucose disposal and
compensatory hyperinsulinemia are central to both the
metabolic syndrome and diabetes, and seem to be respon-
sible for most, if not all, of the associated abnormalities.
Atherogenic dyslipidemia is an important component of
the cluster of abnormalities characteristic of the metabolic
syndrome, which also consists of abdominal obesity, insu-
lin resistance (with or without glucose tolerance), raised
blood pressure, and prothrombotic and proinflammatory
states (Table 1) [1]. There are three major components of

dyslipidemia that occur in insulin resistance: increased
fasting and postprandial triglyceride-rich lipoproteins
(TRLs), decreased high-density lipoprotein (HDL), and
increased small, dense low-density lipoprotein (LDL)
particles. Because the metabolism of all lipoproteins is
highly interrelated (Fig. 1), it is likely that a common
fundamental metabolic defect explains all of the lipo-
protein changes in the dyslipidemia of insulin resistance. It
is indeed rare that they are found separately in insulin-
resistant individuals.

Population-based studies have universally and consis-
tently found positive associations of measures of insulin
resistance with plasma total or very low-density lipo-
protein (VLDL) triglyceride, and negative associations with
HDL cholesterol concentration. These associations have
remained significant when adjusted for main covariates
such as obesity, age, smoking and physical activity, and
appear to be consistent in both sexes and among various
populations, such as white subjects (Framingham Heart
Study [2], Paris Prospective Study [3], Quebec Cardio-
vascular Study [4]), blacks (CARDIA [5]), Hispanics
(San Antonio Heart Study [6]), Asians [7], and American
Indians (Pima Indians [8], Strong Heart Study [9]).

Pathogenesis
Elevated fasting triglycerides
The hepatic overproduction of VLDL appears to be the
primary and crucial defect accompanying insulin resis-
tance and compensatory hyperinsulinemia (Fig. 2). Inabil-
ity to suppress hepatic glucose production, impaired
muscle glucose uptake and oxidation, and inability to
suppress release of nonesterified fatty acids (NEFA) from
adipose tissue are the most important consequences of
insulin resistance in liver, muscle, and adipose tissue,
respectively. These events give rise to increased NEFA and
glucose flux to the liver, an important regulator of hepatic
VLDL production [10].

Another key site in the regulation of VLDL secretion is
the rate of apolipoprotein (apo) B-100 degradation. Newly
synthesized apo B-100 remains associated with the rough
endoplasmic reticulum, and is degraded by the ubiquitin/
proteasome system, or is translocated into the lumen and
incorporated into lipid poor VLDL precursors. Next, the
lumenal apo B-100 either is degraded or advances, acquiring
the remaining VLDL lipids in the smooth endoplasmic
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metabolism associated with insulin resistance.
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reticulum/cis-Golgi. Apo B-100 is stabilized and protected
from degradation by the heat shock protein 70 (HSP-70).
Lipids and microsomal triglyceride protein (MTP), a
heterodimeric lipid transfer protein that is required for the
assembly of apo B-containing lipoproteins, play a major
role in the translocation of apo B-100. If it does not occur,
then the apo B-100 is degraded. Insulin seems to be an
important factor in the intracellular degradation of freshly
translated apo B-100. Therefore, in the insulin-resistant state
there is inability to suppress apo B-100 degradation, and a
consequent imbalance between secretion and degradation
in favor of the former [11].

However, hepatic VLDL-apo B overproduction in the
fructose-fed hamster, a novel animal model of insulin
resistance, appears to result from both increased intra-
cellular stability of nascent apo B and enhanced expression
of MTP [12••]. In fact, insulin also negatively regulates
MTP gene expression, resulting in a decrease of MTP
transcription, even though sustained changes in MTP
mRNA levels would be required to affect MTP protein
levels in humans [13,14••]. In addition, neither MTP nor
newly synthesized triglycerides seem necessary for the later
stages of apo B-100–lipoprotein assembly and secretion
in either HepG2 or McA-RH7777 cells [15••]. Therefore,
the end result in insulin resistance states is an increased
assembly and secretion of VLDL.

Very low-density lipoprotein particles have been shown
to increase plasminogen activator inhibitor type 1 (PAI-1)
biosynthesis in endothelial cells by inducing transcription
of the PAI-1 gene promoter. Similarly, VLDL increase PAI-1
synthesis by stabilizing PAI-1 mRNA transcripts. The
induction of PAI-1 by VLDL particles is dependent on the
interaction of the lipoprotein with the LDL receptor
(LDLR), and correlates with intracellular triglyceride
accumulation. VLDL-induced PAI-1 biosynthesis results
from a principal signaling pathway involving protein
kinase C-mediated mitogen-activated protein kinase
activation [16]. The concurrent compensatory hyper-

insulinemia of the metabolic syndrome contributes to the
increase of PAI-1 levels in this condition, because insulin
has also been shown to increase PAI-1 gene transcription
through interaction with its receptor [17•]. Insulin is
a stimulator of lipoprotein lipase (LPL) activity, by
increasing LPL mRNA, and therefore enhancing its rate of
synthesis. LPL activity in skeletal muscle of insulin-
resistant subjects has been shown to be lower, suggesting
a defective insulin regulation of LPL. Therefore, the
decreased LPL activity and mass in insulin resistance slow
down the normal lipoprotein metabolic cascade, resulting
in decreased clearance of VLDL [18,19].

Very low-density lipoproteins are mainly cleared from
circulation by the LDLR, also referred to as the apo B/E
receptor. The transcription of the LDLR gene is regulated by
intracellular cholesterol concentration, hormones, and
growth factors. Sterol regulatory element-binding protein-
1 is selectively involved in the signal transduction pathway
of insulin and insulin-like growth factor-I (IGF-I) leading
to LDLR gene activation [20]. Insulin resistance may also
impair LDLR activity, thus contributing to the delayed
VLDL particle clearance accompanying this condition.

Insulin acutely suppresses the total production rate of
VLDL particles by primarily decreasing the production of
large, VLDL1 (Sf 60-400), without affecting that of small
TRLs, VLDL2 (Sf20-60) [21]. This effect seems to be
independent of the availability of NEFA [22]. In type 2
diabetes insulin appears unable to inhibit acutely the
release of VLDL1 from the liver, despite efficient suppres-
sion of serum NEFA [23]. However, the decrease in
circulating VLDL particles following acute insulin action in
insulin sensitive individuals appears to be the result not
only of a decreased hepatic production [24], but also an
increased clearance.

Elevated postprandial lipemia
Less is known about the mechanisms responsible for the
association of insulin resistance with increased post-
prandial lipemia. During the postprandial state, dietary
fatty acids are transported from the intestine to peripheral
tissues as chylomicron triglycerides. In the capillary beds of
peripheral tissues, chylomicron triglycerides are lipolyzed
by LPL, allowing the delivery of NEFA to cells and resulting
in production of smaller, cholesteryl ester-enriched chylo-
micron remnants. These particles are rapidly removed from
the blood primarily by the liver through two receptors,
LDLR and LDLR-related protein (LRP), acting in
association with heparan sulfate proteoglycans (HSPGs)
and/or hepatic lipase (HL) [25•].

Some investigators have examined the relation between
postprandial lipemia and insulin resistance, plasma
glucose, and insulin response to a meal in healthy non-
diabetic subjects [26]. Postprandial triglyceride levels, as
an indirect measure of chylomicron remnant particles,
were found to be significantly related to insulin action. A
significant relation of triglyceride levels to postheparin

Table 1. The metabolic syndrome according to 
Adult Treatment Panel III

Risk factor Defining level

Abdominal obesity 
(waist circumference)

Men > 102 cm
Women > 88 cm
Triglycerides ≥ 150 mg/dL
HDL cholesterol

Men < 40 mg/dL
Women < 50 mg/dL

Blood pressure ≥ 130 / > 85 mm Hg
Fasting glucose ≥ 110 mg/dL

HDL—high-density lipoprotein.
(Adapted from Expert Panel on Detection, Evaluation, and Treatment of 
High Blood Cholesterol in Adults [1].)
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Figure 1. Metabolism of fasting and post-
prandial TRLs. The role of apolipoprotein 
(apo) C-II is LPL activation, whereas apo E 
is fundamental for TRL clearance. Chol—
cholesterol; IDL—intermediate-density lipo-
protein; LDLR—low-density lipoprotein 
receptor; LRP—LDLR-related protein; TG—
triglyceride; TRL—triglyceride-rich lipopro-
tein; VLDL—very low-density lipoprotein.

Figure 2. Pathogenesis of dyslipidemia in the metabolic syndrome. Central role of fasting and postprandial TRLs. CETP— cholesteryl ester 
transfer protein; HDL—high-density lipoprotein; HL—hepatic lipase; LDLR— low-density lipoprotein receptor; LRP—LDLR-related protein; 
Lp—lipoprotein; NEFA— nonesterified fatty acids; MTP— microsomal triglyceride protein; SR-BI—Scavenger receptor BI; TRL—triglyceride-rich 
lipoprotein; VLDL—very low-density lipoprotein.
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plasma LPL activity was also demonstrated. Because LPL is
an insulin-sensitive enzyme, which is suppressed in insulin
resistant individuals, its deficiency might contribute to the
abnormal levels of remnant particles in insulin resistance.

The relation of fasting insulin concentrations to post-
prandial lipoproteins has also been evaluated in a popula-
tion-based study of healthy middle-aged men with apo E3/3
genotype [27]. Aside from postprandial triglycerides, post-
prandial TRL apo B-48 and apo B-100 concentrations were
also determined, as a measure of chylomicron and VLDL
remnant particle concentrations. Fasting plasma insulin was
associated with the triglyceride response to the test meal,
independent of obesity measures, blood glucose, and fasting
triglyceride concentrations. Exaggerated and prolonged
postprandial lipemia in subjects in the upper quartile of the
plasma insulin distribution was largely accounted for by
large TRLs (Sf > 60). However, insulin relations to large post-
prandial TRLs exclusively reflected the association between
plasma insulin and the fasting plasma concentrations of
these lipoprotein species. On the other hand, plasma insulin
and late postprandial plasma concentrations of small TRLs
(Sf 20–60) were related independent of insulin influences
on fasting concentrations. Indeed, this slow removal of
chylomicron remnants is a common observation in insulin-
resistant individuals. This study concluded that the degree of
insulin sensitivity is a major determinant of postprandial
lipemia, and supports the hypothesis that the preferential
clearance of chylomicron triglycerides by LPL leads to
accumulation of hepatogenous VLDL during the alimentary
period [28]. Because postprandial particles may play an
important role in the pathogenesis of CVD, the increased
postprandial lipemia in insulin resistance may contribute to
increased CVD risk [29].

Insulin does not seem to influence LRP mRNA and
protein expression acutely, although it stimulates recycling
of LRP from an endosomal pool to the plasma membrane,
thus increasing the cell surface presentation of LRP [30,31].
The diminished insulin action on both receptors, LDLR
and LRP, could theoretically contribute to the increased
postprandial lipemia of the metabolic syndrome, even
though this process is far from saturable in normal
functioning receptors.

It is not clear yet if an overproduction of intestinal TRLs
(chylomicrons) has a role in the postprandial lipemia of
diabetes in humans. Animal studies (obese Zucker rats,
and diabetic New Zealand white rabbits) have shown
a higher secretion of lymph chylomicron particles in
the insulin-resistant animals compared with controls (lean
rats and nondiabetic rabbits) [32,33]. These animal studies
suggest that intestinal MTP could play some role in the
postprandial dyslipidemia of diabetes in humans.

Increased small, dense low-density 
lipoprotein particles
Elevated LDL cholesterol is not a characteristic of the
dyslipidemia of insulin resistance. In the insulin-resistant

state, the composition and distribution of LDL particles are
altered, resulting in a preponderance of small, dense LDL.
The LDL particle is characterized by a core consisting
primarily of cholesteryl ester surrounded by apo B-100. In
insulin resistance, the lipid content of the core changes
because cholesteryl ester decreases and triglyceride
increases relatively, leading to a decreased number of
cholesterol molecules per apo B-100 (or LDL) particle.
Fasting triglyceride and small, dense LDL concentration are
positively correlated, because the formation of small,
dense LDL depends largely on the metabolism of VLDL
particles. In insulin-resistant states, the increased concen-
tration and delayed clearance of VLDL particles induce an
increased exchange between cholesteryl esters in LDL and
triglycerides in VLDL, mediated by cholesteryl ester transfer
protein (CETP). This exchange produces LDL particles
enriched in triglycerides, which are rapidly lipolyzed by
HL, leaving smaller, denser LDL particles. The activities of
both CETP and HL appear to be increased in the metabolic
syndrome. This exchange process also leads to highly
atherogenic cholesteryl ester-enriched VLDL particles.
Small, dense LDL particles seem to be more prone to
modifications, such as oxidation and glycation (increased
in the presence of high glucose levels), which could lead to
increased production of antibodies against the modified
apo B-100 and formation of immunocomplexes. All these
modifications might result in a decreased LDLR-mediated
clearance of small, dense LDL particles [34], which could
contribute to their elevated plasma levels in the insulin-
resistance syndrome, and particularly in uncontrolled type
2 diabetes. The modified LDL is mostly taken up by
macrophage scavenger receptors, rather than the normal
LDLR pathway, thus inducing atherosclerosis. The associa-
tion between LDL subclass patterns and plasma insulin, as
a measure of insulin resistance, has been demonstrated in
many population-based studies, even independently of
plasma triglycerides and HDL cholesterol [35•,36].

Lipoprotein [Lp](a) is a cholesterol ester-rich, LDL-like
lipoprotein containing the characteristic apo(a), which
is coded by one of the most polymorphic genes known in
humans. Therefore, plasma concentrations of Lp(a) vary
enormously between individuals and considerably across
populations, and are determined by synthesis and not by
degradation. Both transcriptional and post-translational
mechanisms have been identified as regulating Lp(a) pro-
duction. Assembly of Lp(a) seems to occur extracellularly
from newly synthesized apo(a) and circulating LDL, even
though in-vivo kinetic studies have revealed the possibility
of an intracellular assembly. Lp(a) assembly involves
multiple interactions between apo(a) and apo B-100 of
LDL, as well as a disulfide linkage of two free cysteine
residues on both proteins. Lp(a) is thought to facilitate the
atherosclerotic process, because it has been found in
atherosclerotic lesions.

Data on the role of Lp(a) in diabetes are still conflict-
ing, even though a large, population-based study has failed
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to show elevated Lp(a) levels in type 2 diabetes. In this
study, part of the San Antonio Heart Study [37], 260
patients with type 2 diabetes and 366 nondiabetic subjects
had similar Lp(a) concentrations. A recent study in
American Indians has actually demonstrated that diabetic
participants had significantly lower Lp(a) levels than
nondiabetic participants for both sexes [38]. This study has
also shown a lower concentration of Lp(a) in American
Indians (almost half of that in whites and one sixth in
blacks), and a high correlation of Lp(a) concentration with
Indian heritage, confirming the concept that Lp(a) concen-
tration is in large part genetically determined.

Decreased high-density lipoprotein cholesterol
High-density lipoprotein particles are the smallest lipopro-
tein particles, with cholesterol ester in the central core and a
variety of apolipoproteins that govern their metabolism.
Although the mechanisms that regulate HDL are not com-
pletely understood, the atherogenic potential of low HDL
levels is well known. Several mechanisms can contribute to
the decreased HDL in insulin resistance, and as in the forma-
tion of small, dense LDL particles, TRL metabolism plays an
important role. Most studies of lipoproteins have shown an
inverse relationship between VLDL triglycerides and HDL
cholesterol. Impaired TRL lipolysis leads to reduced HDL
concentration, by decreasing the transfer of apolipoproteins
and phospholipids from TRL to the HDL compartment. In
addition, the delayed clearance of TRLs facilitates the CETP-
mediated exchange between cholesterol esters in HDL and
triglycerides in VLDL. The increased activity of HL in insulin-
resistant states produces smaller HDL particles and facili-
tates HDL clearance. An increased clearance of HDL particles
might also occur in poorly controlled type 2 diabetes,
following the increased glycation of the major apolipopro-
tein of HDL, apo A-I. Finally, insulin could also have a direct
effect on the production of apo A-I or hepatic secretion of
nascent HDL. Therefore, in insulin resistance there is a sub-
stantial decrease of HDL particles, especially the larger HDL2
(compared with the smaller HDL3) and HDL containing
mostly apo A-I (referred to as LpA-I particles). The LpA-I
particles are more effective than LpA-I:A-II particles in the
reverse cholesterol process, and therefore are considered
more antiatherogenic. The function of the other major
apolipoprotein of HDL, apo A-II, is not clear yet. Recent data
have suggested a possible role of apo A-II in visceral fat
accumulation, even though no direct relationship with
insulin resistance has been demonstrated in humans [39••].
However, studies on knockout and transgenic human apo A-
II mice have shown a clear role of this apolipoprotein in
insulin sensitivity.

Role of Peroxisome Proliferator-
activated Receptors Activation
Peroxisome proliferator-activated receptors (PPARs) are
transcription factors that act as dietary lipid sensors

regulating fatty acid, carbohydrate, and lipid metabolism
(Table 2). PPARs regulate gene expression upon hetero-
dimerization with the retinoid X receptor (RXR) and
subsequent binding to PPAR-response elements (PPREs),
which are located in the promoter region of target genes.
The hypolipidemic effects of the fibrates and the anti-
diabetic effects of the thiazolidinediones (TZDs) in
humans are known, and due to activation of PPARα and
PPARγ subtypes, respectively.

Peroxisome proliferator-activated receptor-α  is
predominantly expressed in liver, kidney, heart, and
skeletal muscle, where it controls fatty acid catabolism
[40••]. Fibrates efficiently lower plasma concentrations of
cholesterol and triglycerides, and increase HDL-cholesterol
levels. PPARα enhances the transcription of apo A-I and
apo A-II, thereby increasing HDL production. Fibrates
lower triglyceride levels as a result of enhanced lipolysis, by
increasing LPL and reducing apo C-III gene expression,
induction of fatty acid uptake and catabolism, and reduced
fatty acid synthesis and VLDL production by the liver.
Moreover, fibrates increase the removal of LDL particles by
modifying LDL composition, which increases the affinity
of LDL for the LDLR.

Peroxisome proliferator-activated receptor-γ is highly
expressed in brown and white adipose tissue and the
intestine, and triggers cellular differentiation, promotes
lipid storage, and modulates the action of insulin. TZDs
exert mainly hypotriglyceridemic actions, even though
activation of PPARγ by TZDs in macrophages also
induces ATP-binding cassette A1 (ABCA1) transporter
expression to promote reverse cholesterol transport [41].
TZDs exert hypotriglyceridemic effects by increasing
lipolysis and clearance of TRLs in adipose tissue. The
lipolytic action of PPAR agonists may also contribute
to increased HDL levels. Finally, both PPARα and PPARγ
are expressed in macrophages and foam cells that are
resident in atherosclerotic lesions, where they exert anti-
inflammatory activities. New treatment approaches with
molecules having both PPARα and PPARγ activities are
now being investigated.

Peroxisome proliferator-activated receptor-δ, another
member of the PPAR family, is ubiquitously expressed and
controls brain lipid metabolism and fatty acid-induced
adipogenesis and preadipocyte proliferation. The function
of PPARδ subtype is less known, even though recent
data suggest a role in reverse cholesterol transport.
PPARδ seems to increase the expression of the ABCA1 in
macrophages, thus inducing apo A-I specific cholesterol
efflux. When a PPARδ ligand was given to insulin-resistant
middle-aged obese rhesus monkeys, it produced a signifi-
cant dose-dependent increase in serum HDL cholesterol,
and a decrease in small, dense LDL, fasting triglycerides,
and fasting insulin concentrations [42••]. Interestingly,
PPARδ also increases HDL cholesterol plasma concen-
trations in insulin-resistant mice. Studies in humans
are underway.



Dyslipidemia of the Metabolic Syndrome  •  Ruotolo and Howard 499
Conclusions
Although much work has been done to elucidate the
complex pathogenesis of the dyslipidemia of the meta-
bolic syndrome, more human studies are still needed. The
overproduction of VLDL particles and defective LPL-
mediated lipolysis lead to increased fasting and post-
prandial TRL concentrations. The increased small, dense
LDL and decreased HDL cholesterol concentrations appear
to be secondary to the delayed metabolism of TRLs. The
dyslipidemia associated with insulin resistance plays a
major role in the development of atherosclerosis. PPARs
(α , γ, and δ) are ligand-activated transcription factors
belonging to the nuclear receptor family, and have an
important role in the regulation of the expression of genes
involved in lipoprotein metabolism. Specifically designed
compounds with multiple PPAR-agonist activity could
represent a possible solution to the radical treatment of the
dyslipidemia of the metabolic syndrome.
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