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Introduction
The human parvovirus, adeno-associated virus (AAV), has
become extremely popular as a vector for the delivery
of therapeutic genes in gene therapy paradigms. This
small virus has many properties that have made it
attractive as a delivery vehicle. Such properties include
the potential for integration into the host genome [1],
which may mediate long-term transgene expression, and
because recombinant AAV (rAAV) vectors do not express
any viral proteins, there is little immune cell mobilization
or inflammatory effects observed towards rAAV-infected
cells [2]. Furthermore, rAAV is not associated with any
known human disease [3], has a broad host range, and is

capable of infecting both mitotic and postmitotic cells
[2,4••,5–7,8–15,16•,17•,18••–21••].

Here, we briefly review AAV biology, rAAV production
methods, and previous gene transfer studies. Also, new
developments in AAV technology are described, including
the ability to increase vector-coding capacity, the use of
alternative AAV serotypes, and the potential for direct rAAV
vector targeting.

Adeno-associated Virus Structure 
and Replication
Adeno-associated virus has a single stranded DNA genome
of 4680 bases [22] containing two open reading frames
(ORFs) termed Rep and Cap, which are flanked by inverted
terminal repeats (ITRs) of 145 bases (Fig. 1). There are six
known serotypes of AAV, but the most extensively studied of
these is AAV type 2 (AAV2); thus, all reference to genetic and
structural characteristics will be based upon this serotype.

Adeno-associated virus is a “defective” member of the
parvovirus family, meaning that AAV requires co-infection
with a helper virus to replicate efficiently in host cells; such
helper viruses include adenovirus (Ad) [23], herpes
simplex virus 1 (HSV1) [24], and vaccinia virus [24]. There
is evidence that certain stress-inducing factors, such as
ultraviolet irradiation, hydroxyurea, heat shock, or several
carcinogens [24–26], can also induce AAV replication,
suggesting that cells possess the intrinsic capacity to
support replication independent of helper virus function.
The role of Ad in AAV replication is complex and has been
shown to involve specific Ad genes including E1A, E1B, E4
ORF6, and E2A and VA1 RNA, []. AAV can be propagated as
a lytic virus or maintained as a provirus integrated into the
host genome. In the absence of helper virus, AAV enters a
latent state in which the viral genome is integrated into the
host genome at a specific locus on chromosome 19 []. The
latent virus is stable for many cell cycles and can be rescued
to enter the lytic phase upon subsequent helper virus infec-
tion.

The AAV virion is composed of three proteins: VP1,
VP2, and VP3 [27]. The smallest capsid protein, VP3 (61
kd) is the most abundant within the virion, accounting for
90% of total viral protein. VP1 (87 kd) and VP2 (73 kd)
are present at a 1:1 ratio and make up the remaining 10%
of capsid protein. The capsid proteins are derived from the
Cap region of the genome (Fig. 1). Three promoters have
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been identified within the AAV2 genome; p5, p19 and p40
[27]; all Cap proteins are transcribed from the p40 pro-
moter. Transcripts derived from these promoters share a
common intron and poly adenylation signal.

There are at least four nonstructural proteins derived
from the Rep ORF. These are designated according to their
molecular weights; Rep78, Rep68, Rep52 and Rep40. Rep78
and Rep68 are transcribed from the p5 promoter, whereas
Rep52 and Rep40 are transcribed from the p19 promoter. In
vitro analysis of Rep function has revealed that Rep68/78
play multifactorial roles in AAV replication and integration
including DNA binding [29], helicase activity [30], and
site-specific and strand-specific endonuclease activity [30].
Moreover, Rep68/78 are essential for targeted integration of
AAV DNA into the host genome through interaction of
Rep68/78 with Rep-binding elements (RBEs) found within
the ITRs and the chromosome 19 integration locus, desig-
nated AAVS1 [31]. As Rep proteins are essential for targeted
integration into the AAVS1 locus, rAAV vectors that are
devoid of Rep genes do not integrate site-specifically, but
integrate randomly in a variety of cell types, including lung
alveolar macrophages and postmitotic neurons [32].

Recombinant Adeno-associated Virus 
Production and Purification
The only viral genetic elements present within rAAV vectors
are the ITRs. Furthermore, these 145 nt DNA sequences are
the only cis-acting viral elements required for vector
production. All other elements including, the Rep/Cap gene
products, and helper virus proteins can be supplied in trans.
Therefore, the present method for producing stocks of rAAV
utilizes a three-component plasmid system [33•]: AAV
plasmid vector containing the desired transgene flanked by
AAV ITRs; AAV helper plasmid, which provides the necessary
AAV capsid and replication proteins in trans; and Ad helper
plasmid, which provides the necessary adenovirus proteins
for efficient AAV genome replication and gene expression.
By cotransfecting these three plasmids into human embry-
onic kidney (HEK) 293 cells, which supply the Ad E1a gene
product, rescue, replication, and packaging of the transgene
into AAV particles occurs (Fig. 2). The results of such a pack-

aging scheme are exclusively, AAV particles carrying the
recombinant DNA. Earlier production methods utilized
adenovirus rather than Ad plasmid DNA. Thus early rAAV
preparations contained significant amounts of contamina-
ting Ad, which had to be physically removed or inactivated.

Although the triple transfection method of vector prepa-
ration is perhaps the most robust and versatile, it is unwieldy
for large-scale vector production. Therefore, alternative strate-
gies for rAAV production have been developed that include
the use of hybrid vectors and packaging cell lines. In one
instance a cell line stably transfected with the AAV Rep/Cap
genes, is infected with two adenoviruses; one an E1b defec-
tive adenovirus, which induces Rep expression and supplies
helper functions, and the second, a hybrid virus containing
the rAAV vector genome cloned into the Ad E1 region [34].
Alternatively, a recombinant replication-defective herpes
simplex virus vector has been developed that carries both
AAV Rep and Cap genes [35]. Infection of cell lines containing
integrated rAAV genomes with this virus supplies both helper
functions and wild-type AAV functions, obviating the need
for plasmid transfection. Other advances in rAAV production
have led to the development of helper cell lines that also
obviate the need for DNA transfection. Hela cells have been
engineered to contain both AAV Rep and Cap genes, and
vector transgenes flanked by the AAV ITRs. Upon infection
with helper virus (eg, Ad) these cells can produce greater than
104 viral particles/cell [36]. The identification of the primary
AAV cellular attachment receptor has led to the establish-
ment of ligand affinity matrix chromatography methods for
rAAV purification [37]. These techniques obviate the need for
laborious CsCl2 gradients, which had previously been used
to purify vector, and yield significantly more virus of greater
purity than could be attained before.

Recombinant Adeno-associated 
Virus Infection
As with all viral vectors, AAV infection is reliant upon the
expression of a specific cellular receptor that allows viral
binding, attachment and entry into the target cell. In this
regard, the cellular entry pathway for AAV2 has recently
been characterized. Biochemical and genetic studies

Figure 1. Schematic of adeno-associated virus 
(AAV) genome. Top: genetic arrangement of 
AAV genome, showing Rep and Cap genes, 
three promoters (arrows), terminal repeats 
(black boxes) and single polyadenylation sig-
nal (grey box). Below: AAV transcripts, the 
reading frames for each mRNA are shown. 
VP3 is synthesized from the same mRNA as 
VP2 using an ACG start codon (+).
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strongly support the involvement of the heparan sulfate
proteoglycan (HSPG) as the primary attachment receptor
for this virus [38]. Fibroblast growth factor receptor [39]
and avb5 integrin [40], have also been implicated in either
viral attachment or entry.

Recently, using fluorophore-conjugated AAV, the AAV
cellular trafficking pathway has been elucidated [4••].
Similar to Ad, AAV enters cells via clathrin coated pits and
becomes encapsulated into vesicles. Acidification of these
endosomal vesicles allows the virus to escape and sub-
sequently translocate to the nucleus [4••]. Interestingly, AAV
accumulates at the nuclear membrane and although particles
can be detected within the nucleus 2 hours after infection,
the majority of virus remains outside the nucleus [4••]. This
has suggested that nuclear transport may be rate-limiting for
AAV infection of certain cell types. Indeed, a recent study
looking at the infection of polarized airway epithelial cells
suggests that one reason for the low AAV transduction
efficiency in these cells is aberrant endosomal processing and
nuclear trafficking of the viral particles [41]. Transduction of

murine fibroblasts by rAAV2 based vectors may also be
impeded by aberrant intracellular trafficking [42].

Before rAAV vectors can express their transgenes, the
single-stranded vector genome must be converted into a
double-stranded transcriptionally active form. Although
adenovirus infection accelerates this conversion, second-
strand synthesis can be a rate-limiting event for transgene
expression from rAAV vectors [43]. As a result, maximal
AAV-mediated gene expression is often delayed making
rAAV vectors less advantageous for certain paradigms of
gene transfer such as cancer. This delay, however, differs
between cell and tissue types. For instance, in muscle, max-
imal gene expression is not observed until at least 1 month
postinfection [44], whereas in neurons of the hippocampal
region of the brain, maximal gene expression is observed
within 1 week [45]. Moreover, in the brain, delay in max-
imal gene expression is dependent upon the brain region
as well as the cell type being transduced. Infection of the
striatal region of the brain with rAAV resulted in a delay of
maximal gene expression of at least 6 weeks [46].

As stated previously, genomic conversion of AAV vector
DNA and subsequent expression of the recombinant trans-
gene is facilitated by adenovirus co-infection. It appears that
this effect is mediated by the adenovirus E4 ORF6 protein
[41]. Further, there is evidence of an inhibitory cellular
protein that binds to a single stranded region within the AAV
ITRs (“D-sequence”) and prevents viral second strand
synthesis [47]. The activity of this protein, termed the single-
stranded D-sequence binding protein (ssD-BP), is regulated
by tyrosine phosphorylation. Inhibiting phosphorylation
leads to a significant increase in rAAV transgene expression.
Further studies have shown that the phosphorylation state of
ssD-BP directly correlates with the ability of rAAV to trans-
duce different cell types [48]. Recently, epidermal growth
factor receptor (EGF-R) activation was shown to be coupled
to the tyrosine phosphorylation of ssD-BP [49]. Such
insights into the mechanisms of AAV-mediated gene trans-
duction will ultimately lead to the increased effectiveness of
these vectors for therapeutic gene delivery.

Immune Responses to Recombinant 
Adeno-associated Virus
It is clear that humoral and cell-mediated immune
responses can limit the sustained expression from gene
therapy vectors. Initial studies investigating the immune
response against rAAV vectors in the muscle of mice showed
only mild and transient inflammation [2]. However, neu-
tralizing capsid antibodies were generated and could signifi-
cantly reduce the efficacy of vector re-administration.
Furthermore, secondary administration of rAAV into muscle
resulted in a 25-fold increase in antibody titer [2]. Other
studies have looked at cytotoxic T lymphocyte (CTL) and
antigen-presenting cell (APC) responses to rAAV vectors.
One study in mice showed that rAAV transduction did not
lead to any CTL response or CD4+ T-helper 1 activation, and

Figure 2. Recombinant AAV production. Transfection into human 
embryonic kidney (HEK) 293 cells using three plasmids containing the 
transgene of interest, Rep and Cap functions and essential adenoviral 
genes into HEK 293 cells. 103 particles/cell can be generated using 
this method. AAV—adeno-associated virus; Ad—adenovirus; 
ITR—inverted terminal repeat.
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only a slight CD4+ T-helper 2 IL-10 response was observed
against the vector transgene [50]. Extensive investigation
into rAAV directed muscle tissue transduction in mice has
revealed that rAAV vectors avoid CTL responses by nonpro-
ductive transduction of APCs [51]. More recently, however,
the cellular immune response to rAAV vectors has been
shown to be dependent upon the route of vector administra-
tion. Intraperitoneal, intravenous, and subcutaneous
administration of rAAV vectors expressing ovalbumin in
mice has been shown to produce CTL responses against
both transgene and vector, whereas intramuscular admini-
stration did not result in immune cell mobilization [52].

Latent infection with wt-AAV has been studied in rhesus
macaques, a species that is a natural host for AAV. In this
study three routes of administration were used; intranasal,
intramuscular and intravenous. All routes, except intranasal
administration resulted in humoral responses against AAV
capsid proteins, evidenced by a four-fold increase in neutral-
izing antibody titer [5]. Further, only primates co-infected
with wt-AAV and adenovirus developed CTL responses
against AAV capsid proteins, contrary to previous studies
performed in rodents.

The common immune response to rAAV vectors seems
to be the initial humoral response against the viral capsid.
The presence of neutralizing antibodies prevents re-adminis-
tration of vector. Interestingly, one study has shown that
over 80% of normal human subjects have anti-AAV antibod-
ies and that 18% have neutralizing antibodies [6]. Because
humans are natural hosts to AAV, the presence of neutraliz-
ing antibodies may impede efficient transduction during
clinical trials when using AAV vectors. However, the use of
alternative serotypes and selective modifications of AAV
capsid proteins may overcome this obstacle.

Gene Transfer Using Recombinant 
Adeno-associated Virus
Recombinant AAV has been shown to infect a large variety
of cell types both in vitro and in vivo. Skeletal muscle
tissue has been shown to be highly receptive to rAAV
infection and subsequent transgene expression. Initial
studies expressing the marker gene, LacZ, showed that
transgene expression could persist for up to 18 months in
this tissue. In the same study rAAV vectors encoding
erythropoietin (Epo) resulted in Epo secretion into the
circulation, which persisted for 32 weeks, with a concomi-
tant increase in erythrocytes for up to 40 weeks [42]. Such
success has led to the expression of potentially therapeutic
transgenes in skeletal muscle tissue, using rAAV vectors.
Muscular dystrophy is one disorder with potential for treat-
ment using rAAV vectors. Limb girdle muscular dystrophy
(LGMD) is caused by mutations in the d-sarcoglycan gene
(SG). Expression of SG from rAAV in a hamster model for
this disorder resulted in complete biochemical rescue [7].
More recently a single dose of rAAV vector expressing SG
resulted in nearly complete recovery of physiological func-

tion with more than 97% recovery in muscle strength and
substantial improvement of muscle histopathology [53].

Direct intramuscular injection of rAAV expressing human
factor IX into mice resulted in 200 to 350 ng/mL of the factor
IX in plasma, which persisted for up to 6 months [54].
Further, direct intramuscular injection of rAAV carrying the
canine factor IX cDNA showed persistence of transgenes for
up to 1 year in canines [55]. Subsequent clinical studies on
patients with hemophilia B using rAAV vectors expressing
human factor IX have shown promising results, and suggest
that severe hemophilia B could potentially be converted to a
milder form with rAAV therapy [56•].

Vascular endothelial and smooth muscle tissues have
also proved receptive to rAAV. Initial studies using rAAV
to direct expression of the marker gene LacZ demon-
strated transducing frequencies of 90%, as measured
using PCR in rat carotid arteries in vivo and showed no
evidence of disrupted vessel architecture [57]. Further,
primary cultures of rabbit, primate, and human smooth
muscle cells have been shown to be efficiently trans-
duced by rAAV vectors; in this same study intraluminal
delivery of rAAV vector to carotid arteries of atheroscler-
otic cynomolgus monkeys resulted in efficient delivery of
transgenes which could be enhanced by balloon injury
[58]. Further studies in porcine myocardium in vivo
showed that rAAV vectors are highly successful at trans-
ducing coronary vasculature with no apparent inflamma-
tion, resulting in transgene expression for up to 6
months [59]. Subsequent to these studies, antisense
expression of angiotensin type I receptor (AT1-R), using
rAAV in vivo has resulted in persistent reduction of AT1-R
expression for up to 8 weeks. The reduction of the
receptor was concomitant with a decrease in the angio-
tensin II-stimulated increase of intracellular calcium
[60]. Such studies suggest that rAAV based gene transfer
could prove useful in vascular disorders.

Cells of the central nervous system have also proven
extremely receptive to rAAV based gene transfer. Neurons
of the spinal cord have been shown to support gene
expression from rAAV for up to 15 weeks [8]. Studies
using AAV conjugated to a fluorphore demonstrated
selective neuronal uptake in the hippocampus, with very
little uptake in astrocytes [45]. Further investigation
has revealed that the globus pallidal region of the brain is
highly receptive to rAAV infection, and that certain
regions of the brain may contain astrocytes that are
amenable to rAAV infection [9].

Expression of potentially therapeutic transgenes from
rAAV in the brain has led to the reversal of disease charac-
teristics in numerous animal models. The expression of
glial derived neurotrophic factor (GDNF) using rAAV
injected into the substantia nigra resulted in the protec-
tion of neurons from the toxin 6-hydroxydodamine [10],
suggesting rAAV based vectors may prove useful in the
treatment of Parkinson’s disease. More recently, infection
with three rAAV vectors expressing tyrosine hydroxylase,
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aromatic-L-amino acid decarboxylase, and GTP cyclo-
hydrolase I, improved rotational behavior in a rodent
model of Parkinson’s disease. Such behavioral correction
persisted for up to 12 months [11]. In a seizure model,
antisense g-aminobutyric acid A receptor expression from
rAAV has been shown to increase seizure duration [12].
This study not only demonstrates the usefulness of rAAV
vectors for antisense treatment, but also underlies the
fact that rAAV infection does not detrimentally affect
the intricate receptor interactions of neurons during
synaptic signaling, an important point if disorders of the
central nervous system are to be considered as targets for
rAAV therapy.

Recent Developments
The success of rAAV as a gene vector system is due to the
viruses’ ability to readily infect cells expressing its native
receptors. However, certain cell types, including lung
epithelium are refractory for AAV infection even though they
express the appropriate receptors. One reason for this low
transduction efficiency is because of the polarity of these
cells, resulting in the expression of HSPG mainly on the
basal, nonexposed surface of these cells [13]. Other cell
types, including astrocytes in the brain, are also not readily
transduced by AAV2 [45]. Due to the refractive nature of
some cell types to AAV2 infection, new vectors have been
developed which are based upon different serotypes of AAV.
AAV1, AAV3, AAV4, AAV5 and AAV6 have now been
investigated for potential use as vectors for gene therapy
[14,15,16•,17•,18••]. Studies using AAV4 showed that this
serotype is capable of infecting a variety of cell types, and
that the cellular receptor for AAV4 is distinct from that of
AAV2 [14]. Also, AAV1 has been shown to be more efficient
at muscle transduction than AAV2 [15]. Use of AAV5 has
resulted in a 50-fold increase in airway epithelial transduc-
tion compared to AAV2 [16•]. In the brain both AAV4 and
AAV5 have been shown to efficiently transduce AAV2 refrac-
tory cells including astrocytes [17•]. These studies have great
importance to the development of AAV vectors for gene
transfer, and subsequent therapy. The benefits of using
alternative AAV serotypes include an increase in number of
therapeutic targets, and the avoidance of neutralizing capsid
antibodies on re-administration of rAAV vectors. Initial
proof of principle of the benefits of sero-switching has been
shown in lung epithelium, were transgene expression after
AAV6 administration was not affected by previous AAV2 or
AAV3 administration, suggesting cross-reacting capsid
antibodies were not generated after the initial infection of
vector [18••]. The ability of AAV serotypes to infect different
cell types strongly suggests that the receptor targets for these
serotypes are different from those already characterized for
AAV2. It will be of interest to elucidate the cellular binding
sites and subsequent intracellular trafficking mechanisms
associated with other AAV serotypes.

Another method for expanding vector tropism is to
engineer the AAV capsid to recognize alternative cellular
receptors. This would not only allow rAAV to infect new
cell types but it would also allow direct targeting to specific
populations of cells, a concept that is essential for efficient
and safe therapy. An early study inserted a 14 amino acid
sequence containing an RGD motif, responsible for
integrin binding into the AAV VP3 coding sequence. This
resulted in the retargeting of the mutant rAAV vectors to the
integrin receptor on receptor-bearing cell lines [19••].
More recently a comprehensive series of insertional muta-
tions spanning the rAAV capsid was made. In this study 93
mutants were generated, at 59 different sites within the
capsid gene. Most insertions gave rise to defective viruses,
however, some were infectious. Two mutants containing
serpin receptor binding peptide epitopes were shown to
have altered tropism [20••]. Such knowledge of potential
insertional sites within the AAV capsid proteins may
eventually lead to the widespread retargeting of rAAV
vectors to a plethora of cellular epitopes. Moreover, retar-
geting the viral particle may provide a way of improving
processing by altering the entry pathway of the virus.

Further advances in rAAV technology have allowed the
coding capacity of rAAV vectors to be dramatically increased.
Initial concern about rAAV was that it could carry no more
than 5 kb of genetic material. Allowing for promoter, trans-
gene and untranslated messenger RNA sequences, many
genetic constructs were in excess of rAAV capacity. Recent
work has allowed the doubling of rAAV vector capacity up to
10 kb. During the process of AAV integration the viral
genome undergoes concatemerization to form dimers.
Heteroconcatemers of two distinct rAAV have been demon-
strated in mouse muscle and liver in vivo. When two differ-
ent rAAV vectors, one containing a promoter element, and
the other containing a reporter gene construct without a
promoter were co-administered to mice, gene expression
was observed at 60% to 70% of that observed when both
elements were placed in a single vector [21••]. Further
studies have identified that this phenomenon is not isolated
to separate promoter and gene vectors, but genes themselves
can be separated and then rejoined by this concatemeriza-
tion process [61]. However, recently a study showed that the
AAV ITRs, which separate the expression constructs during
the concatemerization process, possess internal enhancer
activity [62]. In this study rAAV vectors containing the
reporter gene GFP, without any promoter element, were able
to express GFP in cells of the brain. The promoter activity
was mapped to the viral ITRs. Because the AAV terminal
repeats are an essential component of all rAAV vectors, this
promoter activity may cause problems with split rAAV
vectors. Furthermore, this activity may prevent tight tran-
scriptional control when using cell-type–specific promoters
or regulatory expression cassettes in the context of rAAV
vectors. Nevertheless, the ability to increase vector capacity
will provide an added advantage to rAAV vectors.
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Conclusions
Adeno-associated virus vectors possess many qualities that
make them attractive for a large portion of disorders being
presently tackled by gene therapists. The ability of AAV to
infect a large variety of cells allows this virus to be consid-
ered as a vector for many gene therapy paradigms. Further,
the recent use of different AAV serotypes has increased the
vector host range to encompass lung epithelium and astro-
cytes. More studies using different serotypes may identify
further targets. Its integrative and non-immunogenic prop-
erties allow AAV to be considered for disorders requiring
long-term genetic correction. Furthermore, rAAV can now
be directly targeted to predetermined cell types using
genetic capsid modifications, which will be crucial to a
number of gene transfer strategies in vivo. Moreover, recent
advances have potentially increased the coding capacity of
rAAV vectors from 5 kb to 10 kb. These advances in vector
technology cannot help but make a positive impact on the
field of gene therapy. Now that rAAV can be grown to
consistently high titers and purified efficiently using
chromatographic methods clinical trials can be realized
with the genuine hope that therapeutic benefits may
follow in the near future.
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