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Introduction
Since the first human gene transfer study reported by
Rosenberg et al. [1] in 1990, it has become apparent that,
despite recent clinical setbacks [2], this novel and rapidly
evolving technology is likely to play an important role in
the future treatment of conditions including cancer,
immune, hematologic, and metabolic disorders, and
cardiovascular disease [3,4••,5–8]. Today, there are
several major gene therapy journals, dozens of gene
therapy companies, hundreds of gene therapy investiga-
tional protocols, and thousands of patients involved in
clinical gene therapy trials. Under the umbrella of the
Human Genome Project, billions of dollars have been
invested in research, development, and utilization of this
technology [8,9•]. In aiming to achieve the optimal gene
therapy paradigm from a biologic perspective (Fig. 1),
due consideration must be given to the complex and

highly dynamic nature of this field, including its ethical
aspects and the momentous task of standardizing,
monitoring, and coordinating efforts between individu-
als, research and clinical departments, institutions,
government regulatory bodies, and the biotechnology
industry at large [10•].

Critical Issues in Cerebrovascular Gene Transfer
The goals of gene transfer for cerebrovascular disease are to
safely, specifically, and efficiently introduce genetic material
into the wall of a cerebral blood vessel in order to produce
a substance that favorably modulates vascular growth
or function, or both [5,11]. However, for successful gene
transfer in the cerebral circulation, particular technical diffi-
culties must first be addressed (Table 1). Following this, it is
envisaged that gene therapy may become a useful alternative
for the treatment of conditions such as atherosclerosis-
thrombosis, vasospasm, diabetes mellitus, and hyperten-
sion, all of which can affect the cerebral vasculature.

Choice of vector
The choice of biologic vehicle to deliver a recombinant
gene into an artery can be broadly divided between viral
versus nonviral versus hybrid vectors [5,9•,11,12]. Viral
vectors may be RNA viruses (retroviridae) such as mouse
Moloney leukemia virus (MoMLV) or lentiviruses
including human (HIV), bovine (BIV), and simian (SIV)
immunodeficiency viruses. DNA viral vectors, on the
other hand, include strains linked to the common cold
pathogen (adenovirus) or parvoviruses (such as adeno-
associated virus [AAV]). Nonviral vectors include naked
DNA (plasmids) and DNA-containing cationic lipid parti-
cles (liposomes). Hybrids such as plasmid-liposome [13]
and Sendai virus-liposome [14] conjugates have also been
developed and used in vascular gene transfer. Each of
these classes of vectors has a characteristic profile related
to DNA integration, efficiency of transduction, cell avidity,
and induced inflammatory response. In general, viral
vectors demonstrate appreciably greater gene transduction
efficiency than nonviral vectors [5,9,11]. Incorporation
into the host cell genome (referred to as DNA integration)
following entry into the nucleus is a feature of RNA
viruses such as MoMLV and HIV, and the DNA-containing
AAV, but not adenovirus (which remains epichromo-
somal). Although the benefit of DNA integration is

Gene transfer is a powerful, evolving technique that uses a 
biologic vehicle (eg, an engineered adenovirus) to introduce a 
specific gene of interest (ie, a recombinant gene) into a target 
tissue. This approach, which has considerable therapeutic 
potential, underlies the concept of gene therapy. Several 
studies have characterized the morphologic, biochemical, and 
functional effects of recombinant gene expression in animal 
and human cerebral arteries, and support the possibility of 
gene therapy for cerebrovascular disease. However, for 
successful integration into future clinical practice, key issues 
concerning vector safety, delivery methods, and transduction 
specificity need to be addressed. Alongside completion of the 
Human Genome Project, transfer of novel genes into the 
central nervous system is likely to impact greatly on our abil-
ity to favorably modify diseased human tissue. Knowledge of 
the fundamental concepts of cerebrovascular gene transfer is 
therefore useful to understanding both its molecular basis 
and potential clinical utility.
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relatively long-term recombinant gene expression, there is
an appreciably higher risk of insertional mutagenesis [5].
With regard to the type of cell infected by viruses, MoMLV
exclusively targets dividing cells (thereby limiting tissue
selection and in vivo applications), whereas lentiviruses
can transduce some, but not all, types of dividing and
nondividing cells. On the other hand, adenoviruses and
AAV have the broadest cell avidity known. The major
disadvantages of adenoviruses are their propensity to
induce a brisk inflammatory response in vivo, their immu-
nogenicity upon re-exposure, and relatively short-term
transgene expression [15–19]. The advent of newer
generation “gutted” adenoviruses (with minimal native
viral genome) is a move toward less immunogenic and
cytotoxic vectors [2,9•,12]. Hybrid vectors such as virus-
liposome conjugates may yield certain advantages in
terms of improved efficiency of gene transfer compared to
the use of liposomes alone, and reduced inflammatory
response compared with viruses alone [5,9•,14].

To date, the adenovirus (particularly serotype 5) remains
the predominant vector used in cerebrovascular gene
transfer studies (Table 2), most likely due to its broader cell
avidity, greater efficiency of transduction, and ability to be
generated in relatively high titers (ie, between 1011 and 1012

infectious or plaque-forming units (PFU)/mL) [4••,5,20].
As elaborated below, a considerable amount of information
has been acquired regarding this vector and its applications.
Briefly, for use in gene transfer, the adenoviral genome
is combined with a gene of interest whose expression
(ie, transcription followed by translation into a particular
protein) is driven by a promoter, frequently a cell-

nonspecific one derived from cytomegalovirus (CMV). The
adenovirus is rendered replication-incompetent through the
deletion of certain replication-associated genetic sequences
(eg, “early” regions E1 and E3) [11,20,21]. Entry of the
modified virus into target cells typically involves attachment
of the viral fiber knob to the host-cell plasmalemma facili-
tated by the coxsackie virus-adenovirus receptor (CAR) [22],
and is followed by av-integrin-mediated internalization
[23]. Once it has entered the cell, the adenovirus retains an
epichromosomal (nonintegrated) position in the nucleus,
and uses the biosynthetic machinery of the host to generate
the (recombinant) protein of interest. In experimental
models, expression of such proteins is detectable morpho-
logically, biochemically, and functionally (see below). It is
important to note that most cerebrovascular gene transfer
studies involving adenoviruses (Table 2) have utilized early
generation vectors that contain considerably more viral
genome than the more recent adeno-associated and gutted
vectors, thereby accounting for increased immunogenicity
and cytotoxicity (particularly from the biosynthesis of
peptides derived from nondeleted late-region adenoviral
genome sequences) [3,5,11,12,15–19].

Choice of gene
The pivotal role played by nitric oxide (NO) in cerebral
vasomotor function, and its implication in the pathogenesis
of a wide variety of cardiovascular diseases including
atherosclerosis-thrombosis, diabetes mellitus, vasospasm,
and hypertension, make this molecule a prime candidate for
potentially therapeutic gene transfer [4,11,24,25•,26–30].
This is certainly substantiated in the cerebrovascular gene
transfer literature, in which over half of the studies to date
have involved a vector encoding the endothelial isoform of
nitric oxide synthase (eNOS; Table 2). It should be noted that
the choice of eNOS over the inducible NOS isoform (iNOS)
is principally based on an association between iNOS activity
and cytotoxic free radical generation, paradoxically related to
overzealous production of NO by the latter isoform (for
further information pertaining to the choice of NOS iso-
forms in cardiovascular gene transfer, see Chen et al. [4••]).

Two other considerations about determining the most
appropriate choice of gene to be inserted into a vector should
be noted. First, NO may be only one of a number of impor-
tant  mediators  underly ing the  pathogenes is  of
cerebrovascular disease; other candidates include endothe-
lins, and altered enzymatic activities or byproducts of
cyclooxygenase, superoxide dismutase, and heme oxygenase
isoforms [11,26,31–33]. Therefore, gene transfer using
cDNAs encoding one or more of these proteins may need to
be considered in addition NOS gene transfer alone. Second,
relative insufficiency of enzymatic substrates or cofactors
following, eg, NOS gene transfer may potentially limit the
efficacy of this technique if uncorrected by exogenous means
[4••]. Further in vivo and ex vivo investigation along these
lines will aid in addressing these important issues, as will
information gleaned from the Human Genome Project and

Figure 1. Key biologic considerations for an optimal gene therapy 
paradigm include a disease of known molecular pathogenesis, 
with supportive animal and human tissue experimental models; an 
informed, consenting patient whose condition and treatment meets 
the rigorous criteria defined by government and institutional regula-
tory bodies; a clinically safe vector comprised of a suitable biologic 
agent (such as a minimal-genome adenovirus), a therapeutic gene of 
interest, and a regulatory element to control gene expression; a deliv-
ery device (eg, an effective catheter system) and appropriate mode of 
delivery (ie, ex vivo versus in vivo; intraoperative versus nonoperative; 
intraluminal versus periadventitial approach); efficient and tissue-
specific transduction; and a therapeutic benefit that must be 
objectively and clinically measurable.
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the use of gene microarrays to precisely identify genes differ-
entially expressed in normal versus diseased cerebral arteries.

Route of delivery
For cerebrovascular gene transfer in vivo, the route of
delivery of a vector may be either intravascular or periad-
ventitial [4••,11,34•,35–37]. Intravascular transduction
involves use of a catheter- or stent-based delivery device.
Appreciable limitations include the risk of vascular injury
during navigation or deployment of the device, the
need for temporary interruption of cerebral blood flow
(leading to cerebral ischemia) when using certain (non-
perfusion) catheters, and diffusion of vector distal to the
target vessel segment [11]. Periadventitial delivery, on
the other hand, may be a sound alternative for several
reasons: first, for a rapidly diffusible gas such as NO, this
route of delivery may be as effective as, if not more effec-
tive than, intraluminal delivery in terms of access of NO
to smooth muscle cells of the tunica media, somewhat
akin to physiological NO release from perivascular nitrer-
gic nerve endings [11,28]. Second, from the periadventi-
tial side, transduction is unhindered by the blood-brain
barrier and subendothelial elastic lamina. Third, choices
of periadventitial delivery include injection or infusion of
vector into the cerebrospinal fluid (CSF; ie, intrathecal
delivery), the efficacy of which has been repeatedly
demonstrated in animal experiments [11,24,38•,39–42],
or direct application of vector on cerebral arteries ex vivo
or during open surgery. Last, although adventitial fibro-
blasts do not express endogenous eNOS, they do express
receptors for NO-mediated agonists such as bradykinin

[31,43,44]. This is fortunate given that these cells are
primary targets for adenovirus entry and recombinant
eNOS synthesis, as demonstrated using immunoelectron
microscopy in animal cerebrovascular gene transfer
studies [4••,43] and, more recently, in a study involving
intact human cerebral arteries [34•].

Specificity and efficiency of transduction
Targeting vectors to specific cells or tissues remains a major
obstacle that needs to be overcome before clinical imple-
mentation of cerebrovascular gene transfer techniques is
achieved. Heistad et al. [11, 40] first reported the use of a
mechanical method, namely controlled animal head-tilt, to
assist in localizing vectors injected into the CSF via the
cisterna magna to arteries in the circle of Willis. Although
this technique is indeed helpful in this regard, it remains
relatively nonspecific and operator-dependent. A molecular
targeting technique using a cell-specific promoter such as
SM22a (selective for smooth muscle cells; cf. cell-nonspecific
CMV-derived promoters) has been demonstrated to be
effective in vitro [45], and may be useful in vivo via
selectively targeting vascular versus neuronal or glial tissue.
However, at present, there is no way to reliably distinguish
between smooth muscle cells in different cerebral arteries,
and therefore the question of being able to target specific
vascular territories remains unanswered using this approach.

With regard to gene transfer efficiency, it is apparent
from calculations based on ex vivo peripheral and
cerebrovascular gene transfer studies that the ratio of infec-
tious particles to target-tissue cells is in the order of 1000:1;
ie, there is a considerable overabundance of infectious

Table 1. Critical issues in adenovirus-mediated cerebrovascular gene transfer

Problem Solution

Disease pathogenesis Precise molecular basis unknown. Ongoing ex vivo and in vivo laboratory investigations. 
Gene of interest Choice of gene depends on pathophysiology; 

eg, endothelins, NOS, heme oxygenase, 
cyclooxygenase, superoxide dismutase.

Completed Human Genome Project and use of 
differential gene displays may aid in elucidating precise 
genetic basis of disease.

Regulatory element At present, cannot control recombinant gene 
expression in vivo.

Promising developments in oral drug-responsive 
regulatory elements. Transient gene expression may be 
helpful in a disease such as cerebral vasospasm whose 
time course is temporally limited.

Vector Remains immunogenic and cytotoxic (limiting 
gene expression).

Newer “gutted” vectors being developed with minimal 
adenoviral genome.

Target tissue Nonspecificity of tissue transduction remains 
a problem. 

Use of promoters such as SM22α (specific for smooth 
muscle) or direct mechanical techniques may aid in 
more specific targeting.

Route of delivery Limited efficacy of intravascular (catheter-
based) gene delivery systems; some require 
interruption of cerebral blood flow; 
adluminal transduction may be attenuated 
by blood-barrier and elastic lamina.

Improvement in catheter design; optimization of 
periadventitial delivery methods (cerebrospinal fluid 
infusion; endoscopic delivery).

Therapeutic benefit Currently no in vivo human model for 
cerebrovascular gene therapy.

Recent ex vivo human tissue studies helpful; ongoing 
development of safe and effective clinical grade vectors 
will facilitate future human trials.

NOS—nitric oxide synthase.
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particles. Despite this, experiments involving recombinant
b-galactosidase- or luciferase-based quantification of
adenovirus-mediated gene transfer efficiency demonstrate
somewhat poor transduction of arteries ex vivo, likely to be
even poorer in vivo [11]. To some extent, this phenomenon
may be attributable to a relative paucity of CAR in cerebral
arteries [11]. However, regardless of the underlying reasons,
development of techniques to greatly reduce the number of
infectious units delivered to blood vessels ex vivo, and
ultimately in vivo, is required in order to reduce the
likelihood and severity of an adverse response to the vector
due to the shear number of particles delivered to the host. In
this light, Toyoda et al. [42] have recently reported that
precipitation of adenovirus with calcium phosphate crystals
greatly increases the efficiency of vascular transduction both
ex vivo and in vivo in rabbits. Whether this important find-
ing holds true for human arteries remains to be determined.

Gene Transfer Studies in the Cerebral Vasculature
Following the pioneering study by Davidson et al. [46]
describing in vivo delivery of adenovirus into murine
CNS, Ooboshi et al. [40], using Sprague-Dawley rats,
reported the first in vivo adenovirus-mediated gene
transfer to cerebral arteries. Subsequently, numerous cere-
brovascular gene transfer studies have been carried out
(Table 2). Notably, 1) approximately one half of these
studies have been published in the last 18 months; 2)
transduced, intact arteries from numerous species have
been studied including, more recently, humans; 3) both
large-diameter (basilar; middle cerebral) and small-
diameter (pial; brainstem secondary) arteries have been
studied following gene transfer; 4) nearly all studies
involved adenoviral vectors; 5) LacZ or eNOS cDNA (or
both) were most frequently the genes of interest; 6)
numerous ex vivo and in vivo studies have been carried
out in animals, although to date the only cerebrovascular
gene transfer involving intact human arteries was carried
out ex vivo; and 7) it is apparent that the morphologic,
biochemical, and functional features of cerebrovascular
gene transfer have been extensively characterized.

Although it is beyond the scope of this review to
detail each and every cerebrovascular gene transfer study
carried out to date, we have selected four particular
studies [20,34•,38•,40] as being representative of the
general nature of the investigations carried out in this
field. As indicated above, Ooboshi et al. [40] carried
out the first gene transfer to cerebral arteries in vivo. In
their purely morphologic study, the investigators delivered
a replication-incompetent adenoviral vector (expressing
recombinant b-galactosidase) into the CSF of Sprague-
Dawley rats held in various anatomical positions. One to
7 days following injection, the transduced brains were
examined histochemically after appropriate staining. The
authors reported 1) distribution of recombinant protein
staining consistent with the anatomic position in which

the rat was held (an example of mechanical targeting); 2)
good transduction of the adventitial layer of large and
small cerebral arteries (consistent with perivascular gene
delivery); and 3) undetectable b-galactosidas expression by
day 7 following injection (ie, indicative of short-term
recombinant gene expression). In the first functional study
of transduced intracranial arteries, Chen et al. [20] reported
the morphologic, biochemical, and vasomotor effects of
ex vivo transduction of canine basilar artery with an
adenoviral vector expressing recombinant eNOS (Ade-
NOS). Their principal findings were 1) recombinant pro-
tein was expressed mainly in the adventitia and, to a lesser
extent, in the endothelium of transduced arteries
(consistent with ex vivo transduction); 2) expression of
recombinant eNOS in the arterial wall was associated with
beneficial vasomotor effects including significantly
enhanced relaxations to calcium ionophore A23187, a
compound whose receptor-independent relaxing actions
are NO-mediated, and reduced contractions to uridine
triphosphate; and 3) basal production of cyclic 3’5’-gua-
nosine monophosphate (cGMP; the second messenger for
NO-mediated signaling) was significantly increased in
AdeNOS-transduced arteries. Immediately following this
study, similar findings were reported by Chen et al. [38] in
vivo in dogs. Together, these studies indicated that cerebral
arterial tone could be favorably modulated by recombi-
nant eNOS expression in the vessl wall. That these findings
are reproducible in nonpostmortem human cerebral arter-
ies has been recently demonstrated by Khurana et al. [34•].
In our ex vivo study, intact pial arteries of outer diameter
500 to 1000 mm were freshly isolated from 30 patients
undergoing temporal lobectomy for intractable seizures.
These vessels were studied morphologically (by histology,
histochemistry, and electron microscopy) and function-
ally (by isometric force recording) before and 24 hours
after adenovirus-mediated recombinant LacZ and eNOS
gene transfer. The principal findings of our study follow. In
transduced human pial arteries, expression of recombinant
protein occurred mainly in the adventitial layer; the main
cellular target for virus entry and recombinant protein
synthesis following periadventitial transduction was the
adventitial fibroblast; and expression of recombinant
eNOS was associated with significantly augmented relax-
ations to the endogenous peptide, bradykinin (consistent
with an increased absolute amount of eNOS facilitating
the action of this NO-dependent agonist), and augmented
contractions to the NOS inhibitor, L-Ng-nitroarginine
methylester (L-NAME; consistent with an increased abso-
lute amount of eNOS being inhibited by this compound).

Conclusions
Although still in its infancy, gene transfer technology is likely
to become a feasible therapeutic approach to the
treatment of human diseases, including those affecting the
cerebral vasculature. Its three principal biologic objectives
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remain the construction of safer vectors, development of
more effective gene delivery techniques, and optimization of
conditions for specific and efficient cellular transduction. As
a measure of growing interest in cerebrovascular gene
transfer, of the studies carried out in the past 5 to 6 years,
approximately one half have in fact been published in the
last 18 months including, most recently, the first gene
transfer study in the human cerebral circulation. Together,
these investigations suggest that gene transfer may be benef-
icial in future clinical applications of gene therapy for the
treatment or prevention of cerebrovascular disease.
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