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Introduction
Apolipoprotein (apo) E is a 34 kD glycoprotein that is pre-
dominantly produced by hepatocytes and to a lesser extent
by a variety of other cell types, including macrophages. ApoE
is an important constituent of plasma lipoproteins such as
chylomicrons, very low-density lipoprotein (VLDL), and
their remnants. Three major isoforms of apoE are present in
the human population. ApoE3 (Cys112, Arg158) is the most
common isoform in humans with an allele frequency of
77% and is considered the wild type form. ApoE4 (Arg112,
Arg158) and apoE2 (Cys112, Cys158) both differ from
apoE3 by one amino acid substitution and have allele fre-
quencies of respectively 15% and 8% in the Caucasian pop-

ulation [1]. The apoE isoforms function differently in
lipoprotein metabolism. In healthy individuals, the pres-
ence of apoE4 has been associated with elevated plasma
cholesterol and low-density lipoprotein (LDL) levels,
whereas the presence of apoE2 has been associated with
decreased plasma cholesterol and LDL levels [2].

The best described function of apoE is its role as a ligand
for receptor-mediated uptake of chylomicron and VLDL
remnants by the liver [3]. Mutations in apoE which affect
the binding of apoE to the LDL receptor (LDLR) are associ-
ated with Familial Dysbetalipoproteinemia (FD), which is
characterized by elevated levels of remnants in the plasma
and premature atherosclerosis [4,5]. The majority of FD
patients are homozygous for the apoE2 allele; however, only
a minor fraction of apoE2 homozygotes develop FD. Appar-
ently, additional environmental and genetic factors are nec-
essary for expression of the disease. A minor fraction of FD
patients carry rare variant forms of apoE such as apoE3-
Leiden, which is inherited as a dominant trait [6].

The critical role of apoE in lipoprotein metabolism has
been confirmed by the severe hypercholesterolemia of apoE
knockout (apoE-/-) mice [7,8]. Even heterozygous deficient
apoE (apoE-/+) animals are susceptible to diet-induced
hyperlipidemia, indicating that the expression level of apoE
can be rate limiting for plasma clearance [9]. The apoE-/-
mice accumulate VLDL/LDL–sized particles in their plasma
that predominantly contain apoB48 and are enriched in
cholesterol and cholesterol ester and depleted in triglycer-
ides (TG) [7–9]. The apoE-/- mice were the first well-charac-
terized models to spontaneously develop atherosclerosis
without the need for feeding high-fat diets [7, 8]. The devel-
opment of atherosclerosis in these mice is highly similar to
the development of atherosclerosis in humans [10].

Shortly after the generation of apoE deficient mice,
transgenic mice were generated, overexpressing dominant
apoE mutations such as the apoE2 (Arg112, Cys 142) gene
[11] and the apoE3-Leiden gene [12]. Both transgenic
mouse models accumulated cholesterol and TG-rich rem-
nant lipoproteins in their plasma, very similar to FD

Transgenic and knockout mice have been instrumental in 
delineating the role of apolipoprotein (apo) E in lipoprotein 
metabolism and atherosclerosis. The severe hyper-
cholesterolemia and premature atherosclerosis of the apoE 
knockout mouse have been the starting point from which 
various physiologic processes have been identified 
in which apoE plays a critical role. These processes include 
1) very low density lipoprotein (VLDL) triglyceride pro-
duction; 2) lipoprotein lipase mediated triglyceride lipolysis; 
3) VLDL remnant clearance and intracellular processing; 
and 4) the efflux of cellular cholesterol. In this review we 
will discuss the recent insight in the role of apoE in these 
processes, which has been obtained using a variety 
of in vivo and in vitro approaches to modify apoE 
expression and function.
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patients carrying this mutation. Further analysis of the
apoE3 Leiden mice revealed that, high-fat feeding resulted
in premature atherosclerosis [13,14]. The apoE3Leiden
mice have a less severe phenotype than apoE-/- mice, but
are extremely sensitive to diet-induced hyperlipidemia
[15]. Mouse models, such as the apoE-/-, apoE2 (Arg112,
Cys 142) and apoE3 Leiden mice, have firmly established
the mouse as a model organism for the analysis of the lipo-
protein metabolism and atherosclerosis.

A variety of techniques have been applied to vary
expression and function of apoE in specific cell types in
vivo. These techniques include bone marrow transplanta-
tion to modulate gene expression in macrophages, and
adenovirus mediated gene transfer to modulate gene
expression in the liver. These approaches have revealed
additional insight in the complex role of apoE in lipopro-
tein metabolism and atherosclerosis. A schematic represen-
tation of the processes in which apoE is currently thought
to play a role is depicted in Figure 1. These processes will
be discussed separately below. As we hope to demonstrate,
the influence of apoE on the individual processes is depen-
dent both on the quality and quantity of the specific apoE
variant. Moreover, processes such as VLDL-TG secretion
and remnant clearance require an optimal amount of apoE
to function properly.

The Role of Apolipoprotein E in Very Low-
Density Lipoprotein Triglyceride Production
The role of apoE in VLDL-TG synthesis and secretion has
been addressed in apoE-/- mice, which accumulate large
amounts of TG in their livers, indicative of a defective TG
metabolism. In apoE-/- mice, the VLDL-TG secretion was

approximately 50% reduced as compared with wild type
control mice. However, the in vitro capacity of hepato-
cytes to synthesize TG was not affected by the presence or
absence of apoE [16••]. The reduction in the hepatic
VLDL-TG secretion rate was not due to the hyperlipi-
demia of the apoE-/- mice, but solely due to the absence
of apoE synthesis in the hepatocytes [16]. Nevertheless,
very low-level hepatocyte specific expression of a human
apoE3 transgene on an apoE-/- background, which was
incapable of restoring normolipidemia, resulted in a
near normalization of the VLDL-TG secretion rate
(Mensenkamp A, Unpublished observation). Moreover,
adenovirus mediated gene transfer of human apoE3 to
the livers of wild type and apoE-/- mice resulted in a gene
dose-dependent increase of the VLDL-TG secretion rate
[17•]. A similar effect has been observed by cross breed-
ing a high expressing human apoE3 transgenic mouse
onto an apoE-/- background [18•]. Thus, low-level hepa-
tocyte specific expression of apoE3 can rescue the
reduced VLDL-TG secretion rate as observed in apoE-/-
mice, whereas a high level of apoE3 expression further
increases the VLDL-TG secretion rate. Because the apoB
production rate of Apoe-/- mice is not different from that
of wild type mice (Mensenkamp A, unpublished observa-
tion), we speculate that apoE expression is a rate-deter-
mining factor in the intracellular assembly of TG into
VLDL particles.

A portion of the apoE that is utilized for the synthesis
and secretion of nascent VLDL particles may be recycled
from internalized apoE. It was demonstrated that the
intracellular fate of apoE containing lipoproteins such as
VLDL is different from that of LDL after internalization by
HepG2 cells [19]. Transport of internalized VLDL to the

Figure 1. Schematic 
overview of the 
processes in which 
apolipoprotein E has 
been shown to play 
a role. Numbers 
correspond to the 
sections discussed in 
this review.
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lysosomal compartment was retarded as compared with
LDL, leading to a higher rate of retroendocytosis.
Recently, recycling of apoE has been addressed by follow-
ing the intracellular fate of internalized apoE in vivo
[20••]. It was found that the amount of exogenous apoE
found in the Golgi fractions was increased more than 50-
fold as compared with exogenous apoB. The preferential
association of internalized apoE with the secretory appa-
ratus indicated that recycling of apoE is a physiologic
phenomenon in vivo.

The effects of apoE2 and apoE3Leiden expression on the
VLDL-TG secretion rate have been investigated by breeding
apoE2 and apoE3Leiden transgenic mice onto an apoE-/-
background [21]. Interestingly, apoE2 expression was capa-
ble of rescuing the VLDL-TG secretion rate of apoE-/- mice
to the wild type level, whereas APOE3Leiden was not. The
basis for this difference is currently under investigation.
Because apoE3Leiden mice accumulate apoE-containing
inclusions in the liver, one explanation may be that intracel-
lular processing of apoE3Leiden is defective.

The Role of Apolipoprotein E in Very Low-
Density Lipoprotein Triglyceride Lipolysis
It has long been suggested that the hypertriglyceridemia of
FD patients homozygous for apoE2 is due to defective lipo-
protein lipase (LPL) mediated chylomicron and VLDL-TG
lipolysis [22]. In vitro experiments have since shown that
VLDL containing a number of apoE variants is relatively
resistant to LPL-mediated TG lipolysis [23,24,25•]. Surpris-
ingly, the most common form of apoE, apoE3, also inhibits
LPL-mediated TG lipolysis in vitro in a dose-dependent
manner [17•,26•,27]. Hence, the inhibitory effect of apoE
on LPL mediated VLDL-TG lipolysis is related to the
increased apoE content of the VLDL particles and possibly
also the specific properties of the apoE variant.

The mechanism of the apoE-mediated inhibition of
VLDL-TG lipolysis has been addressed in transgenic
mice overexpressing apoE2 and apoE3 and in patients
with hypertriglyceridemia [18•,25•]. In all cases the
plasma TG levels correlated positively with plasma apoE
levels. However, increased plasma apoE and TG levels
were correlated with decreased VLDL-apoCII levels and
decreased rates of LPL mediated VLDL-TG lipolysis.
Since apoCII is an essential cofactor for LPL mediated
TG-lipolysis, it was hypothesized that the increased
amount of apoE on the VLDL particle resulted in dis-
placement of apoCII [18•, 25•].

The rare apoE variant apoE2 (Lys146ÆGln) gives rise to
particularly elevated TG levels in FD patients [28]. To inves-
tigate whether apoE2(146) has a variant-specific effect on
TG metabolism, adenovirus  vectors  carrying the
apoE2(146) and other apoE variants have been generated
(de Beer F, Unpublished observations). By injecting
apoE2(146) and apoE3 adenovirus into apoE-/- mice,
VLDL could be obtained with highly comparable lipid and

apolipoprotein composition. Interestingly, apoE2(146)
containing VLDL was more resistant to LPL-mediated TG
lipolysis in vitro as compared with apoE3 VLDL. Thus, in
addition to a quantitative effect, apoE(146) can have a
qualitative effect on LPL-mediated lipolysis.

Surprisingly, bone marrow transplantation from wild
type mice into apoE-/- mice that also lack the LDLR (apoE-
/-.LDLR-/- mice) leads to dramatically increased plasma
levels of mouse apoE without leading to hypertriglyceri-
demia [29•]. A similar plasma accumulation of human
apoE3 in Apoe-/-.LDLR-/- mice after adenovirus mediated
gene transfer of apoE3, does result in significant hypertrig-
lyceridemia, associated with VLDL that is resistant to LPL
mediated TG lipolysis [17•]. Apparently, human apoE3
and mouse apoE differ in their propensity to interfere with
VLDL-TG lipolysis. However, it should be noted that a
quantitative analysis of the effects of human apoE3 versus
mouse apoE is required to firmly establish this.

The Role of Apolipoprotein E in Hepatic 
Clearance of Very Low-Density Lipoprotein
Evidence to date indicates that two receptors are responsi-
ble for plasma clearance of chylomicron and VLDL rem-
nants via apoE; the LDL receptor (LDLR) and the LDL
receptor related protein (LRP). Although LDLR deficiency
in humans [30] and mice [31] does not lead to the accumu-
lation of remnant lipoproteins in the plasma, antibodies to
the LDLR interfere with chylomicron remnant removal in
mice [32]. Moreover, mutations in apoE that affect LDLR
binding lead to FD, characterized by plasma accumulation
of remnant lipoproteins [4]. Thus, the LDLR is involved in
remnant clearance.

The fact that LDLR deficiency does not lead to the accu-
mulation of remnants indicates that multiple receptors are
involved in remnant clearance. Definitive evidence for the
role of the LRP as an alternative route for remnant clear-
ance has recently been obtained by the generation of a con-
ditional knockout mouse model, in which the LRP gene
can be deleted from the liver at will [33••]. In the presence
of the endogenous LDLR, hepatic LRP deficiency did not
lead to the accumulation of lipoproteins in the circulation,
but did result in a compensatory up-regulation of the
LDLR gene and protein. However, absence of the LRP from
the liver of LDLR-/- mice did lead to the accumulation of
chylomicron and VLDL remnant sized lipoproteins in the
circulation. These data provide direct evidence for a role of
the LRP in remnant lipoprotein clearance and indicate that
the LDLR is the predominant clearance route for remnants.

The role of the LDLR in the clearance of lipoproteins
containing binding-defective apoE variants such as
apoE3Leiden and apoE2 has been investigated by cross
breeding apoE transgenic mice onto apoE-/- and LDLR-/-
backgounds [21,25•,34]. Decreased expression of the
LDLR in apoE2 and apoE3Leiden transgenic mice resulted
in a Ldlr gene dose-dependent increase of the hypercholes-
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terolemia. Moreover, overexpression of the LDLR in
APOE2 and APOE3Leiden transgenic mice using adenovi-
rus mediated gene transfer resulted in a near normalization
of plasma lipid levels (van dijk, Unpublished observa-
tions). Increased LDLR expression in apoE3Leiden mice
resulted in a much more efficient reduction of plasma cho-
lesterol level as compared with apoE2 mice. This is in
agreement with the poor in vitro binding capacity of
apoE2 to the LDLR as compared with apoeE3Leiden [21].
Moreover, the LDL receptor is the predominant pathway
for lipoprotein clearance even in the presence of apoE vari-
ants that poorly bind the LDLR.

The quantitative requirement for hepatic apoE expres-
sion for clearance via the LDLR and the LRP has been
addressed using adenovirus mediated gene transfer of apoE3
[17•]. By injecting increasing doses of an adenovirus encod-
ing human apoE3 into apoE-/- and apoE-/-.LDLR-/- mice, it
was found that the LDLR and the LRP have quite distinct
ligand requirements. The LDLR is capable of efficient rem-
nant clearance in a wide range of apoE3 expression levels,
whereas the LRP requires a relatively high apoE expression
level for efficient clearance, but is inhibited by excess apoE3
expression. The requirement for relatively high levels of
apoE3 on particles for high affinity binding to the LRP is in
agreement with in vitro data [35]. However, the lack of LRP
mediated clearance at very high apoE3 expression levels was
unexpected. Since excess apoE3 expression is associated
with a disturbance in VLDL-TG lipolysis, it was concluded
that the increased TG levels of the circulating particles were
causing the failure of LRP mediated clearance. At present it is
unclear what causes the inability of the LRP to clear TG-rich
particles. Liver perfusion studies and in vivo clearance stud-
ies have suggested that the size of the remnant particle is
also an important determinant in LRP recognition [36,37].
One can speculate that particle size and lipid composition
directly influence the conformation and accessibility of the
receptor-binding domain of apoE on the particle and thus
determine the affinity for the LRP.

In vivo uptake of remnants via the LRP has been postu-
lated to occur after enrichment with apoE that is bound to
cell surface heparan sulphate proteoglycans (HSPG) in the
space of Disse. The physiologic relevance of the so-called
secretion re-capture process [38–40] has recently been
addressed [29•]. Bone marrow transplantation of wild type
donor mice to apoE-/-.LDLR-/- recipient mice resulted in
macrophage specific expression of apoE and plasma apoE
levels up to 16-fold those of wild type mice. Nevertheless,
plasma cholesterol levels were not reduced as compared
with apoE-/-.LDLR-/- mice that received apoE-/- bone mar-
row. Adenovirus mediated gene transfer of the LDLR in the
apoE-/-.LDLR-/- mice reconstituted with wild type bone-
marrow did result in a dramatic reduction of the hypercho-
lesterolemia. Thus, it was concluded that expression of
apoE specifically in the hepatocytes is required for remnant
clearance via the LRP and not for clearance via the LDLR.
Because hepatocyte derived apoE is present at high levels

on the surfaces lining the space of Disse, this was inter-
preted as evidence for the secretion–recapture model for
LRP mediated clearance.

The interaction of remnant lipoproteins with HSPG is
an additional process in which apoE could play a role. The
binding of hepatocyte derived apoE to HSPG in the space
of Disse is required for the enrichment of remnants with
apoE and subsequent uptake via the LRP (the secretion–
recapture process). In addition, remnants bound to HSPG
via their apoE moieties can be internalized directly,
although this is a slow process [41]. Different apoE iso-
forms have different affinities for HSPG [42,43] and could
thus determine the efficiency of LRP mediated remnant
removal [44]. Both hepatic lipase (HL) and LPL have been
shown to function as bridging molecules, increasing the
uptake of lipoproteins in vitro. Whether apoE plays a direct
role in the stimulation of uptake by LPL and HL is still a
matter of controversy [45].

Interestingly, it was recently demonstrated that human
apoE3 functions somewhat differently from murine apoE
in the lipoprotein metabolism of the mouse. Using a
knock-in approach to replace the endogenous mouse apoE
gene with the human apoE3 gene, it was shown that
human apoE3 preferentially associated with larger lipopro-
teins such as chylomicron and VLDL remnants, whereas
mouse apoE preferentially associated with HDL [46•]. On
a high fat-diet a marked increase in plasma cholesterol
(but not plasma triglycerides) of apoE3 knock-in mice was
observed, associated with elevated plasma remnant levels.
The basis for the difference in the physiologic behavior of
human apoE3 versus mouse apoE remains to be eluci-
dated. However, this difference may extend to rat apoE,
which was shown to reduce plasma cholesterol levels in
LDLR-/- mice [47], in contrast to human apoE3 in LDLR-/-
mice (van Dijk, unpublished observations).

The Role of Apolipoprotein E in 
Atherosclerosis
Hyperlipidemia is one of the main driving forces in athero-
genesis. Increased plasma lipid levels lead to the accumula-
tion of lipoproteins in the vascular intima. These intimal
lipoproteins can be modified and activate surrounding
cells such as vascular endothelium and smooth muscle
cells (SMC). Via activated endothelium, circulating mono-
cytes will be recruited into the intima and differentiate into
macrophages. These macrophages will internalize the
(modified) lipoproteins and ultimately become foam cells.
Subsequent events in atherogenesis include SMC prolifera-
tion/migration, fibrous cap formation, cholesterol deposi-
tion, and necrosis [48].

A number of steps in the initiation of atherogenesis
could be modulated by apoE. Because apoE-/- mice readily
develop atherosclerosis, apoE is not required for entry of
lipoproteins into the intima. Similarly, the uptake of lipo-
proteins into macrophages apparently does not require
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apoE. However, these observations do not exclude the pos-
sibility that apoE can modulate both vessel wall entry and
macrophage uptake of lipoproteins. Similar conclusions
can be drawn for apoE specific lipoprotein receptors on the
vessel wall, such as the VLDL receptor (VLDLR) [49,50]
and the LDLR. Atherogenesis occurs both in VLDLR-/- mice
[51] and in LDLR-/- mice [31]. Again, although these recep-
tors are not required for atherogenesis, they may very well
modulate the process.

Because macrophage derived foam cells in atheroscle-
rotic lesions express apoE and increased apoE expression
enhanced cholesterol efflux from a macrophage cell line in
vitro, it was hypothesized that macrophage apoE might
play a direct role in the initiation and progression of ath-
erosclerosis [52]. To test this hypothesis in vivo, transgenic
mice have been generated expressing very low levels of
human apoE3 exclusively in macrophages [53]. These mice
were crossbred onto the apoE-/- background. As compared
with cholesterol matched apoE-/- mice, the macrophage-
specific apoE3. ApoE-/- mice showed a significant reduc-
tion in atherosclerosis. Thus, macrophage specific expres-
sion of apoE3 decreased atherogenesis of apoE-/- mice.
One underlying mechanism is the increased capacity of
plasma containing very low levels of apoE to accept and
esterify cellular cholesterol from cholesterol laden cells
[54•]. Thus, plasma apoE levels that did not result in a
reduction of plasma cholesterol levels did restore the
capacity of apoE deficient plasma to accept cholesterol.

The reverse experiment has been performed using bone
marrow transplantation of apoE-/- donor mice into wild
type recipient mice. After bone marrow transplantation, all
macrophages in the recipient mice lacked apoE expression,
which did not affect the plasma lipid values. In one set of
experiments this resulted in an approximately ten-fold
increase in atherosclerosis [55], whereas in a different set
of experiments this resulted in an approximately 50%
decrease in atherosclerosis [56••]. Currently, there is no
explanation for these contrasting observations. Various
parameters, including diet, timing of the diet, duration of
the experiment, and the sex of the animals differed
between both sets of experiments. However, it may be clear
that the role of apoE in atherogenesis is not straightfor-
ward. Additional processes in which apoE plays a role
could underlie the contrasting observations after bone
marrow transplantation. For example, apoE has been
shown to have antioxidant properties in vitro [57]. The oxi-
dative status of the animals may have differed between the
two sets of experiments and could thus modulate the
development of atherosclerosis.

Conclusions
As reviewed above, apoE plays a crucial role in a number of
major steps in the metabolism of VLDL and VLDL remnants,
and in the development of atherosclerosis. These individual

processes are indicated schematically in Figure 1: 1) in the
production of VLDL, functional apoE is necessary for the
addition of TG to nascent VLDL particles. A very low level of
hepatocyte specific apoE expression is required for this func-
tion. However, overexpression of apoE has an accelerating
effect on the VLDL-TG secretion rate; 2) the LPL mediated
lipolysis of VLDL-TG is affected by both apoE quantity as
well as apoE quality. Excess apoE and specific apoE variants
will decrease the efficiency of VLDL-TG lipolysis; 3) apoE
functions as a ligand for receptor mediated clearance of rem-
nants by the liver, which in mice is predominated by the
LDLR. Clearance via the LDLR can be modulated by muta-
tions in apoE, but is relatively insensitive to variations in the
apoE quantity and lipid composition of the particle. In com-
parison with the LDLR, clearance via the back-up receptor
LRP seems much more sensitive to apoE quantity and lipid
composition of the particle; 4) macrophage apoE is directly
involved in atherogenesis. In addition, a very low level of
plasma apoE significantly enhances the capacity of plasma
to accept cellular cholesterol.

Thus, in addition to the classic role of apoE as a ligand
for receptor mediated uptake by the liver, apoE plays a role
in virtually every additional step in the metabolism of
VLDL and VLDL remnants. Moreover, apoE seems to play a
direct role in atherogenesis. Although these observations
provide some insight into the net effects of variation in
apoE expression and function on lipoprotein metabolism
and atherosclerosis, the majority of observations lack mech-
anistic explanations. Thus, future research on apoE is aimed
at dissecting the precise role of apoE in the individual sub-
processes of the VLDL metabolism and atherogenesis.
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