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Abstract
Purpose of Review In this review, we explore the intriguing and evolving connections between bacterial extracellular mem-
brane nanovesicles (BEMNs) and atherosclerosis development, highlighting the evidence on molecular mechanisms by which 
BEMNs can promote the athero-inflammatory process that is central to the progression of atherosclerosis.
Recent Findings Atherosclerosis is a chronic inflammatory disease primarily driven by metabolic and lifestyle factors; 
however, some studies have suggested that bacterial infections may contribute to the development of both atherogenesis 
and inflammation in atherosclerotic lesions. In particular, the participation of BEMNs in atherosclerosis pathogenesis has 
attracted special attention.
Summary We provide some general insights into how the immune system responds to potential threats such as BEMNs 
during the development of atherosclerosis. A comprehensive understanding of contribution of BEMNs to atherosclerosis 
pathogenesis may lead to the development of targeted interventions for the prevention and treatment of the disease.

Keywords Atherosclerosis · Cardiovascular diseases · Inflammation · Bacterial extracellular membrane nanovesicles · 
Atherogenesis · Immune response

Introduction

Atherosclerosis is a chronic inflammatory disease character-
ized by the accumulation of low-density lipoprotein (LDL) 
cholesterol, fibrous elements, and calcification in the walls 
of large and medium-sized arteries. It is the leading cause 
of many cardiovascular diseases (CVDs), including coro-
nary heart disease, myocardial infarction, and stroke, which 
pose a huge burden to health and socioeconomic develop-
ment [1]. The pathogenesis of atherosclerosis is a complex 
and multifaceted process that involves various cellular and 
molecular events related to endothelial dysfunction and sub-
endothelial lipid build-up, resulting in chronic inflamma-
tion in the arterial intima [2]. Atherosclerosis is primarily 
driven by metabolic and lifestyle factors, like high levels of 
blood cholesterol, high blood pressure, smoking, and type 
2 diabetes mellitus; however, there is some evidence sug-
gesting that bacteria may contribute to the atherogenesis in 
atherosclerotic lesions. A direct link between atherosclerosis 
and atherosclerotic CVD (ASCVD) and infection has been 
established [3, 4••]. The presence of specific Helicobacter 
pylori (H. pylori) DNA in atherosclerotic lesions has been 
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demonstrated, providing biological evidence that this infec-
tion is a contributing factor to atherosclerosis pathophysiol-
ogy [5]. Moreover, the contribution of bacterial extracellular 
membrane nanovesicles (BEMNs) to atherosclerosis patho-
genesis attracted special attention. Highly invasive BEMNs 
are able to penetrate through the vascular endothelial cell 
(VEC) membrane, inducing inflammation and the develop-
ment of atherosclerosis [6]. Notably, BEMNs can trigger 
an inflammatory response independently of maternal bac-
teria [7] and are able to up-regulate the expression of vari-
ous cytokines and adhesion molecules, initiating a cascade 
of inflammatory reactions in the vascular wall [8]. In this 
review, we explore the intriguing and evolving connections 
between BEMNs and atherosclerosis development, high-
lighting the evidence on molecular mechanisms by which 
BEMNs can promote the athero-inflammatory process that is 
central to the progression of atherosclerosis. A comprehen-
sive understanding of BEMNs` contribution to atheroscle-
rosis pathogenesis may lead to the development of targeted 
interventions for the prevention and treatment of the disease.

Involvement of BEMNs in Atherosclerosis

BEMNs are nanosized (20–300 nm in diameter) spherical 
structures enclosed by a bilayer membrane formed from the 
mother cell envelope. They are secreted by almost all types 
of eukaryotic and prokaryotic cells, including both Gram-
negative and Gram-positive bacteria [9]. They are produced 
during all stages of natural bacterial growth both in vivo 
and in vitro and the ubiquitous production of BEMNs by 
bacteria is nowadays recognized as a novel bacterial secre-
tion system. Unlike bacterial cells, these membrane-bound 
nanostructures are incapable of independent replication [10]. 
BEMNs secreted by bacteria are exceedingly numerous with 
a cell-to-vesicle ratio of approximately 1:2000 [11]. Due 
to their small dimensions, BEMNs can carry and deliver 
a variety of compounds to host tissues in concentrated and 
protected forms. These compounds include outer membrane 
proteins, lipopolysaccharides (LPS), phospholipids, pepti-
doglycan, periplasmic, cytoplasmic and membrane-bound 
proteins, periplasmic components, nucleic acids (DNA, 
RNA), pathogen-associated molecular patterns (PAMPs), 
toxins, ion metabolites, and signaling molecules [12•, 13, 
14]. The evidence indicating that BEMNs exert proteolytic 
damage to VEC membrane to overcome biological barri-
ers and reach the sites not accessible to whole bacteria was 
reviewed [15]. A recent study has shown that BEMNs can 
also serve as vehicles for the delivery of virulence factors 
[9]. They deliver bacterial virulence factors deep into host 
tissues, promoting and dysregulating the immune response. 
Pathogenic BEMNs change host cell functions and trigger 
inflammatory reactions [16]. Therefore, BEMNs are perfect 
causative agents for a number of infectious and inflammatory 

diseases, including periodontitis, endocarditis, peptic ulcer 
disease, cystic fibrosis, gastric cancer, and atherosclerosis 
among others [15]. Several specific contributions of BEMNs 
to atherosclerosis are presented in the next subsections. It 
is important to note that research on BEMNs` contribution 
to atherosclerosis is ongoing, and the specific contributions 
may vary depending on the bacterial species and individual 
host factors.

BEMNs Derived from Helicobacter Pylori

H. pylori bacterium colonizes the gastric mucosa of over 
50% of the population around the world [17]. Its association 
with atherosclerosis represents one of the current paradigms 
of the disease pathogenesis [4••, 18]. Two most studied 
virulence factors of H. pylori such as cytotoxin-associated 
gene A (CagA) and vacuolating cytotoxin A (VacA) have 
been shown to influence the disease state [18, 19]. In par-
ticular, CagA-positive H. pylori infection contributes to the 
atherosclerosis progression by promoting atherogenesis and 
macrophage-derived foam cell formation via the release of 
CagA-containing BEMNs [18]. The mechanism of CagA 
action is associated with the inhibition the transcription of 
cholesterol removal transporters by suppressing the expres-
sion of transcription factors such as peroxisome prolifera-
tor-activated receptor gamma (PPAR-γ) and liver X recep-
tor alpha (LXR-α). In this way, CagA-associated BEMNs 
enhance foam cell formation. Another study suggested that 
H. pylori-derived BEMNs containing CagA can acceler-
ate atherosclerotic lesion formation through endothelium 
injury. It was demonstrated that these BEMNs activated 
reactive oxygen species (ROS)/nuclear factor κB (NF-κB) 
signaling pathway in human VECs, as well as promoted the 
expressions of proinflammatory cytokines such as interleu-
kin-6 (IL)-6 and tumor necrosis factor-alpha (TNF-α) and, 
thus, impaired vascular endothelial function [6].

BEMNs Derived from Escherichia Coli

Escherichia coli(E. coli) BEMNs are able to stimulate the 
inflammatory response in the vascular wall and, thereby, 
may contribute to ASCVD development. It was shown that 
E. coli BEMNs enhanced the expression of adhesion mol-
ecules and pro-inflammatory cytokines and promoted the 
leukocyte binding on VECs in vitro [20]. Notably, E. coli 
BEMNs were much more effective in inducing both inter-
cellular adhesion molecule-1 (ICAM-1) expression and 
leukocyte adhesion in comparison with free LPS and the 
Cytolysin A protein, a bacterial virulence factor. Besides, an 
in vivo study showed that BEMNs from E. coli can strongly 
upregulate functional cell adhesion molecules through the 
release of IL-8/C-X-C motif chemokine ligand 1 (CXCL1) 
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from endothelial cells involving NF-κB- and toll-like recep-
tors 4 (TLR4)-dependent mechanisms [21].

BEMNs Derived from Porphyromonas Gingivalis

Pathogenic Porphyromonas gingivalis (P. gingivalis) is not 
only a dominating cause of periodontitis but it was also found 
to be implicated in the development other diseases, including 
atherosclerosis [22]. BEMNs derived from periodontal P. 
gingivalis have been associated with atherosclerosis [23]. 
In fact, both P. gingivalis and its derived BEMNs are 
able to upregulate the expression of chemoattractant 
proteins, including CXCL1, CXCL2, and CXCL8, and 
endothelial-leukocyte adhesion molecule such as E-selectin; 
however, BEMNs are more potent activators of the innate 
inflammatory response related to atherogenesis [23]. BEMNs 
of P. gingivalis released from areas of periodontitis into the 
circulation can deliver virulence factors to the arterial intima 
and induce or promote foam cell formation in macrophages, 
and contribute to the development of atherosclerotic plaque 
[24]. Moreover, noticeable effects of P. gingivalis BEMNs 
on macrophage inflammatory phenotype, mitochondrial 
function, inflammasome activation, and pyroptotic cell death 
have been reported [25]. They stimulated macrophages to 
release more of TNF-α, IL-1β, IL-18, IL-12p70, IL-6, IL-10, 
interferon beta (IFN-β), and nitric oxide (NO) compared 
to maternal bacteria, which released much less of these 
mediators. P. gingivalis BEMNs induced a metabolism 
change from oxidative phosphorylation (OXPHOS) to 
glycolysis in macrophages, decreased mitochondrial oxygen 
intake, and increased ROS production. Stimulated with 
P. gingivalis  BEMNs, macrophages activate caspase-1, 
produce a large amounts of lactate dehydrogenase, and 
initiate a pyroptotic cell death. These effects may have potent 
implications for their roles in atherosclerosis. These BEMNs 
are able to stimulate VSMCs differentiation and calcification 
[26]. Calcification of VSMCs is linked to the atherosclerotic 
plaque rupture [27].

Furthermore, BEMNs derived from P. gingivalis can 
permeate into coronary vessels, providing the link between 
periodontitis and CVD [28]. A study reported that P. gin-
givalis BEMNs can mediate increased endothelial perme-
ability via a gingipain-dependent mechanism that involves 
proteolytic cleavage of endothelial adhesion molecule 
PECAM-1, responsible for maintaining vascular integrity 
[29]. Gingipains are major virulence factors produced 
by P. gingivalis. This mechanism significantly drives the 
risk of CVD. Gingipains` activity can also initiate distur-
bance of the complement system. They break down the 
C3, C4, and C5 complement components, as well as exert 
proteolytic destruction of the CD46 complement regulator, 
reducing bacterial elimination and increasing inflammation 

[30]. In particular, complement C5a has been found in ath-
erosclerotic lesions, which acts as a proatherogenic moiety, 
promoting apoptosis of VECs and VSMCs and inducing 
the production of the metalloproteases MMP1 and MMP9 
in human macrophages [31]. These metalloproteases play 
a major role in plaque destabilization and rupture. Gingi-
pains, proteases, and LPS from P. gingivalis, which pro-
voke the accumulation of C5a and antimicrobial peptides 
in atherosclerotic lesions, may putatively contribute to the 
progression of atherosclerosis [22].

Taken together, these data suggest a robust role that 
BEMNs play in the pathogenesis of atherosclerosis.

Molecular Attributes and Mechanisms 
Involved in the Innate Immune Response 
to BEMNs during the Development 
of Atherosclerosis

According to the current understanding, the innate 
immune system serves as the first barrier against microbial 
pathogens and executes its protection by non-specific 
immune defense and surveillance by innate immune cells. 
Innate immunity is essentially characterized by a variety 
of germline-encoded receptors, i.e., pattern recognition 
receptors (PRRs) with high affinity to tightly conserved 
motifs in pathogens, which typically recognize PAMPs, 
including BEMNs. During atherogenesis, BEMNs 
admittedly furnish inflammatory stimuli, creating a pro-
inflammatory milieu and stimulating immune responses 
at sites of atherosclerotic lesion formation. The scientific 
basis of inflammation in atherogenesis, demonstrating 
that inflammatory processes promote the initiation of 
atheroma in vascular walls, was discussed in the review 
of Libby, 2012 [32]. It was found that PRRs are involved 
in direct host-bacterial interactions through BEMNs [33]. 
A wide variety of PRRs, including TLRs, G-protein-
coupled receptors (GPCRs), and nucleotide-binding 
oligomerization domain (NOD)-like receptors (NLRs) are 
expressed on the surface of innate immune system cells, 
such as macrophages, monocytes, neutrophils, dendritic 
cells (DCs), natural killer (NK) cells, and mast cells. These 
cells play key roles in the early stages of atherosclerosis 
development [34]. The innate immune system exerts its 
antimicrobial defense function through other entities, 
including inflammasomes, nuclear factor κappa B (NF-
κB), cytokines, chemokines, and mitochondria, which are 
also activated during the development of atherosclerosis 
in response to BEMNs. The schematic representation of 
the innate immune response to BEMNs in atherosclerotic 
lesions is shown in Fig. 1.
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Toll‑like Receptors

TLRs are the major component of the innate immune sys-
tem, which plays a very important role in the development 
of the immune response [35]. These receptors are essentially 
characterized by an extracellular leucine-rich repeat domain, 
which mediates the recognition of PAMPs, a transmembrane 
domain in conjunction with its cytosolic or intracellular Toll/
IL-1R-like domains necessary for downstream signaling 
pathways [35]. In accordance to their localization, TLRs 
are largely divided into two subfamilies, cell surface TLRs 
and intracellular TLRs. Cell surface TLRs recognize micro-
bial membrane components, such as lipids, lipoproteins, and 
proteins. For example, TLR2, TLR1, and TLR6 recognize 
an array of PAMPs including lipoproteins, peptidogly-
cans, lipotechoic acids, zymosan, mannan, and tGPI-mucin 
[36]. Intracellular TLRs recognize nucleic acids derived 
from invading bacterial and viral pathogens [37]. TLR acti-
vation is accomplished via the myeloid differentiation fac-
tor 88 (MyD88) and the Toll/IL-1 receptor domain-related 
adaptor protein that induces interferon (TRIF) [38]. Experi-
mental studies have established an important role of MyD88 
and TRIF for TLR signaling, linking innate immunity and 
atherogenesis [39]. The effect of a TRIF deficiency on ath-
erosclerosis in LDL receptor knockout mice showed that 
MyD88 participates in atherogenesis. Moreover, MyD88 
deficiency leads to decreases in plaque size, LDL con-
tent, expression of proinflammatory genes, cytokines, and 
chemokines such as IL-12 and monocyte chemoattractant 
protein-1 [39]. Besides, MyD88 is involved in signaling of 
the IL-1 family of receptors and thus implicates TLRs in ath-
erosclerosis. The IL-1 receptor family is the main regulator 
of both atherogenesis and inflammation, particularly through 
the activity of proatherogenic IL-1β and IL-18 [40]. In addi-
tion, MyD88 and TRIF regulate the stimulation of NOD-, 
LRR- and pyrin domain-containing protein 3 (NLRP3) and 

IL-1β in response to TLR ligands. A study demonstrated that 
the innate immune system is activated via TLR2/4/MyD88/
TRIF/mitogen-activated protein kinases (MAPK)/NF-κB 
and NLRP3/caspase-1 activation pathways [41].

G‑Protein‑Coupled Receptors

GPCRs are another diverse family of cell-surface receptors 
of the innate immune system, which deals with microbial 
intruders and regulates inflammation and immunity. In par-
ticular, GPCRs are responsible for the immune responses of 
macrophages toward extracellular pathogens [42]. Monocyte 
accumulation in the atherosclerotic plaque can be promoted 
by the functional activity CX3CR1, also known as the frac-
talkine receptor of the GPCR family [43]. Decreased athero-
sclerosis in CX3CR1 deficient mice confirms the pivotal role 
of this receptor during atherogenesis [44]. In atherogenesis, 
monocytes recruited to the site of atherosclerotic lesion for-
mation turn into macrophages, accumulate lipids, and dis-
play morphological features of foam cells, which establish 
the foundation for plaque formation. The central role of 
macrophages in the initiation of atherosclerotic inflamma-
tion has been discussed [45]. Macrophages are professional 
phagocytes aimed at removing not only small particles and 
apoptotic cells, but also pathogens from the atherosclerotic 
tissue via phagocytosis. Moreover, the expression of C3a 
complement system receptors, members of the rhodopsin-
like GPCR family, is significantly increased during inflam-
mation, as demonstrated in human atherosclerotic coronary 
plaques [46]. The notion of complement as being mainly a 
host-defense system against microbial pathogens has been 
expanded markedly in the last decades [47]. An animal study 
showed that inhibition of C3a diminishes atherosclerosis, 
in particular, the C3a/C3a receptor axis mediates negative 
regulation of proinflammatory responses and macrophage 
polarization toward the anti-inflammatory phenotype [48].

Fig. 1  Innate immune system 
signaling triggered by BEMNs 
during atherosclerosis develop-
mens. Abbreviations: BEMNs, 
bacterial extracellular mem-
brane nanovesicles; GPCRs, 
G-protein-coupled receptors; 
MyD88, myeloid differentiation 
factor 88; MtDys, mitochondrial 
dysfunction; NF-kB, nuclear 
factor kappa B; NLR, nucleo-
tide-binding oligomerization 
domain (NOD)-like receptors; 
NLRP3, NOD-, LRR- and pyrin 
domain-containing protein 
3; PRRs, pattern recognition 
receptors; TLR, toll-like recep-
tors
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Nucleotide‑Binding Oligomerization Domain 
(NOD)‑like Receptors

One class of PRRs, NLRs, are intracellular cytoplasmic sen-
sors of PAMPs, including BEMN-containing PAMPs [49]. 
The most well-studied NLRs are NOD1 and NOD2, which 
can detect bacterial peptidoglycans and BEMNs [50]. In par-
ticular, NOD2 mediates bacterial clearance in the cytoplasm 
of myeloid cells and regulates innate immune responses via 
the detection of peptidoglycan derivatives diaminopimelic 
acid (DAP) through the recognition of bacterial cell wall 
fragment, the muramyl dipeptide (MDP) ligand, which is 
commonly distributed among both Gram positive and Gram 
negative bacteria [51]. It was demonstrated that NOD2-defi-
cient mice are prone to bacterial infection, including Staphy-
lococcus aureus [52], Chlamydophila pneumonia [53], H. 
pylori [54], and Bacillus anthracis [55]. This susceptibility 
is attributable to reduced proinflammatory cytokine produc-
tion and leukocyte recruitment [55]. MDP of NOD2 was 
found in the atherosclerotic plaque [56]. Therefore, NOD2 
may play some role as an immune regulator in atheroscle-
rosis. Atherosclerosis development can be enhanced by the 
presence of P. gingivalis infection, and this enhancement is 
pronounced in ApoE and NOD2 double-deficient mice to a 
greater extent [57]. When MDP is used to activate NOD2, 
levels of serum inflammatory cytokines are decreased [57]. 
The results of these studies suggest that NOD2 exhibits anti-
inflammatory and anti-atherogenic effects. Additionally, sev-
eral, members of the NOD-receptor family, such as NLRP1, 
NLRP3, and NLRC4 among others, have been reported to 
operate via inflammasomes, which couple up microbial and 
endogenous danger signals to caspase-1 activation [58]. The 
caspase-1 pathway is a major inflammatory pathway. For 
example, NOD receptors have been described to synergize 
with NLRP3 sensors that detect a broad range of microbial 
motifs to activate the NLRP3 inflammasomes [59].

Inflammasomes

Inflammasomes are assembled by PRRs following the rec-
ognition of pathogenic microorganisms and BEMNs in the 
cytosol of host cells, and they activate inflammatory cas-
pases to produce proinflammatory cytokines and generate 
pyroptosis, an inflammatory form of cell death [60]. The 
most studied inflammasome, the NLRP3 inflammasome, is 
the critical component of the innate immune system that gov-
erns the activation of the inflammatory caspase-1 pathway 
and the production of proinflammatory cytokines such as 
IL-1β and IL-18 in response to microbial infection [61]. 
A positive correlation of NLRP3 level with the severity of 
coronary atherosclerosis in patients with acute coronary dis-
ease was demonstrated [62]. In atherosclerosis, mature IL-1β 
induces an inflammatory response in ECs and promotes the 

accumulation of inflammatory cells in local vascular intima, 
which often occurs at the initiation of atherosclerosis [63]. 
Moreover, an experimental study showed that IL-1β plays 
a crucial role in the progression of bacteria-associated ath-
erosclerosis and IL-1β was regarded as a proatherogenic 
cytokine [64]. Produced mainly by monocytes/macrophages, 
IL-18 is critical for the secretion of interferon gamma (INF-
γ) and cytokines; it also enhances the cytolytic activity of 
NK cells, providing an important link between the innate 
and adaptive immune responses [65]. Several studies using 
transfected cell lines and NALP3 knockout mice showed that 
bacterial products, such as peptidoglycans, MDP, and bacte-
rial toxins, can activate the NALP3 inflammasome [66, 67]. 
Additionally, BEMNs containing Gram-negative bacterial 
cell wall component LPS can activate caspase-11 with the 
aid of guanylate binding proteins that are the regulators of 
BEMN-mediated inflammation [68].

A two-signal model for the NLRP3 inflammasome 
activation was described [61]. The priming signal (signal 
1) is delivered by microbial components or endogenous 
cytokines, leading to the activation of the NF-κB path-
way and consequently to the upregulation of the NLRP3 
inflammasome and pro-interleukin-1β (pro-IL-1β). Then, 
the NLRP3 inflammasome endures posttranslational modi-
fications, which enable its activation. The activating signal 
(signal 2) is represented by various stimuli including extra-
cellular adenosine triphosphate (ATP), pore-forming tox-
ins, RNA viruses, and particulate matter. Signal 2 is able 
to directly activate inflammasome assembly. In this way, 
NLRP3 regulates the pathogen (including BEMNs)-induced 
inflammation and fundamentally impacts the progression of 
bacteria-enhanced atherosclerosis [69].

Nuclear Factor κB

Transcription factor NF-κB plays a crucial role in regulating 
the expression of genes involved in inflammation, immune 
responses, and cell survival [70]. Activation of NF-κB is a 
key component of the body's defense mechanisms against 
microbial infections. Microbial components, such as bacte-
rial endotoxins such as LPS can activate NF-κB through the 
TLR signaling pathway [71]. At the early stages of athero-
sclerosis, the activation of NF-κB by microbial components 
can amplify the inflammatory response within the arterial 
walls, promoting the development and progression of ath-
erosclerosis [70]. The activation of NF-κB by microbial 
components can have several effects on the vascular wall: 
(i) Inflammation: NF-κB activation leads to the production 
of pro-inflammatory cytokines such as TNF-α and IL-1. 
These cytokines promote inflammation within the arterial 
walls, contributing to the progression of atherosclerosis. (ii) 
Recruitment of immune cells: NF-κB activation also results 
in the expression of adhesion molecules on the surface of 
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endothelial cells lining the arteries. These molecules help 
recruit immune cells such as monocytes to the site of injury 
in the arterial wall. (iii) Foam cell formation: Activated 
monocytes can infiltrate the arterial wall and differentiate 
into macrophages. These macrophages can engulf oxidized 
LDL (oxLDL) and become foam cells, which are a hallmark 
of atherosclerotic plaques. (iv) Smooth muscle cell prolif-
eration: NF-κB activation can stimulate the proliferation of 
vascular smooth muscle cells (VSMCs), contributing to the 
thickening of the arterial wall and the formation of athero-
sclerotic plaques.

Cytokines

Microbial components such as LPS from Gram-negative 
bacteria and other PAMPs can activate the innate immune 
system through monocytes and macrophages and trigger 
the release of various cytokines during atherosclerosis [72]. 
Cytokines are a subset of low-molecular weight proteins 
necessary for cell signaling. Involved in the immune cell 
activation, these proteins can further exacerbate inflam-
mation and contribute to atherosclerosis [73]. Generally, 
cytokines can be classified as pro- or anti-atherogenic. Clas-
sical atherogenic cytokines include interferon gamma (IFN-
γ) and TNF-α. IFN-γ promotes inflammatory response in 
macrophages, NK cells, and VSMCs and increases oxLDL 
accumulation and foam cell formation, as reviewed by Leon 
and Zuckerman, 2005 [74]. TNF-α promotes the expression 
of adhesion molecules and chemokines on VECs, which are 
critical in recruiting immune cells to the sites of inflamma-
tion within arterial walls [75]. Moreover, several mecha-
nisms were described that support the proatherogenic effects 
of TNF-α on the endothelium, including its role in oxidative 
stress, decreasing NO bioavailability, and increasing vascu-
lar permeability to circulating blood components and cells 
[76]. Atherosclerosis progression is associated with the local 
increase in TNF-α expression in atherosclerotic lesions [77]. 
Besides, IL-1α and IL-1β are pro-inflammatory cytokines, 
produced by monocytes and macrophages. Majority of 
innate immune cells express either IL-1 family cytokines, 
their receptors, or both, and hence almost all innate immune 
cells are influenced by IL-1 signaling. The IL-1 family 
cytokines include a number of proinflammatory cytokines 
(IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ) 
and one anti-inflammatory cytokine (IL-37) [78]. They 
are profoundly involved in regulation of both, the innate 
and the adaptive immune responses. Some experiments in 
murine models proven proatherogenic properties of IL-1α 
and IL-1β that are involved into the upregulation of adhe-
sion molecules expression by endothelial cells along with 
macrophage activation [79]. Together, IL-1RA possesses 
endogenous anti-inflammatory properties as a potent inhibi-
tor of IL-1 signaling pathways [80]. In atherosclerosis, the 

production of IL-1β is determined by the activation of the 
NLRP3 inflammasome, as described above. Also, IL-1β can 
affect the proliferation and migration of VSMCs [81]. Cells 
known to express IL-18 include macrophages, VECs, and 
VSMCs [82]. IL-18 aggravates atherosclerosis by enhance-
ment of an inflammatory response through an IFN-γ–related 
mechanism [82, 83]. In addition, IL-6, an early and key reg-
ulator of inflammation, has been long-identified in human 
atherosclerotic lesions [84]. It is synthesized by many cells 
of the arterial wall including macrophages, VSMCs, and 
VECs. The effects of IL-6 in atherosclerosis have been 
extensively reviewed [85]. In particular, IL-6, can promote 
LDL uptake in macrophages and stimulate VECs to secret 
adhesion molecules.

Chemokines

Microbial components can be recognized by TLR4 on 
immune cells, including macrophages and dendritic cells. 
This recognition is part of the innate immune system's 
response to pathogens. When microbial components acti-
vate TLR4, immune cells at the site of infection or injury 
produce chemokines. Chemokines are a group of small 
signaling proteins that play a crucial role in immune cell 
trafficking. Chemokines, which trigger directed chemotaxis 
of immune cells to the site of infection or tissue damage, 
include four subfamilies: CXC, CC, CX3C, and XC. When 
E. coli-derived BEMNs bind to TLR4, it initiates a signal-
ing cascade leading to the activation of NF-κB, recruiting 
neutrophils via the release of IL-8/CXCL1 from endothelial 
cells [21]. In the context of atherosclerosis, this means that 
immune cells like monocytes are attracted to the arterial 
wall, promoting the inflammatory response. Animal stud-
ies demonstrated that CXCL1 drives the development of 
inflammation early in atherosclerosis. CXCL1 can recruit 
monocytes and neutrophils to the atherosclerotic plaque via 
its receptor CXCR2 [86]. CXCL1 supports the development 
of atherosclerosis by controlling the migration, diffusion, 
and differentiation of macrophages. Macrophage CXCR2 
expression in atherosclerotic lesions is central in the pro-
gression of early atherosclerotic lesions, such as fatty streaks 
[87]. Distinct monocyte subsets also exploit CX3CR1 and 
CCR5 receptors to accumulate in atherosclerotic lesions 
[43]. Thus, chemokines and their receptors are the key fac-
tors in monocyte recruitment, which are able independently 
promote atherogenesis.

Mitochondria

The role of mitochondria as an innate immune signal-
ing platform triggered by microbial components in 
atherosclerosis is an interesting and evolving area of 
research. The release of microbial components could 
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potentially engage mitochondrial DAMP-mediated 
immune responses. When cells are stressed or damaged, 
mitochondria can become dysfunctional, leading to the 
release of mitochondrial DNA (mtDNA) and mitochon-
drial reactive oxygen species (mtROS) [88]. MtDNA, can 
activate PRRs of the innate immune system, and inflam-
masomes. The actions of PRRs in the development of 
pathogen-associated atherosclerosis were described in 
previous subsections. MtDNA has been suggested to act 
as a mitochondrial danger signal. Such a signal triggers 
the activation of the NLRP3 inflammasome [89]. Mito-
chondrial ROS can induce the assembly and activation of 
the NLRP3 inflammasome [90]. The exposure to toxins 
delivered by BEMNs is a significant cause of mitochon-
drial disruption. These nanovesicles from Neisseria gon-
orrhoeae, E. coli, and Pseudomonas aeruginosa induce 
mitochondrial apoptosis and activation of the NLRP3 
inflammasome [91]. This study showed that BEMN’s tox-
ins trigger inhibition of host protein synthesis, caspase-
11-mediated pyroptosis, and activation and release of 
IL-1β. In atherosclerosis, the endothelial lining of blood 
vessels can become damaged, allowing the infiltration 
of lipids and immune cells. These immune cells, when 
exposed to mitochondrial DAMPs, can become activated, 
further promoting inflammation within the atherosclerotic 
plaque. The deterioration of mitochondria leads to a high 
ROS production, oxidative stress, chronic inflammation, 
and atherosclerosis progression [92]. Thus, mitochondria 
can serve as innate immune signaling platforms in athero-
sclerosis through the release of mtDNA, which can acti-
vate innate immune responses in response to microbial 
components, carried by BEMNs.

Atherosclerosis and Anti‑Microbial Responses 
of Immune Cells(Fig. 2)

The vascular endothelium is a heterogeneous monolayer 
shaped by VECs, which lay the luminal side of all blood 
vessels, representing the first line of defense for molecules, 
cells, and pathogens circulating in the bloodstream [93]. It 
was found that BEMNs contribute the atherosclerotic plaque 
formation via endothelial damage [6]. At atherosclerotic 
lesion formation sites, damaged VECs release chemokines 
that trigger the inflammatory cascade and attract immune 
cells, such as monocytes. Monocytes are blood-derived 
mononuclear phagocytic cells that migrate around the body 
and can deliver rapid innate immune effector responses in 
response to microbial pathogen infections. Chemokines and 
their ligands as chemo-attractants that promote monocyte 
recruitment into arterial walls are explained above. Mono-
cytes, followed by their penetration to the vascular wall, dif-
ferentiate into macrophages or DCs according to the envi-
ronmental signals [94]. Their study showed that monocytes 
are required to be stimulated by granulocyte–macrophage 
colony-stimulating factor (GM-CSF) together with IL-4, in 
order to differentiate into DCs. Besides, both IFN-γ and mac-
rophage colony-stimulating factor (M-CSF) switch mono-
cyte differentiation to CD64 + macrophages. Macrophages 
and DCs play different roles in the immune response. While 
DCs induce specific immune responses, macrophages and 
specifically IFN-γ–activated macrophages have powerful 
antibacterial and antitumoral activities [94]. As a part of 
the innate immune system, monocytes also influence adap-
tive immune responses [94].

Furthermore, DCs are the antigen presenting cells 
(APCs); their properties have been reviewed in detail [95]. 
Their main function is to deliver pathogen signals to naïve 

Fig. 2  Cellular aspects of 
infection-enhanced atheroscle-
rosis. Abbreviations: BEMNs, 
bacterial extracellular mem-
brane nanovesicles; B Cell, 
B lymphocyte; CD4 + T cell, 
CD4 T (helper) lymphocyte; 
CD8 + T cell, CD8 T (cytotoxic) 
lymphocyte; IFN-γ, interferon 
gamma, IL, interleukin; M-CSF, 
macrophage colony-stimulating 
factor; TNF-α, tumor necrosis 
factor alpha; VECs, vascular 
endothelial cells
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T cells. Besides, DCs have phagocytic activity as imma-
ture cells and a great ability to generate cytokines as mature 
cells. During infection, DCs recognize PAMPs via TLRs and 
transmit the signal via MyD88. After they associate with a 
presentable antigen, become activated, and interact with T 
and B cells to initiate the adaptive immune response. There-
fore, DCs operate as intermediates between the innate and 
adaptive immune responses [96]. The role of vascular DCs 
in atherosclerosis was vigorously discussed [97].

Macrophages are the most significant cell type of innate 
immunity and the initial stages of atherosclerosis. In fact, 
they are multifunctional in atherogenesis [98]. First, mac-
rophages are equipped with an extensive repertoire of 
PRRs that make them highly efficient at phagocytosis and 
the production of cytokines and growth factors. Second, 
macrophages can also function as APCs and orchestrate the 
immune response. Third, macrophages engulf LDL-choles-
terol followed by foam cell formation and the development of 
atherosclerotic plaque. In the course of atherosclerosis pro-
gression, macrophages interact with VECs, VSMCs, T cells, 
and DCs [99]. Traditionally, activated macrophages have 
been divided into two groups: M1 and M2 macrophages. M1 
are classically activated macrophages by T helper 1 (Th1) 
cytokines such as TNF-α and IFN-γ and/or by other stimuli 
such as microbial LPS, participating in the elimination of 
pathogens, activating the nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase system, and, in turn, generat-
ing ROS [98, 100]. Aerobic glycolysis is also induced in 
M1 macrophages upon activation, which enhances their 
proinflammatory activity [101]. M1 macrophages are pro-
inflammatory macrophages, which have been found both in 
human and mouse atherosclerotic plaques, and their pro-
duction of the pro-inflammatory mediators is believed to 
maintain local inflammation and the degradation of extracel-
lular matrix components, leading to atherosclerosis progres-
sion [102]. Pro-inflammatory M1 macrophages are usually 
activated through TLR4 or NF-κB pathways [94]. These 
are the mechanisms that M1 macrophages use for bacte-
rial killing. The alternatively activated M2 macrophages 
are induced by Th2 cytokines, such as IL-4, IL-10, IL-13, 
or IL-1β [103]. They play a preventative role in the pro-
gression of the disease since they reduce inflammation and 
OXPHOS. M2 macrophages show increased ATP production 
by means of electron transport chain OXPHOS. Also, M2 
macrophages have lower levels of glycolysis, higher levels 
of fatty acid oxidation, and increased arginine metabolism. 
These M2 mechanisms reduce inflammation, increase lipid 
degradation, inhibit foam cell formation, and therefore likely 
slow the progression of atherosclerosis [104].

Promoting pathogen elimination from the host, mast 
cells interact with various cell types, including T-cells 
[105], macrophages [106], neutrophils [107], DCs 
[108], SMCs [109], and ECs [110]. These cells mount 

innate immune responses and play critical roles in the 
initiation of atherosclerosis. Mast cells are able to sense 
pathogens through the expression of TLRs and specific Fc 
receptors. The stimulation of rodent mast cells by LPS via 
TLR4 induced cytokine production without their degran-
ulation [111]. Also, mast cells can be activated through 
TLRs with subsequent degranulation. The stimulation 
through TLR2 by peptidoglycan lead to both degranulation 
and secretion of cytokines [111]. Owing to the upregula-
tion of FcγRI and FcϵRI receptors, mast cells can bind 
both IgG and IgE immunoglobulins and become sensitized 
to host antigens [112]. It was shown that stimulation of 
TLRs and Fc receptors can have synergistic effects on pro-
duction of inflammatory cytokines by mast cells, augment-
ing cytokine transcription via their joint action resulting 
in the increase in activity of MAPKs [113]. In the arterial 
intima, at the atherogenesis sites, mast cells are activated 
to degranulate, and in this way induced to release a large 
quantity of preformed inflammatory mediators, such as 
cytokines, chemokines, histamine, proteases, prostaglan-
dins, and leukotrienes [114]. Mast cells are effector cells 
that initiate inflammatory responses and have a proathero-
genic effect during atherogenesis [114].

T cells are the first cells among others recruited within the 
atheroma [115]. They are important participants in innate 
and adaptive immune defense mechanisms safeguarding 
against pathogens such as viruses and bacteria [116]. Ath-
erosclerotic lesions encompass helper  (CD4+) and cytotoxic 
 (CD8+) T cells that respond to peptides from bacterial path-
ogens [117]. Pathogens such as human immunodeficiency 
virus and cytomegalovirus were accepted as candidate anti-
gens relevant in atherosclerosis [118]. Such interactions 
result in the secretion of a large amount of cytokines [119]. 
 CD8+ T cells can control infections, by responding to the 
following cytokines: IL-2, IL-12, IL-15, and IL-18 that 
promote  CD8+ T cell responses to pathogens in an innate 
fashion and production of IFN-γ [120].

As a part of adaptive immune response, naïve  CD8+ T 
cells primarily interact through the T cell receptor (TCR) 
with a specific antigen presented via the major histocompat-
ibility complex class I (MHC I) or human leukocyte antigen 
on the surface of APCs such as dendritic cells. Activated 
 CD8+ T cells undergo differentiation into effector T cells 
and clonal expansion. The activation and expansion of T 
cells is closely regulated to ensure an effective response to 
infection and preventing immunopathology [121]. Abun-
dant evidence indicates that cytotoxic T cells play central 
roles in the pathology of atherosclerosis through cytotoxic 
mechanisms contributing to atheroma development and pro-
gression [122]. Atherosclerosis-associated viral antigens are 
able to activate, reactivate, and differentiate  CD8+ T cells 
to elaborate antigen-specific cytotoxic T cell-mediated 
responses [123].
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In order to develop into effector populations that fight 
microbial infections, naive  CD4+ T cells require to recognize 
peptide antigens presented by MHC class II molecules on 
activated APCs. PRR-mediated signaling activates APCs to 
enhance their expression of MHC class II molecules, co-
stimulatory molecules such as CD80 and CD86, and pro-
inflammatory cytokines, such as type I interferon, TNF-α, 
IL-1, IL-6, and IL-12 [124]. Another activation pathway 
is carried out by means of B7 proteins, which are recog-
nized by co-receptor such as CD28. The expression of B7 
proteins on the surface of APCs is provoked by pathogens 
[125]. Activated  CD4+ T cells undergo differentiation into 
Th subsets. They are generated under the distinct influence 
of cytokine environment: Th1 (IFN-γ), Th2 (IL-4/IL-5/
IL-13), Th17 (IL-17/IL-22), follicular (Tfh) (IL-21), and 
regulatory Treg (IL-10, TGF-β, IL-35) [126]. Helper func-
tion of  CD4+ T cells is to promote antibody production by 
B cells during pathogen exposure [124]. It is important to 
note that the subset of  CD4+ Th1 cells is pro-atherogenic. 
They promote atherosclerosis development by secretion of 
pro-inflammatory cytokines, such as IFN-γ, TNF-α, IL-2, 
IL-3, which sustains chronic inflammation and foam cells 
formation [127]. Recent review summarized the evidence 
on the molecular mechanisms by which Th1 cells contribute 
to atherosclerosis [128]. On the contrary, Treg cells display 
anti-atherogenic activities by inhibiting ongoing macrophage 
and T-cell-mediated proinflammatory responses [129], while 
the role of Th2 cells remains under discussion [117].

During the development of the atherosclerotic lesion, B 
cells can play both atheroprotective and pro-atherogenic 
roles by executing their main effector functions, such as anti-
body production, secretion of cytokines, and antigen presen-
tation/interaction with T cells, as discussed in [130]. These 
functions depend on the B cell subset and their activation 
state. Naïve B cells become activated by detecting antigens 
via B cell receptors (BCRs), resulting in their differentia-
tion into antibody-secreting plasma cells. This process is 
supported by Tfh cells and results in the release of vari-
ous classes of immunoglobulins. Apparently, TLRs are also 
involved in B cell activation and differentiation. The involve-
ment of both BCRs and TLRs leads to quicker induction of 
B cells. In atherosclerosis, dual TLR and BCR signaling 
allows B cells to be a part of the innate and adaptive immune 
responses [130, 131].

Perspective Therapeutic Concepts 
of Infection‑Enhanced Atherosclerosis

Bacteria are known to aggravate atherosclerosis. In this 
regard, anti-atherosclerotic therapy can be aimed at the 
immune response caused by pathogenic BEMNs and the 
elimination of vascular inflammation. For this, several 
approaches can be suggested, which have been identified in 

pre-clinical settings, but the efficacy, side effects, and opti-
mal dosage of potential drugs need to be verified in clinical 
trials.

The interruption of PRR signaling may be a reliable way 
to alleviate ASCVD. The suppression of TLR signaling 
using inhibitors can be an important target. For example, 
MyD88 inhibitors may be advantageous in this regard [132]. 
Because of the pivotal role of NF-κB dysregulation in ath-
erosclerosis, this signaling pathway can become a highly 
potential therapeutic target for its treatment [133]. Also, the 
NLRP3-related pathway is a promising pharmacological tar-
get to attenuate ASCVD, reviewed in [134]. Several studies 
have emphasized potential pharmacological inhibitors in 
different sites of the NLRP3’s complex signaling cascade, 
including 1) inhibition of upstream signaling, 2) impedi-
ment of the NLRP3 assembly, and 3) neutralization of the 
inflammatory cytokines that are released when the inflam-
masome is activated [135–137]. The notable role of the 
complement system in BEMNs-associated atherosclerosis 
development represents its potential for ASCVD treatment. 
It was shown that pexelizumab, a humanized monoclonal 
antibody against C5, significantly reduced rates of acute 
myocardial infarction [138]. A great deal of evidence sug-
gests that targeting cytokines can be a part of atherosclerosis 
treatment [139]. For example, an early study using murine 
models of atherosclerosis proposed that blocking the activ-
ity of IL-1 and TNF-α and -β should be considered as a 
therapeutic option for the disease [140]. Numerous options 
for targeting chemokines have been investigated experimen-
tally. An in vivo study using a hypercholesterolemic mouse 
model reported that blocking a chemokine pathway with 
the CC chemokine antagonist Met-RANTES can diminish 
the progression of atherosclerosis [141]. As an antagonist 
for the chemokine receptors CCR5 and CXCR3, TAK-779, 
can reduce the size of the atherosclerotic lesion and the 
content of Th1 cells in plaques [142]. Other potential anti-
chemokine drugs, which showed anti-atherosclerotic effects, 
were also identified. Some examples of these drugs are listed 
in Table 1.

As for the cellular aspect of vascular inflammation, inhi-
bition of macrophage activation can be an effective concept 
for ASCVD treatment. Animal studies suggested that the 
therapeutic strategies of switching macrophage phenotypes 
can aid in plaque regression [149]. In this study, the sig-
nal transducer and activator of transcription 3/6 (STAT3/6) 
altered macrophage M1 phenotype to M2 resulting in ath-
erosclerotic plaque stabilization. Moreover, an independent 
group of researchers proposed that cholesterol-lowering 
drugs such as statins and proprotein convertase subtillisin/
kexin type 9 (PCSK9) inhibitors are able to reduce athero-
sclerosis [150]. This might not only be because of the effi-
cacy of these drugs in lipid-lowering but also, they might 
be playing a role in switching the macrophage phenotype 
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and promoting plaque regression. This concept needs further 
exploration with advanced technologies under treated condi-
tions. In addition, therapeutic suppression of Th1 cell activ-
ity can be a promising strategy to decrease atherosclerosis. 
This could be achieved by inhibiting the differentiation of 
naive T cells into Th1 cells or by inhibiting the effector func-
tions of Th1 cells. Blocking the activity of IL-12 or IL-18 
can limit the differentiation of Th1 cells [151].

Conclusion Remarks

The investigation into the role of BEMNs in atherosclero-
sis has shed light on a potential and previously overlooked 
trigger in its complex pathogenesis. Through our compre-
hensive analysis of the available literature, we have sum-
marized compelling evidence supporting the involvement of 
these nanovesicles in the atherosclerotic process. The studies 
presented in this review underscore the intricate interplay 
between bacterial components such as BEMNs and the for-
mation of atherosclerotic lesions. Several promising thera-
peutic concepts for infection-enhanced atherosclerosis have 
been suggested that can be tested in human clinical trials.

Future Perspectives

While the link between microbial components and ath-
erosclerosis is not fully established, it is an interest-
ing avenue for further exploration in understanding the 
disease's complex pathophysiology. In this regard, it is 
worth exploring whether pathogenic microbes that enter 
a cell are capable of activating the inflammasome not via 
PAMPs, but through modified cellular metabolism and 
mitochondrial activity. There is an example that indicates 

this possibility. An in vivo study revealed that the NLRP3 
inflammasome mediates innate immunity to the influenza 
A virus by identifying its RNA [152]. This was estab-
lished to be a result of the influenza virus M2 protein 
action, a proton-selective ion channel, recognized to 
efficiently reduce the mitochondrial membrane potential 
[153]. Mitochondrial membrane potential is crucial for 
mitochondrial antiviral signaling (MAVS)-mediated anti-
viral signaling [154] and thus the physiological function 
of mitochondria is implicated in innate antiviral immu-
nity. High levels of mtROS provoke oligomerization of 
MAVS with subsequent activation of NF-κB to regulate 
host defence and inflammation [155].
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Table 1  Examples of anti-chemokine drugs with anti-atherosclerotic effects

*Approved by the United States Food and Drug Administration
RRRAbbreviations: G-CSF, granulocyte colony stimulating factor; CXCL1/2, chemokine (C-X-C motif) ligand 1/2; EPCs, endothelial progeni-
tor cells; ICAM-1, intercellular adhesion molecule-1; IL-17A, Interleukin 17A; MCP-1, monocyte chemoattractant protein-1; MIF, macrophage 
migration inhibitory factor; TNF-α, tumor necrosis factor -alpha; VCAM-1, vascular cell adhesion molecule-1

Drug Mechanisms of action Anti-atherosclerotic effects References

[44AANA47]-RANTES Interference with chemokine oligomerization and 
chemokine/heparin interactions

Impaired leukocyte recruitment into plaques and 
reduced inflammation

[143]

Evasin-3 Binding and neutralization of CXCL1 and CXCL2 Reduced neutrophilic inflammation [144]
Gremlin-1 Inhibition of macrophage MIF Reduced macrophage formation [145]
Maraviroc* Inhibition of macrophage infiltration; downregula-

tion of the local expression of adhesion molecules, 
such as VCAM-1, ICAM-1, MCP-1, and IL–17A; 
reduction of TNF-α

Reduced inflammatory cell recruitment and mac-
rophage infiltration; reversed the proinflammatory 
profile and atherogenesis

[146]

Mozobil* CXCR4 antagonist; mobilizing G-CSF Increased circulating EPCs (moderate and long-term 
increase in EPC availability supported by G-CSF)

[147]

CKEY Disruption of proinflammatory CCL5–CXCL4 Attenuated monocyte recruitment into plaques [148]
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