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Abstract
Purpose of Review The objective of this review is to shed light on the transformative potential of machine learning (ML) 
in coronary angiography. We aim to understand existing developments in using ML for coronary angiography and discuss 
broader implications for the future of coronary angiography and cardiovascular medicine.
Recent Findings The developments in invasive and noninvasive imaging have revolutionized diagnosis and treatment of 
coronary artery disease (CAD). However, CAD remains underdiagnosed and undertreated. ML has emerged as a powerful 
tool to further improve image analysis, hemodynamic assessment, lesion detection, and predictive modeling. These advance-
ments have enabled more accurate identification of CAD, streamlined workflows, reduced the need for invasive diagnostic 
procedures, and improved the diagnostic value of invasive procedures when they are needed. Further integration of ML with 
coronary angiography will advance the prevention, diagnosis, and treatment of CAD.
Summary The integration of ML with coronary angiography is ushering in a new era in cardiovascular medicine. We high-
light five use cases to leverage ML in coronary angiography: (1) improvement of quality and efficacy, (2) characterization of 
plaque, (3) hemodynamic assessment, (4) prediction of future outcomes, and (5) diagnosis of non-atherosclerotic coronary 
disease.
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Introduction

Coronary artery disease (CAD) remains a leading cause of 
morbidity and mortality despite remarkable advances in 
invasive and noninvasive diagnostic modalities [1]. A com-
prehensive evaluation of CAD involves assessing the sever-
ity, burden, and characteristics of coronary atherosclerosis, 

with (i) noninvasive modalities such as computed coronary 
tomography angiography (CCTA) and/or (ii) catheterization 
with invasive coronary angiography (ICA) and sometimes 
intravascular imaging. A comprehensive understanding of 
CAD requires not only an identification of its presence but 
also an assessment of the coronary burden which represents 
the extent and severity of coronary atherosclerosis. Further-
more, the specific characteristics of plaques, such as their 
composition, vulnerability to rupture, and location, play 
crucial roles in translating to different clinical outcomes. 
Characterization of plaque burden and features might lead to 
potential therapeutic nuances and variability in prognostica-
tion [2]. In addition to this anatomic evaluation of CAD, a 
physiologic evaluation of the flow-limiting effects of a ste-
nosis in a coronary artery is often necessary and constitutes 
the main driver for revascularization decisions. Physiologic 
evaluations can also be performed (i) noninvasively such as 
with myocardial perfusion stress testing and fractional flow 
reserve-computed tomography (FFR-CT) or (ii) invasively 
using pressure-wire indices such as fractional flow reserve 
(FFR) or non-hyperemic pressure wave ratios (iFR, DFR, 
RFR, etc.) [3–5].
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Although CCTA and ICA lie on different ends of the 
invasiveness spectrum, they are the two most important 
modalities for anatomic evaluation of CAD. As a nonin-
vasive option, CCTA offers visualization of coronary tree 
and atherosclerotic plaques but also can accurately quantify 
plaque volumes and identify high-risk plaque features such 
as low attenuation plaque and napkin-ring sign that have 
been associated with future cardiovascular events [6, 7]. On 
the other hand, ICA not only can assess coronary anatomy 
and plaque and identify plaque characteristics with intralu-
minal imaging, but also can facilitate real-time therapeutic 
interventions [6].

The proliferation of artificial intelligence (AI)-enabled 
medical technologies in recent years has led to new capa-
bilities of diagnostic and therapeutic modalities. Histori-
cally, medical procedures and diagnostics relied on a blend 
of practitioner expertise and available technological tools. 
However, AI has bridged the gap between massive data-
sets and actionable insights, processing and analyzing intri-
cate data at unprecedented scales [8]. Unsurprisingly, this 
progress was also represented in the realm of cardiology. 
The diagnostic nuances and treatment intricacies required 
in cardiology often mandate processing vast arrays of data, 
from electrocardiograms to imaging modalities. Therefore, 
AI found many potential use cases to improve diagnostics 
and therapeutics by identifying patterns and anomalies that 
might otherwise escape the human eye [8].

The Need to Improve CCTA and ICA

The developments in noninvasive imaging, particularly 
CCTA, as well as advancements in invasive intraluminal 
imaging have ushered in a revolutionary era for visualizing 
coronary anatomy and plaques but most importantly iden-
tifying plaque characteristics [9]. However, despite these 
advancements, coronary disease remains underdiagnosed 
and undertreated leading to significant morbidity and mor-
tality in the world [10].

There are several issues with the current diagnostic tools 
including inter-reader variability, insufficient accuracy, and 

high costs (Table 1) [11•, 12]. One of the primary concerns 
is the subjectivity that comes with interpreting CCTA and 
ICA. As the interpretations of the images largely depend on 
the expertise and experience of the radiologist or cardiolo-
gist, there is an inherent variability in readings [11•]. Two 
clinicians may perceive the severity of a stenosis differently 
or might miss a subtle lesion altogether. This lack of stand-
ardization can potentially lead to misdiagnosis, unnecessary 
interventions, or overlooked therapeutic opportunities [12].

Despite the high-resolution imaging provided by CCTA 
and ICA, there are three major limitations when it comes to 
their accuracy. First, the presence of heavy calcifications can 
pose challenges in determining the exact extent of luminal 
narrowing, leading to either overestimation or underesti-
mation of stenosis [9]. Second, while invasive angiograms 
provide a two-dimensional view, they might not capture the 
complexities of certain lesions, particularly in tortuous coro-
nary segments unless intraluminal imaging is utilized. Third, 
these advanced imaging modalities can be costly and might 
not be readily available in all healthcare settings, especially 
in low-resource areas [13].Considering these challenges, 
there is an impending need to refine current diagnostic 
strategies. The integration of machine learning (ML) could 
offer solutions by providing a more standardized, accurate, 
and comprehensive analysis of coronary artery disease and 
lower associated costs. However, despite advancements in 
medicine, cardiology, and imaging, ML has not yet well pen-
etrated the coronary angiography space.

ML has already made significant strides in medical imag-
ing across various specialties. In pathology, ML has been 
employed to analyze digital pathology slides, aiding in the 
detection and classification of diseases such as malignancies 
[14]. Stroke detection has been revolutionized with algo-
rithms that rapidly identify signs in CT scans, specifically 
targeting large vessel occlusions [15, 16]. In dermatology 
and ophthalmology, ML-enabled tools can assist in diag-
nosing conditions such as skin cancers [17] and diabetic 
retinopathy [18]. Similarly, ML has the potential to sig-
nificantly enhance coronary angiography. It can improve 
image interpretation by detecting subtle atherosclerotic dis-
ease and provide more information on plaque morphology 

Table 1  Major Issues with CCTA and ICA and potential ML solutions

CCTA  coronary computed tomography angiography; ICA invasive coronary angiography; ML machine learning

Problem Subsequent harm ML solution

Inter-reader variability • Misdiagnosis • Automatization and standardization of interpretations for excel-
lent reproducibility• Unnecessary interventions

• Overlooked therapeutic opportunities
Insufficient accuracy • Over- or under-estimation of stenosis • Decrease imaging artifacts and increase accuracy
High costs • Increased healthcare expenditure • Reduce costs by increasing efficiency and reducing operating time

• Limited accessibility
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and hemodynamic significance, reduce radiation exposure 
through optimized parameters, and offer predictive insights 
by analyzing angiographic data alongside patient history. 
Furthermore, ML can automate intricate measurements, 
ensuring consistency and reducing variability, while also 
integrating angiographic data with other diagnostic modali-
ties for a holistic view of cardiovascular health.

We have identified five key areas of opportunity to lever-
age ML in coronary angiography to advance the prevention, 
diagnosis, and treatment of CAD (Fig. 1).

Improvement in Quality and Efficacy 
of Coronary Evaluation

ML algorithms, especially those based on deep learning 
architectures, have shown remarkable proficiency in image 
recognition tasks [19]. When trained on vast datasets of 
angiograms, these algorithms have the potential to achieve 
a level of precision that might rival or even surpass, medi-
cal experts. There are three primary advantages of ML in 
this context. First, ML can identify and quantify features 
such as stenoses, plaques, and vessel diameters with high 
accuracy [20, 21••]. Conventional manual analysis is often 

subjective and prone to variability between different observ-
ers [12]. ML on the other hand might offer a consistent and 
objective analysis, significantly reducing human error [20, 
21••], similar to prior studies on echocardiograms [22]. Sec-
ond, the subtleties in angiographic images, which might be 
missed during manual inspection, can be detected by ML 
algorithms. These subtle findings, though they might appear 
insignificant, can often be clinically relevant and indicative 
of early disease stages or potential complications. By ensur-
ing that such findings are not overlooked, ML can aid in 
enhancing the overall diagnostic quality. Third, automated 
image analysis can streamline diagnostic workflows. Manual 
analysis of angiograms can be time-consuming, especially 
in complex cases. ML-enabled tools can rapidly process 
these images, providing insights in a fraction of the time. 
This acceleration in the diagnostic process allows for faster 
patient management decisions, potentially leading to timely 
interventions and improved patient outcomes [23].

The clarity and quality of angiographic images are para-
mount for accurate diagnosis. With the advent of ML, there 
is an opportunity to significantly refine these images. In 
other cardiovascular imaging modalities, ML algorithms, 
particularly those based on convolutional neural networks, 
have demonstrated the ability to filter out noise and artifacts, 

Fig. 1  Five key areas of opportunity to leverage ML in coronary angi-
ography. ML offers significant potential in coronary angiography, 
particularly in five key areas to enhance the prevention, diagnosis, 
and treatment of CAD: (1) improvement of quality and efficacy; (2) 

characterization of plaque; (3) hemodynamic assessment; (4) pre-
diction of future outcomes; and (5) diagnosis of non-atherosclerotic 
coronary disease
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enhancing the overall clarity of the images [21••, 24]. Addi-
tionally, these algorithms can enhance contrast, making it 
easier to differentiate between various structures and abnor-
malities in the coronary arteries. As a result, even miniscule 
changes or abnormalities, which might be overlooked in 
conventional image interpretation, become discernible [25].

Enhanced images are especially beneficial in challenging 
cases, where traditional imaging might fall short due to fac-
tors like patient movement, suboptimal contrast injection, or 
anatomical complexities. In such scenarios, the capabilities 
of ML can be harnessed to improve image quality, ensuring 
that the diagnosis is based on the best possible visualiza-
tion of the coronary anatomy. Although this remains to be 
studied, ML-enhanced imaging and improved image quality 
could potentially result in more accurate diagnoses, timely 
interventions, and ultimately, better patient outcomes. In a 
recent example from multi-modal magnetic resonance imag-
ing, using a cascade of convolutional neural networks for 
brain tumor segmentation led to an improvement of segmen-
tation accuracy [26].

Characterization of Coronary Plaque

CCTA is a powerful noninvasive tool to visualize coronary 
anatomy and most importantly, coronary plaque morphology 
[9]. Its ability to provide high-resolution images of the coro-
nary arteries noninvasively makes it invaluable for detect-
ing and characterizing coronary artery disease. In contrast, 
ICA primarily offers an anatomical assessment of the coro-
nary arteries. It visualizes the lumen of the arteries and the 
extent of the coronary disease highlighting areas of poten-
tial significant flow restriction, which can be indicative of 
clinically significant stenoses [27]. However, it also allows 
for intravascular coronary imaging which provides excel-
lent detail and a granular morphological understanding of 
plaques. Techniques such as optical coherence tomography 
(OCT) and intravascular ultrasound (IVUS) provide high-
resolution images of plaque composition, size, and location. 
These modalities delve deeper into the vessel wall, revealing 
details that are often invisible to other imaging techniques, 
thus providing invaluable information for planning interven-
tional strategies [28]. This information offers insights into 
plaque composition, stability, and potential for rupture [29]. 
With the integration of ML algorithms, these imaging tech-
niques can be further enhanced by analyzing the vast amount 
of data generated by these modalities, offering predictive 
insights that can help clinicians anticipate potential compli-
cations like plaque rupture or thrombosis [30]. By under-
standing the biological characteristics of plaques, clinicians 
can tailor treatment strategies. This personalized approach, 
ranging from medication adjustments to specific interven-
tional procedures, ensures that patients receive optimal care 

based on their unique plaque biology [31]. Furthermore, 
these algorithms can integrate data from multiple sources, 
such as patient history, blood tests, and other diagnostic 
tests, to provide a comprehensive risk profile for individual 
patients [32]. With this knowledge, one can devise more per-
sonalized treatment strategies. For some patients, this might 
lead to medication adjustments and optimization, while for 
others, it can involve percutaneous coronary interventions 
such as stenting or balloon angioplasty [33]. This person-
alized approach might ensure that patients receive optimal 
care tailored to their unique plaque biology and overall car-
diovascular risk, leading to better outcomes [34].

Hemodynamic Assessment of Coronary 
Stenosis

Both CCTA and ICA can provide information on lesion 
location, severity, and extent. However, ICA provides an 
additional advantage by allowing hemodynamic evalua-
tion of potentially clinically significant lesions. Hemo-
dynamic evaluation can be done using FFR, a measure 
that compares the pressure before and after the stenosis 
under maximal hyperemia [35] or instantaneous wave-free 
ratio (IFR) that achieves the same by evaluating wave-free 
period of cardiac cycle without the need for drug-induced 
hyperemia [3]. Recently, noninvasive methods like CT-
derived FFR have emerged as reliable alternatives to inva-
sive FFR measurements [5]. CT-derived FFR, which uti-
lizes computational fluid dynamics on CCTA data, offers 
the advantage of assessing both anatomical and functional 
significance of coronary lesions without the need for inva-
sive catheterization [4]. HeartFlow, a specific CT-derived 
FFR analysis tool, has been shown to improve diagnostic 
accuracy and patient outcomes while potentially reducing 
healthcare costs [36].

Despite the advancements in CT-derived FFR technology, 
ICA still offers a benefit by allowing for interventions during 
the same procedure if the lesion of interest is deemed to be 
hemodynamically significant. However, invasive hemody-
namic assessment requires passing a coronary wire through 
the lesion in the coronary artery which is a further invasive 
method that increases time and potential risks associated 
with the procedure [3]. Deep learning models trained with 
datasets with hemodynamic measurements and high-quality 
angiograms have the potential to provide the same hemody-
namic information without the need for coronary wiring [37, 
38]. This technology could enhance the evaluation of flow 
characteristics in lesions that were not initially identified as 
intermediate through visual assessment. This advancement 
offers an additional avenue to reduce oversight by standard-
izing measurements.
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Prediction of Future Outcomes

Despite our growing knowledge and advanced diagnos-
tic tools, recurrent cardiovascular events remain a sig-
nificant concern [2]. This underscores the need for risk 
stratification based on improved prediction models and 
personalized preventative interventions. The coronary 
artery calcium (CAC) score, derived from non-contrast CT 
scans, has been a cornerstone in predicting future cardio-
vascular events [39]. It quantifies the amount of calcium 
in coronary arteries, providing insights into the extent of 
atherosclerotic plaque burden. While the CAC score has 
proven to be highly beneficial, it can only identify calcified 
plaques and cannot predict future events based on plaques 
morphology. This especially poses a potential issue for 
the younger population with higher likelihood of having 
noncalcified coronary plaques [40]. Therefore, advanced 
modalities like CCTA and ICA combined with ML could 
offer insights beyond calcification, such as plaque mor-
phology, and inflammation. It holds promise in enhancing 
our predictive capabilities and reducing recurrent events 
by analyzing the vast patient data outside of a given imag-
ing modality and identify subtle patterns [19]. Further-
more, ML can also be used to enhance existing predictive 
tools such as CAC score by incorporating clinical features 
and improving quantification of CAC scoring [41•].

Diagnosing Non‑atherosclerotic Coronary 
Disease

While atherosclerosis remains at the forefront of concerns 
in coronary artery disease, there are non-atherosclerotic 
conditions that demand equal attention and understanding. 
Spontaneous coronary artery dissection (SCAD), cardiac 
allograft vasculopathy (CAV), and microvascular disease 

are among these conditions, each presenting its own set of 
challenges and complexities (Table 2).

Spontaneous coronary artery dissection is characterized 
by a spontaneous tear in the coronary artery wall leading 
to a false lumen, which can lead to myocardial ischemia 
and infarction. SCAD is an uncommon yet critical cause 
of acute coronary syndrome, particularly among younger 
individuals and women [42]. The exact etiology of SCAD 
remains to be fully elucidated, but it has been associated 
with a variety of conditions that affect hormonal, shear 
stress, and vascular structural factors [43]. CCTA and ICA 
with intravascular ultrasound are commonly employed tools 
for its identification [44] but diagnosis can be challenging 
due to its atypical presentation and variable imaging findings 
[44]. ML-enhanced imaging interpretation has the potential 
to improve diagnosis of SCAD by increasing accuracy of 
reads and reducing missingness.

Cardiac allograft vasculopathy (CAV) is a unique and 
progressive form of coronary artery disease that affects heart 
transplant recipients [45]. It is characterized by diffuse inti-
mal thickening and fibroproliferation, leading to stenosis of 
the coronary arteries. CAV is one of the leading causes of 
late graft failure and mortality post-heart transplantation. 
Traditional diagnostic methods, such as coronary angiogra-
phy, may not be sensitive enough to detect early changes of 
CAV, given its diffuse nature [46]. Similar to CAV, micro-
vascular disease pertains to the dysfunction of the coronary 
microvasculature and affects the microcirculation due to 
factors that are traditionally associated with coronary dis-
ease such as hypertension, hyperlipidemia, and diabetes or 
endothelial dysfunction [47]. It can potentially lead to symp-
toms such as angina despite the absence of significant epi-
cardial coronary artery stenosis [48]. The intricate nature of 
these conditions, combined with their diverse presentations, 
means that they often elude conventional diagnostic tools 
and strategies, leading to underdiagnosis or misdiagnosis. 
A variety of invasive and noninvasive imaging modalities 
are used to assess microvascular dysfunction that utilizes 

Table 2  Challenges with and potential solutions for non-atherosclerotic coronary disease

CCTA  coronary computed tomography angiography; ICA invasive coronary angiography; ML machine learning

Disease Problem Potential ML solution

Spontaneous coronary artery dissection • Atypical presentation • Increased accuracy
• Variable imaging findings • Reduced missingness

Cardiac allograft vasculopathy • CCTA and ICA not sensitive to detect early changes • Detection of vascu-
lopathy without the 
need for pressure 
wires

• Diverse presentations
• Variable specificity and sensitivity of noninvasive imaging modalities
• Gold standard is invasive

Microvascular disease • Variable specificity and sensitivity of noninvasive imaging modalities • Detection of micro-
vascular disease 
without the need for 
pressure wires

• Invasive measurement associated with cost and risk
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indices such as coronary flow reserves (CFR) and index of 
microcirculatory resistance (IMR) [49]. However, each non-
invasive imaging modality has specific challenges and vari-
ous sensitivity and specificity levels for detecting microvas-
cular dysfunction [49]. Invasive measurements are the gold 
standard to diagnose microvascular disease; however, they 
require advancing pressure wires through coronary arteries 
which increase procedural risks and time spent during the 
procedure [49, 50]. Similar to the technologies developed 
to measure FFR and IFR based on invasive and noninvasive 
coronary angiograms using flow dynamics, ML algorithms 
can help with the assessment of coronary microvasculature 
without the need for pressure wires.

Challenges with Using ML in Coronary 
Angiograms and Potential Solutions

ML applications in coronary angiograms present both oppor-
tunities and challenges. The most important considerations 
and challenges when using ML applications in coronary 
angiograms are (i) variability of findings between patients, 
(ii) ethical considerations, (iii) data privacy, and (iv) inter-
pretability. First, the nature of coronary artery lesions, com-
bined with the variability in patient anatomy and the subtle 
distinctions between pathological and normal findings, can 
make automated analysis complex. However, advance-
ments in ML algorithms and the increasing availability of 
labeled datasets are addressing these complexities [51]. For 
instance, the variability in coronary angiogram images, 
stemming from differences in equipment, techniques, and 
patient anatomy, can be mitigated by training ML models on 
diverse and representative datasets. Additionally, advanced 
preprocessing techniques and data augmentation can help 
filter out noise and artifacts, ensuring that ML models are 
trained on high-quality data [24].

Second, ethical considerations are paramount when inte-
grating ML into medical imaging. Ensuring patient privacy 
is crucial, and data used for training ML models must be 
anonymized, removing any personally identifiable infor-
mation [52]. Moreover, the potential for algorithmic bias, 
where models might perform differently for various patient 
subgroups, is a concern that needs proactive addressing to 
ensure equitable care. Transparency in communicating to 
patients about how their data will be used and obtaining 
informed consent is also important. Furthermore, ML mod-
els should be regularly evaluated and updated to ensure they 
are free from biases and provide consistent results across 
diverse patient groups.

Third, data sharing is another challenge that needs close 
attention. While ML models require vast amounts of data 
to achieve high accuracy, sharing patient data across insti-
tutions raises concerns about data privacy and security. 

Innovative solutions like federated learning, where the 
model is trained across multiple sites without sharing raw 
data, are emerging [53]. Ensuring data encryption and 
implementing differential privacy techniques can further 
safeguard patient information.

Finally, a significant criticism of ML, especially deep 
learning models, is their “black box” nature [54]. The chal-
lenge lies in understanding how these models arrive at their 
decisions, a crucial aspect in medical applications where 
interpretability is essential. Emphasis should be placed 
on developing or using ML models that offer insights into 
their decision-making processes. Interpretation and data 
visualization methods such as saliency maps [55], gradient-
weighted class-activation maps [56], backward optimization 
[57], and novelty detection [58, 59] can help visualize which 
parts of angiograms were most influential in the model’s 
decision, adding a layer of transparency.

Conclusion

Diagnosis of CAD requires assessing the severity and char-
acteristics of coronary atherosclerosis, with both CCTA and 
ICA playing pivotal roles in diagnosing and offering insights 
into plaque characteristics. Following the growth of AI-ena-
bled technologies in other areas of medicine, ML can simi-
larly be leveraged to enhance both invasive and noninvasive 
coronary angiography for better diagnosis and management 
of CAD. We highlighted five potential use cases in which 
ML for coronary angiography holds significant promise: 
(1) improvement of quality and efficacy, (2) characteriza-
tion of plaque, (3) hemodynamic assessment, (4) prediction 
of future outcomes, and (5) diagnosis of non-atherosclerotic 
coronary disease. While ML offers transformative potential 
in the realm of coronary angiograms, careful consideration 
of challenges, ethical implications, data sharing protocols, 
and model interpretability is essential to harness its full 
potential and ensure optimal patient care.
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