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Abstract
Purpose of Review Vascular imaging is a complex field including numerous modalities and imaging markers. This review is 
focused on important and recent findings in atherosclerotic carotid artery plaque imaging with an emphasis on developments 
in magnetic resonance imaging (MRI) and computed tomography (CT).
Recent Findings Recent evidence shows that carotid plaque characteristics and not only established measures of carotid 
plaque burden and stenosis are associated independently with cardiovascular outcomes. On carotid MRI, the presence of a 
lipid-rich necrotic core (LRNC) has been associated with incident cardiovascular disease (CVD) events independent of wall 
thickness, a traditional measure of plaque burden. On carotid MRI, intraplaque hemorrhage (IPH) presence has been identi-
fied as an independent predictor of stroke. The presence of a fissured carotid fibrous cap has been associated with contrast 
enhancement on CT angiography imaging.
Summary Carotid artery plaque characteristics have been associated with incident CVD events, and advanced plaque imag-
ing techniques may gain additional prominence in the clinical treatment decision process.

Keywords Atherosclerosis · Atherosclerotic carotid artery disease · High-risk plaques · Computerized tomography · 
Magnetic resonance imaging · Plaque characteristics

Introduction

Cardiovascular disease (CVD) remains the number one 
cause of mortality in the USA. Approximately 809,000 peo-
ple in the USA died from heart disease, stroke, and other 
cardiovascular diseases in 2019 [1]. CVD is also a leading 
cause of mortality worldwide that affected 422.7 million 
people and caused 17.9 million deaths in 2015, accounting 
for 31% of all deaths [2, 3]. It is estimated that by 2030, 

approximately 23.6 million people will die from cardiovas-
cular diseases annually [4].

Atherosclerosis, the main underlying cause of CVD, is 
a multifactorial inflammatory disorder characterized by the 
accumulation of plaque in multiple arterial beds, most com-
monly observed in the carotid, coronary, and femoral arteries 
[5, 6]. The underlying cause of stroke, most heart attacks, 
and sudden cardiac deaths has been attributed to inflamed, 
active, and growing atherosclerotic plaques, often referred to 
as vulnerable plaques and more recently referred to as high-
risk plaques which are often discussed in the context of the 
vulnerable patient [7, 8]. Plaque characteristics, sometimes 
also referred to as plaque components, have been associated 
with the risk of plaque rupture, highlighting the importance 
of atherosclerotic plaque imaging [9, 10].

Various invasive and non-invasive vascular imaging 
approaches have been utilized to assess atherosclerotic 
plaques, where recent developments of the former in addi-
tion to traditional X-ray angiography have been reported 
with a primary focus on high-risk coronary atherosclerotic 
plaques for intravascular ultrasound (IVUS), optical coher-
ence tomography (OCT), OCT-IVUS, intravascular near-
infrared fluorescence (NIRF), and intravascular NIRF-OCT 
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systems [11], all of which are described in detail in recent 
imaging reviews [12, 13]. On the other hand, non-invasive 
vascular imaging techniques include primarily magnetic 
resonance imaging (MRI), magnetic resonance angiogra-
phy (MRA), computed tomography (CT), CT angiogra-
phy (CTA), ultrasonography (US), and positron emission 
tomography-CT (PET-CT) [14••, 15–17]. Recent findings 
on vascular US and PET-CT have been recently highlighted 
by Hussain et al., Nishimiya et al., and Saba et al. and previ-
ously by us and others [12, 13, 18–22].

Imaging remains one of the major decision drivers clini-
cally and frequently helps in determining the best path of 
treatment for patients with vessel diseases [19]. A grow-
ing body of evidence suggests that atherosclerotic plaque 
characteristics play an important and independent role as 
compared with percent of vessel stenosis, which remains of 
primary importance clinically and was established by crite-
ria from the North American Symptomatic Carotid Endarter-
ectomy Trial (NASCET) [23]. The large caliber and focused 
location of atherosclerotic plaque formation in the carotid 
arteries as compared with the coronary and femoral arteries 
afford a high-resolution carotid wall imaging approach to 
study plaque characteristics, which due to various limita-
tions including in-plane imaging resolution is substantially 
less feasible for typical atherosclerotic plaques in other arte-
rial beds. A large number of technical and outcome studies 
have focused on the carotid arteries, and advances in non-
invasive imaging technologies are typically first applied to 
the carotids, and therefore, this review is focused on recent 
and noteworthy developments in carotid imaging.

Atherosclerotic Carotid Artery Disease

Atherosclerotic plaques are believed to form in the arte-
rial wall due to an injury of the endothelium. The damaged 
endothelium permits plaque formation where monocyte 
recruitment and retention play a central role in this complex 
process [24, 25]. Subsequently, monocytes accumulate lipids 
in the subendothelial space of the intima and transform into 
macrophages and appear as fatty streaks. Over time, these 
processes also promote smooth muscle cell proliferation 
resulting in the formation of a fibrous capsule between the 
fatty streak and the intima, the innermost lining of the artery. 
These atheromatous plaques grow over time and induce 
enzymes that trigger remodeling of the artery, a compen-
satory expansion resulting in an eccentric cross section of 
the artery. Atheromas are composed of an extracellular lipid 
core and fibrous connective tissue. The outer parts become 
increasingly calcified, resulting in hardening of the artery. 
Eventually atheromas may develop fissures, hematoma, and/
or thrombi which are often accompanied by a thin fibrous 
cap that is prone to rupture [25, 26]. In the event of plaque 

rupture, clot-promoting material is released which inhibits 
blood flow and may cause an atherothrombotic event.

Incident CVD amplifies the need for novel non-invasive 
techniques to assess atherosclerotic plaques. Various reports 
including those by our group suggest that plaque characteris-
tics may be a more specific predictor to identifying high-risk 
plaques and future plaque rupture than sole atherosclerotic 
plaque burden [14••, 27–29].

The carotid plaque burden is typically located near the 
carotid artery bifurcation and predominately increases from 
the common carotid artery (CCA) and the carotid bulb 
region and peaks in the internal carotid artery (ICA) and 
extends to a lesser degree into the external carotid artery 
(ECA) [30]. Vascular imaging can be utilized to quantify 
measures of plaque burden and plaque characteristics, where 
the former typically includes arterial wall volume/area, 
lumen volume/area, and normalized wall index (NWI) [NWI 
= wall area/(lumen area + wall area)] and arterial wall thick-
ness. Plaque characteristics typically include calcification, 
lipid-rich necrotic core (LRNC), intraplaque hemorrhage 
(IPH), fibrous cap (FC), plaque ulceration, and inflamma-
tion (Table 1). High-risk atherosclerotic plaques have been 
associated with the presence of one or more plaque charac-
teristics including a LRNC, IPH, fibrous cap thickness, and 
inflammation [7, 31]. Although plaque burden measures can 
be obtained with a high degree of accuracy and reproduc-
ibility with MRI, CT, and US, plaque characteristics are in 
part more imaging modality-specific.

MR Imaging of Carotid Plaques

MRI is recognized as one of the preferred methods to image 
carotid artery pathologies, including atherosclerotic vascular 
lesions [32]. High-resolution multi-contrast MRI can detect 
and quantify with high accuracy atherosclerotic plaque 
burden and plaque characteristics including calcification, 
LRNC, IPH, and fibrous cap presence and thickness [32, 
33] (Figure 1).

Zavodni et al. used MRI to identify asymptomatic sub-
jects at risk of cardiovascular events based on measures of 
carotid plaque component parameters including thickness, 
outer contour area, lumen area, wall area, remodeling index, 
presence of a lipid core, calcification, and ulceration [34]. A 
combination of various MRI pulse sequences can be utilized 
to distinguish plaque characteristics including LRNC, IPH, 
calcification, FC, and thin or ruptured FC.

MRI-based CCA wall thickness, a measure of plaque 
burden, has been studied in 698 participants free of CVD 
who were enrolled from the Multi-Ethnic Study of Athero-
sclerosis (MESA), and the authors compared their findings 
with ultrasonography-based carotid intima-media thickness 
(CIMT) measurements from the same individuals [35]. 
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MRI carotid wall thickness compared with US CIMT was 
reported as more consistently associated with incident CVD 
including stroke.

Black-blood MRI (BBMRI) sequences optimize contrast 
between the vessel wall and lumen which is of importance 
to determine measures of plaque burden and plaque char-
acteristics. BBMRI has aided in treatment decisions in a 
recent study of 18 patients with symptomatic mild stenosis 
(< 50%), as seen on angiography, and was selected from 
among 175 patients who underwent revascularization [36]. 
The authors concluded that if imaging findings point to 
the presence of vulnerable plaques in symptomatic mild 
carotid artery stenosis patients, surgical treatment may be 
considered.

T1-weighted (T1W), T2-weighted (T2W), proton density 
weighted (PDW), time of flight (TOF), and phase-contrast 
(PC) MRI are frequently used sequences for arterial and ves-
sel wall imaging, and previous reports include details on 
pulse sequence parameters [19, 37–40].

Carotid Artery Lumen Segmentation and Plaque 
Burden

TOF MRI sequences allow to visualize the carotid artery and 
can be used to determine carotid stenosis. Various methods 
have been developed to determine the carotid artery geom-
etry, perform carotid lumen segmentation, measure carotid 
stenosis, and co-register carotids for longitudinal analyses 
and across imaging modalities, whereas registration results 

can vary depending on which 3D registration technique is 
deployed [41, 42].

Using CASCADE, a custom-designed image analysis 
software package (University of Washington, Seattle, Wash-
ington, USA), lumen and total vessel areas of the carotid 
artery were measured on axial image slices. Remodeling pat-
terns were investigated and compared with maximum carotid 
wall thickness for each segment and adjusted for patient age, 
sex, and height. The CCA showed a positive remodeling 
pattern, while the bifurcation demonstrated negative remod-
eling, and a mixed pattern of outer wall expansion and lumen 
constriction was observed for the ICA [43].

A semi-automatic carotid lumen segmentation algo-
rithm that builds on the traditional level set method was 
recently applied to TOF-MRA images from the CARE II 
study, where manual delineations were used as reference 
[44]. Compared with traditional level set approaches, the 
proposed method improved the TOF-MRA segmentation 
accuracy and computational efficiency [44]. There is a 
growing number of automated vessel segmentation meth-
ods which may over time gain in importance clinically 
[37, 45, 46].

High‑Risk Plaques

In a recent feasibility study of 27 carotid plaques from 
20 patients, a new method was reported to identify vul-
nerable carotid plaques utilizing a multi-modality-based 
approach using multi-contrast MRI and ultrasound shear 
wave elastography (SWE) [47]. MR imaging included 3D 

Table 1  Carotid artery plaque 
characteristics and measures of 
carotid plaque burden.

Selected references included are predominately from within the last 5 years or older if no relevant recent 
publications were available
N/A, not applicable; HU, Hounsfield units; MRI, magnetic resonance imaging; CT, computed tomography

Variable Reference

MRI CT

Carotid artery plaque characteristics
Lipid-rich necrotic core (mL or  mm2) [14••, 51, 61, 120] [76, 78, 108]
Fibrous cap thickness, mm [14••, 47, 51, 61] [111]
Intraplaque hemorrhage (mL or  mm2) [50, 52, 55, 56] [76, 106, 108]
Calcification  (mm2, calcium score [CT only]) [57, 66•] [76, 78, 79, 108]
Soft plaque, HU [CT only] N/A [75, 76, 79, 108]
Measures of carotid artery plaque burden
Lumen (mL or  mm2) [14••, 19, 56] [19, 76, 78, 79]
Wall (mL,  mm2, or mm for wall thickness) [14••, 35, 56, 57, 121] [19, 76, 78, 79]
Maximum stenosis, % [14••, 56, 64, 122] [76, 79, 123, 124]
Categorical carotid artery plaque characteristics
Lipid-rich necrotic core [14••, 61, 66•, 121, 122] [108, 109, 125]
Calcification [14••, 57, 121] [19, 109, 110, 126]
Intraplaque hemorrhage [14••, 56, 57, 61, 66•, 122] [107, 108]
Ulceration [51, 57, 62, 63] [76, 111, 127]
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TOF-MRA, a 3D black-blood magnetization-prepared 
rapid acquisition gradient echo (MPRAGE) sequence to 
detect IPH, 2D pre-contrast black-blood T1W, 2D T2W, 
and contrast-enhanced 2D black-blood T1W (CE-T1W). 
Carotid MRI slices were analyzed with the well-validated 
PlaqueView software tool (MRI-PlaqueView; VP Diagnos-
tics, Seattle, WA, USA), which determines carotid plaque 
components including the LRNC, fibrous cap, IPH, loose 
matrix, calcification, and measures of plaque burden. In 
addition, FC measures were obtained including mean, 
maximum, and minimum FC thickness, FC length, and 
FC volume. SWE measures comprised of group velocity 
and frequency-dependent phase velocities which were sig-
nificantly correlated with MRI LRNC content and IPH 
volume, known markers of high-risk plaques [47].

Intraplaque Hemorrhage

IPH is an important determinant of progression and desta-
bilization of atherosclerotic plaques and an independent 
predictor of cardiovascular events [48, 49]. Recent studies 
showed that IPH is associated with cerebrovascular event 
risk [50], stroke [51], transient ischemic attack, and amau-
rosis [50]. IPH can be characterized as a hyperintense sig-
nal on pre-contrast 3D TOF-MRA and black-blood T1W 
double inversion recovery spin echo sequences [52]. IPH 
as determined by MRI has been well studied and validated 
histologically showing an excellent agreement for acute or 
recent hemorrhage [53]. Schindler et al. recently reported an 
association between IPH and CVD events in asymptomatic 
patients who presented with carotid stenosis ≥50% [54, 55]. 

Fig. 1  Carotid artery plaque images. Carotid artery plaque MRI and 
CT images. (A) Black-blood MRI (BBMRI) images through the 
carotid artery with atherosclerotic plaque. A long axis BBMRI image 
through the carotid bifurcation is used for slice positioning. Short axis 
BBMRI images were then acquired before (B) and after (C) gado-
linium contrast administration (asterisk, ICA lumen). Slices shown 
were acquired at the thickest part of the plaque (yellow line, A). 
Contours were drawn on the post-contrast image (D) to delineate the 
lipid core (blue), carotid lumen (red), outer wall (green), and calcifi-
cation (orange). The wall of the ICA was automatically divided into 

12 radial segments (E) to generate thickness measurements. Various 
luminal morphology images of carotid artery plaques imaged with 
CT. (F) Smooth luminal surface (white arrows). (G) Irregular lumi-
nal surface (white open arrows). (H) Smooth plaque ulcers (white 
arrowheads). ((A–E) Adapted with permission from JAMA Cardiol. 
2021. 6(1):79-86. Copyright© (2021) American Medical Association. 
All rights reserved) [14••]. ((F-H) Adapted with permission from 
Springer Nature from Cardiovasc Intervent Radiol 2014, 37(3):572-
585.  Copyright© 2014) [8]
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The analysis comprised of pooled data from 7 cohort stud-
ies with 560 patients with symptomatic carotid stenosis and 
136 patients with asymptomatic carotid stenosis ≥50%. IPH 
presence was higher in symptomatic (51.6%) compared with 
asymptomatic patients (29.4%). Ipsilateral stroke rates were 
higher for those with IPH, and IPH presence was also an 
independent predictor in multivariate analysis [55].

In a recent carotid MRI investigation of 164 patients 
from the Plaque At RISK (PARISK) study, the association 
between IPH and vascular remodeling was reported [56]. 
Study participants had recent ischemic neurological events 
and ipsilateral carotid artery stenosis <70%. Carotid remod-
eling ratio and plaque burden measures including wall, 
lumen, total vessel area, and carotid maximum wall thick-
ness were obtained from the ICA slice with the largest wall 
area. Plaques containing IPH had a smaller lumen area than 
plaques without IPH after correcting for plaque size, and 
there was no difference in arterial remodeling [56].

In a recent study, 117 patients with cerebrovascular symp-
toms and carotid plaques as determined by vascular ultra-
sound underwent multi-contrast MRI to investigate asso-
ciations between calcification and IPH in carotid plaques. 
Carotid plaques with a presence of IPH had a significantly 
greater prevalence of calcification than those without IPH 
[57].

Cui et al. investigated associations between MRI meas-
ures of carotid IPH of different ages (fresh, recent, old) with 
minor fibrous cap disruption in 37 patients [58]. The authors 
reported an independent association between fresh IPH vol-
ume and minor fibrous cap disruption, suggesting that IPH 
properties may be linked to FC stability.

Lipid‑Rich Necrotic Core

A LRNC presents as isointense on PDW and 3D TOF-MRA 
scans, is hypointense on T2W images, and is isointense to 
slightly hyperintense on T1W scans [14••]. Utilizing pre- 
and post-contrast-enhanced BBMRI scans significantly 
improves reader reproducibility of LRNC measurements, as 
shown by Takaya et al. [59]. The presence of a LRNC, a thin 
or ruptured FC, and IPH is associated with increased risk 
of future stroke or transient ischemic attack (TIA). Plaques 
with greater than 40% LRNC with a thin overlying FC are 
prone to rupture [51].

Carotid plaque characteristics including the presence of 
a LRNC were studied in 1256 participants of the Athero-
sclerosis Risk in Communities (ARIC) MRI carotid sub-
study [14••]. The study participants, who were free of CVD 
at baseline, were followed on average of 9.1 ± 2.98 years 
for incident CVD events, and the cumulative event rate for 
this period was 13.7%. Carotid plaques of participants with 
incident CVD events as compared to those without had a 
higher percentage of individuals with a LRNC present, a 

significantly higher NWI, maximum carotid wall thick-
ness, maximum carotid stenosis, and when present, a larger 
LRNC. The presence of a LRNC was independently associ-
ated with incident CVD events after adjusting for typical 
CVD risk factors and carotid plaque burden [14••].

Fibrous Cap

A FC contains fibrous connective tissue, which will more 
strongly enhance between pre- and post-contrast-enhanced 
T1W MRI scans [60]. A fibrous cap contour can then be 
semi-automatically delineated between carotid lumen and 
the LRNC using multi-contrast MRI sequences [54]. Sun 
et al. studied associations between carotid plaque charac-
teristics and CVD outcomes in 214 patients with clinical 
atherosclerotic disease who were recruited from the AIM-
HIGH (Atherothrombosis Intervention in Metabolic Syn-
drome with Low HDL/High Triglycerides: Impact on Global 
Health Outcomes) study [61]. The authors reported that a 
thin or ruptured fibrous cap and plaque lipid content, meas-
ured as the % of LRNC of carotid plaques, were strongly 
associated with fatal and non-fatal myocardial infarction, 
ischemic stroke, hospitalization for acute coronary syn-
drome, and symptom-driven revascularization [61].

Ulceration

Carotid plaque ulcerations can be detected by the presence 
of plaque surface irregularities [51, 62]. Ulceration is visu-
alized as an erosion or irregularity on the luminal surface 
of the carotid plaque and is considered a feature of high-
risk plaques. MRI has been used for the study of ulcerated 
carotid plaques [63]. Xu et al. reported in a prospective 
MRI study of 120 asymptomatic patients with 50% to 79% 
carotid stenosis that a larger LRNC was associated with the 
development of new carotid ulceration or FC rupture and an 
increased plaque burden at 3 years after baseline imaging 
[64].

Calcification

Calcification is depicted as hypointense signal on all MRI 
contrast weightings. Based on a report from Pugliese et al., 
macrocalcification is a feature of stable plaques, whereas 
microcalcification has been associated with plaque inflam-
mation [65]. Pletsch-Borba et al. reported on carotid MRI 
characteristics of 198 participants with carotid wall thicken-
ing based on ultrasound who were recruited from the popu-
lation-based Rotterdam Study [66•]. Participants underwent 
longitudinal MR imaging at baseline and after 4 years, and 
carotid plaque characteristics including the presence of IPH, 
calcification, and LRNC were measured. The authors inves-
tigated associations between cardiovascular risk factors and 
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incident carotid plaque characteristics and reported that all 
plaque components changed significantly over time. Specifi-
cally, it was reported that incident MRI plaque calcification 
was associated with hypertension and incident LRNC with 
higher cholesterol levels [66•].

Limitations of MR Imaging

Overall, MRI has excellent tissue contrast and is highly 
reproducible. However, MR imaging is more expensive and 
less widely available compared with CT or ultrasonography 
imaging, and scan times are longer. Multi-contrast MRI can 
provide carotid artery plaque characteristics (calcification, 
LRNC, fibrous tissue, IPH, ulceration) [29]. Plaque calcifi-
cation usually presents in the form of calcium hydroxyapa-
tite (CHA) [67]. Due to its low spin density, CHA typically 
exhibits low intensity on multi-contrast MRI scans and 
hence can be difficult to quantify (hypointense on T1W, 
T2W, and PDW scans). Artifacts from implants, swallow-
ing motion, and dark-blood sequences, which are typically 
utilized to quantify carotid plaque characteristics, can further 
impair accuracy of quantification of calcification with MRI. 
Among other diseases, patients with advanced renal disease 
are contraindicated to gadolinium-based contrast agents. 
Ferumoxytol, an ultrasmall superparamagnetic iron oxide 
(USPIO) particle, is an alternative to standard gadolinium-
based MRI contrast agents that is approved for clinical use 
in patients with renal failure [68]. Ferumoxytol also has 
macrophage-selective properties which could prove useful 
in evaluating inflammation, a hallmark of atherosclerosis. 
Patients with implants are often contraindicated to MRI, 
especially in high-field systems.

CT Imaging of Carotid Plaques

It is estimated that over 70 million CT scans are performed 
annually in the USA. CT is a non-invasive and cost-effective 
imaging modality that can detect, quantify, and distinguish 
details of atherosclerotic lesions [69]. CT provides a high 
spatial resolution, and imaging protocols are established and 
standardized resulting in short scan times effectively lim-
iting motion artifacts and operator variability [70]. Tissue 
characteristics can be quantified with CT imaging through 
Hounsfield units (HU) that are obtained from linear trans-
formation of the computed attenuation coefficients [71]. 
Multi-detector-row CT (MDCT) allows for multiplanar 
reconstruction across various planes with a high spatial and 
contrast resolution [72]. Dual-source CT (DSCT) applies 
two different sources of x-rays with different energies to 
achieve Hounsfield units for the same tissue which results 
in improved tissue differentiation and postprocessing [73]. 
The advantages of DSCT over MDCT include the power to 

differentiate calcified plaque from iodinated contrast, which 
allows for a more accurate assessment [74]. In the context 
of carotid plaque morphology, HU density values have been 
suggested to categorize plaque structures as fatty (lipid-rich) 
< 60 HU, mixed or fibrous 60–130 HU, and calcified > 130 
HU [75] or alternatively as calcified (>130 HU) and non-
calcified or soft plaque (≤ 130 HU) [75].

CT imaging has a high accuracy for detecting plaque 
calcification, ulceration, and neovascularization. In terms 
of reliability, Chrencik and colleagues conducted a recent 
study showing that carotid plaque morphology and tissue 
characteristics including calcification, lipid-rich regions, and 
intraplaque hemorrhage can be measured reliably using CTA 
images [76] (Figure 1, Table 1).

CT and CTA imaging are reliable imaging techniques 
for longitudinal monitoring of carotid plaque progression 
and quantifying changes in plaque characteristics with high 
intra- and interobserver agreement [77–79].

The American Society of Neuroradiology delineates the 
application of CT along with other imaging modalities in 
their recent consensus recommendations regarding vessel 
wall imaging and how plaque imaging may be useful in the 
decision-making process for vascular care [19].

Calcification

CT imaging is the gold standard for quantifying arterial cal-
cification. The presence of arterial calcification is a promi-
nent feature in advanced atherosclerotic lesions, and arterial 
calcification has been associated with inflammatory markers 
[80–82]. In particular, coronary calcification has been stud-
ied in detail. The Agatston score or coronary artery calcium 
score is the clinical standard method to quantify calcified 
plaque in the coronaries and its association with adverse 
CVD outcomes, and additive predictive-value when added 
to traditional cardiovascular risk factors is well-documented 
[83–85]. In a re-analysis of CT imaging scans from the epi-
demiologic MESA reported that categorical density infor-
mation of coronary calcification (weighted 1–4 of peak HU, 
100, 200, 300, >400) identifies patients with a higher from 
those with a lower number of cardiovascular events [86]. 
Conversely, several studies have reported that non-calcified 
soft, lipid-rich coronary plaques are rupture-prone and 
that extensive calcification is a marker of plaque stability 
[87–89]. However, spotty calcification and microcalcifica-
tion may adversely impact stability in these plaques, high-
lighting the controversial role of plaque calcification [90]. 
Calcification in carotid plaques was studied in the Diabetes 
Heart Study which identified carotid artery calcification as 
a significant predictor of cardiovascular events [91]. Other 
studies suggested that carotid artery plaque calcification pre-
dicts atherosclerosis burden and subsequent vascular events 
[40, 92, 93]. Nandalur et al. found a significant association 
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between raw carotid calcium scores and luminal stenosis in 
49 patients of whom 43 presented with calcifications [94]. 
The quantification of carotid artery calcification on high-
resolution micro-CT has been histologically validated, show-
ing strong agreement with von Kossa stained sections [95].

Microcalcification

The early stage of calcification has been associated with mast 
cells and macrophages [96]. Electron microscopy of calcific 
lesions in aortae and mitral valves has identified crystalline 
hydroxyapatite among micro-spherical particles in tissues, 
suggesting that calcium- and phosphate-rich spherical par-
ticles are the first mineralized structures to appear in ectopic 
tissues [97, 98]. In carotid plaques, intraplaque calcification 
has been found to be distributed heterogeneously, and his-
tologically determined calcification size in carotid endar-
terectomy (CEA) tissues extends across several orders of 
magnitude under bright-field microscopy [99]. It has been 
suggested that the action of lipoprotein-associated phospho-
lipase A2 (Lp-PLA2) on oxidized low-density lipoprotein 
(oxLDL) produces lysophosphatidylcholine, an atherogenic 
agent which can, in turn, induce vascular smooth muscle 
cells (VSMCs) to differentiate into calcifying vascular cells 
in vitro [67, 100]. The levels of oxLDL and Lp-PLA2 activi-
ties have been shown to be high in the bifurcation segment 
of CEA tissues which may give rise to microcalcifications 
observed by our group previously [99].

Although previous analyses have associated calcified 
lesions with plaque stability [101, 102], recent studies 
indicate that calcification size, density, and location may 
be important determinants of plaque rupture risk [86, 90, 
103]. However, the exact mechanism of calcification includ-
ing spatial distribution and size (including microcalcifica-
tions) within atherosclerotic lesions remains incompletely 
understood, and additional studies will need to be conducted 
in carotid plaques and in other vascular beds [30, 104].

Intraplaque Hemorrhage

There are conflicting reports in terms of identifying IPH on 
CT. Some findings suggest that CT density is higher in fatty 
plaques with IPH, while other results show no difference 
in HUs. U-King-Im et al. studied IPH in 167 consecutive 
patients with carotid MRI and CTA within 3 weeks [105]. 
The group reported a considerable overlap in the distribu-
tion of HUs for plaques with compared to those without 
IPH, suggesting a limited usefulness of plaque density in 
identifying carotid IPH [105]. Eisenmenger et al. reported 
on detecting carotid IPH in a retrospective cohort study of 
96 patients who underwent carotid MRA and CTA within 
1 month [106]. Carotid CTA-based measures of adventitial 
calcification and soft plaque could predict MRA-defined IPH 

using mixed-effects multivariable Poisson regression [106]. 
In addition, two more studies have shown that IPH can be 
identified using CT [107, 108]. However, more evidence and 
validation studies are needed to determine the accuracy of 
CTA imaging to detect carotid IPH.

Lipid‑Rich Plaques, Plaque Ulceration, and Fibrous 
Cap

Carotid fatty soft plaque and calcified plaque have been 
identified with CT imaging based on HU values [109, 110]. 
MDCT allows for an accurate identification of plaque ulcera-
tions and plaque enhancement after contrast injection, and 
the results are comparable to histopathology [111]. However, 
assessment of plaque ulceration using CT can be limited for 
small ulceration due to halo or edge blur artifacts. Saba et al. 
studied 47 consecutively enrolled patients with symptomatic 
carotid disease who underwent CTA imaging preprocedur-
ally [111]. Histopathology comparisons were made using 
CEA tissues and preprocedure imaging which revealed that 
specimen with a fissured fibrous cap had a significantly 
larger plaque contrast enhancement as compared to CEAs 
with non-fissured fibrous caps.

Adventitial neovascularization and inflammation have 
been studied by CT, and it has been suggested that the 
presence of carotid microvascular networks are related to 
symptomatic patients with higher degree of stenosis [112]. 
However, it has to be noted that 18F-fluorodeoxyglucose 
(18F-FDG) PET-CT is the gold standard to assess carotid 
plaque inflammation, also referred to as plaque activity. A 
recent study of 130 individuals by Joshi et al. showed that 
arterial segments with subsequent incident calcification, 
including carotids, had the highest baseline 18F-FDG PET-
CT uptake, a marker of plaque inflammation, suggesting that 
inflammation precedes plaque calcification [80].

Carotid CT Imaging and CVD Risk Assessment

A recent retrospective study by Mosleh et al. described the 
efficacy of CTA for carotid artery disease to assess the risk 
of adverse cardiovascular events [113]. The study suggested 
that the presence of carotid calcification and soft plaque 
can be both significant predictors of increased risk of acute 
myocardial infarction (AMI) and or >50% coronary artery 
stenosis within a year. Similarly, a study by Magee et al. 
presented a calculative approach to determining stroke risk 
by combining clinical features and CT findings [114]. The 
results highlighted that a maximum carotid wall thickness 
of > 4mm on CT, along with older age, and hypertension 
could help to identify patients at a higher risk of developing 
incident ischemic stroke.

A recent study from MESA [115] included 2673 partici-
pants with zero coronary artery calcium (CAC) who also 
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underwent carotid plaque ultrasonography and were fol-
lowed prospectively for 16.1 years to ascertain associations 
between carotid plaque measures and CVD events. Carotid 
plaque presence and burden were independently associated 
with subsequent coronary heart disease risk and incident 
CAC among asymptomatic individuals without coronary 
artery calcification, highlighting the importance of carotid 
imaging to assess CVD risk.

Limitations of CT Imaging

Overall, CT is an advantageous imaging modality for visual-
izing atherosclerotic plaque morphology and plaque char-
acteristics. The main limitation of CT imaging is ionizing 
radiation [116]. A recent study including 12 million youth 
found an increase in overall cancer incidence after adjusting 
for age and sex among individuals who underwent diag-
nostic low-dose ionizing radiation compared to those who 
were not exposed [117]. These findings indicate that diag-
nostic techniques including but not limited to CT imaging 
should be utilized when there is a clear clinical need. CT 
radiocontrast agents are associated with various side effects. 
Andreucci et al. describe various adverse outcomes of the 
radiocontrast dye used in CT imaging which can range from 
thyroid dysfunction, nephropathy, and hypersensitivity reac-
tions [118]. Other limitations include beam hardening arti-
fact due to dense calcification and mixed findings on detect-
ing plaque characteristics due to an overlap of HU values of 
plaque components and low contrast for lipid-rich tissues 
(IPH, LRNC and fibrous tissues) [62, 119].

Conclusion

Vascular imaging remains of central importance in assessing 
and quantifying of cardiovascular disease. Non-invasive ath-
erosclerotic plaque imaging and in particular carotid artery 
imaging have advanced substantially in recent years. Recent 
evidence shows that carotid plaque characteristics and not 
only established measures of carotid plaque burden and ste-
nosis are independently associated with CVD outcomes. 
The field of carotid imaging is undergoing a major transi-
tion from carotid plaque burden imaging toward imaging of 
carotid plaque characteristics. A growing number of reports 
including several large studies have shown that the presence 
of at least one of the prominent carotid plaque characteristics 
including the presence of a lipid core, intraplaque hemor-
rhage, thin fibrous cap, or calcification is associated with 
incident CVD events. More studies are needed to clearly 
differentiate the impact of individual and multiple plaque 
characteristics including their presence versus volume on 
CVD risk assessment and adverse outcomes.
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