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Abstract

Purpose of Review The COVID-19 pandemic has infected over > 11 million as of today people worldwide and is associated with
significant cardiovascular manifestations, particularly in subjects with preexisting comorbidities and cardiovascular risk factors.
Recently, a predisposition for arterial and venous thromboses has been reported in COVID-19 infection. We hypothesize that
besides conventional risk factors, subjects with elevated lipoprotein(a) (Lp(a)) may have a particularly high risk of developing
cardiovascular complications.

Recent Findings The Lp(a) molecule has the propensity for inhibiting endogenous fibrinolysis through its apolipoprotein(a)
component and for enhancing proinflammatory effects such as through its content of oxidized phospholipids. The LPA gene
contains an interleukin-6 (IL-6) response element that may induce an acute phase—type increase in Lp(a) levels following a
cytokine storm from COVID-19.

Summary Thus, subjects with either baseline elevated Lp(a) or those who have an increase following COVID-19 infection, or
both, may be at very high risk of developing thromboses. Elevated Lp(a) may also lead to acute destabilization of preexisting but
quiescent atherosclerotic plaques, which might induce acute myocardial infarction and stroke. Ongoing studies with IL-6
antagonists may be informative in understanding this relationship, and registries are being initiated to measure Lp(a) in subjects
infected with COVID-19. If indeed an association is suggestive of being causal, consideration can be given to systematic testing
of Lp(a) and prophylactic systemic anticoagulation in infected inpatients. Therapeutic lipid apheresis and pharmacotherapy for
the reduction of Lp(a) levels may minimize thrombogenic potential and proinflammatory effects. We propose studies to test the
hypothesis that Lp(a) may contribute to cardiovascular complications of COVID-19.
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Introduction develop acute respiratory distress syndrome (ARDS) character-

ized by a rapid onset of bilateral inflammation in the lungs. The

The COVID-19 pandemic has infected millions of people
around the world. Severity of respiratory distress and cardio-
vascular disease (CVD) in response to infection ranges from
asymptomatic individuals to death. Respiratory failure is most
often the cause of death in COVID-19 patients [1]. Patients
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inflammation involves an acute increase in several proinflam-
matory cytokines, a process termed “cytokine storm.” This
severe inflammatory response causes increased leakiness of
the blood vessels and an induction of a procoagulant state,
eventually increasing the risk of multiorgan damage.
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Persistent elevation of cytokines, predominantly IL-1b and
interleukin-6 (IL-6), predicts a higher likelihood of an unfavor-
able outcome, including death [2, 3]. In addition to respiratory
failure, data from China suggests that 20-30% COVID-19 pa-
tients report cardiovascular injury, which contributes to 40% of
deaths [4]. Most commonly, up to 30% of hospitalized subjects
develop microangiopathy characterized by either microthrombi
or clinically apparent deep venous thromboses and pulmonary
emboli. In addition, myocardial injury, defined by elevated
cardiac biomarkers such as high-sensitivity troponin I (hs-
cTnl), was commonly found in non-survivors. The rise of hs-
cTnl follows the increase of inflammatory markers such as IL-
6 and may be a consequence of the cytokine storm [5, 6¢].
Finally, stroke in otherwise young individuals has been report-
ed with no identified etiology to date. In view of the high rates
of cardiovascular complications in patients infected with
COVID-19, we propose that elevated Lp(a) levels should be
studied as an etiological agent that links thrombosis and inflam-
mation. We outline the rationale behind this hypothesis and
propose avenues of research to address it [7].

COVID-19 and Risk of Thrombosis

A predisposition for arterial and venous thromboembolic com-
plications has been recently discovered as a result of COVID-19
infection. This might be due to the prolonged inflammatory
response, decreased physical activity during infection, and re-
duced oxygen levels in the circulation. In a Dutch cohort study,
13% of hospitalized COVID-19 patients had symptomatic ve-
nous thromboembolism despite routine thrombosis prophylaxis,
as compared with 0.85-2.89% in high-risk non-COVID-19 pa-
tients using thrombosis prophylaxis [8]. In COVID-19 patients
admitted to the ICU, the rate of thrombotic complications in-
creased to 31% [9]. Mechanistically, Harzallah et al. reported a
positive lupus anticoagulant test in 45% of COVID-19 patients
[10]. In addition, although antiphospholipid antibodies are di-
rected to many antigens, a proportion have been shown to bind
to oxidized phospholipids, which are also carried by Lp(a) [11,
12]. Additionally, researchers at Mount Sinai Hospital have re-
ported, over a 2-week period, a sevenfold increase in large vessel
stroke for COVID-19 patients under 50 years old. Among these
patients, all experienced either no or mild COVID-19 symptoms
[7¢]. Finally, Zhang and colleagues found that COVID-19-
infected patients presenting with thrombocytopenia, coagulopa-
thy, and the presence of anticardiolipin antibodies had devel-
oped cerebral infarcts [9, 13¢, 14-16].

Lp(a) and Antifibrinolytic Effects

Lp(a) is composed of an LDL particle bound to
apolipoprotein(a) (apo(a)). Lp(a) is an independent risk factor
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for CVD, and levels are primarily genetically determined,
with a small influence of environmental factors.
Approximately, 20-30% of the world’s population have an
elevated Lp(a), defined as > 50 mg/dL or > 125 nmol/L [17].
There are exceptions to generally stable levels, including a
stressful environment such as sepsis, in which Lp(a) levels
are acutely elevated [18, 19]. Normal lifestyle activities such
as diet, exercise, and weight loss have limited effect on Lp(a),
and lipid medications, such as statins, may modestly raise
Lp(a) levels [20, 21]. Lp(a) may act as an acute phase reactant
and has been noted to be increased in acute cardiovascular
events [22-26]. There is currently no available pharmacother-
apy approved by regulatory agencies which is targeted at the
reduction of Lp(a), which limits therapeutic options solely to
lipid apheresis.

Apo(a) is highly homologous to plasminogen but has no
fibrinolytic activity. Data suggests that the apo(a) compo-
nent of Lp(a) inhibits activation of plasminogen to plasmin
by endogenous tissue plasminogen activators as well as
competing for binding of plasminogen and plasmin to
established fibrin clots, thus compromising clot lysis.
Other potential prothrombotic actions by Lp(a) include an
increase in the expression of PAI-1 to inhibit fibrinolysis
and the inactivation of tissue factor pathway inhibitor
(TFPI), which augments factor VII activation and pro-
motes blood coagulation [27, 28].

In regard to venous thromboembolism (VTE), von
Depka and colleagues analyzed the role of elevated Lp(a)
levels (> 30 mg/dL) in a population of 685 patients with at
least one episode of VTE, compared with a control group,
and discovered elevated Lp(a) levels were found in 20% of
all patients, compared with 7% in the control group
(P<.001, odds ratio [OR] 3.2, 95% confidence interval
[CI] 1.9-5.3) [29]. A recent meta-analysis of 90,904 indi-
viduals and 5029 stroke events found an association with
Lp(a) when comparing high and low Lp(a) levels and re-
vealed an estimated OR of 1.41 (95% CI, 1.26-1.57) for
case-control studies and an estimated RR of 1.29 (95% ClI,
1.06-1.58) for prospective trials [30]. However, other data
and in particular genome-wide association studies have not
supported a role of Lp(a) in VTE [31]. These data suggest
that Lp(a) may be more relevant in clot propagation initiat-
ed by another primary etiologic agent, rather than clot ini-
tiation, and may tip the balance of endogenous coagulation
and fibrinolysis to clot enlargement and clinical awareness.
Interestingly, elevated Lp(a) levels have also been linked
with childhood arterial ischemic strokes [32, 33].

The Role of IL-6 in Plasma Lp(a) Levels

Due to the strong association of inflammatory factors and poor
clinical outcome, the FDA has provided emergency use
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authorizations and expedited initiation of clinical trials to eval-
uate various therapies targeted at cytokine reduction as treat-
ment options for COVID-19 [34, 35¢]. Anticytokine drugs
which block IL-6 function using a monoclonal antibody
against its receptor (e.g., tocilizumab) as well as apheresis
therapy (Spectra Optia Apheresis System) for the removal of
cytokines from blood have initiated clinical trials for COVID-
19, NCT04372186 and NCT04358003, respectively [36¢, 37].
In conjunction with the ongoing clinical trial, the Spectra
Optia Apheresis System with the Depuro D2000 Adsorption
Cartridge received an emergency use authorization from the
FDA to treat patients18 years of age or older with confirmed
COVID-19 admitted to the intensive care unit with confirmed
or imminent respiratory failure. We hypothesize that in addi-
tion to the aforementioned risk factors, an elevated Lp(a) may
indicate that an individual is at a higher risk of developing a
severe reaction to COVID-19 infection, due to the extensive
relationship between Lp(a) and multiple proinflammatory
pathways, as well as proatherogenic and prothrombotic
properties.

IL-6 is a 27KD cytokine involved in a variety of immune
and inflammatory responses. Plasma levels are generally very
low, but in the context of acute infection, plasma levels rise
substantially due to increased production by a variety of cell
types, including macrophages and T and B lymphocytes. IL-6
then participates in host defense functions, including potenti-
ating the production of immunoglobulins and stimulating the
production of acute phase proteins by the liver [38]. It has
been shown that the genes of several such proteins contain
an IL-6 response element (RE) CTGGGA, including the
LPA gene [39]. In fact, the promoter of the LPA gene contains
5 IL-6 REs, but it appears that only IL-6 RE6 participates in
upregulation of apo(a) production [40]. In view of these prop-
erties, one could postulate that during COVID-19 infection,

the increases in plasma IL-6 levels, which can be more than
20-fold compared with baseline levels, could also upregulate
hepatic apo(a) synthesis, leading to increased assembly and
secretion into plasma of Lp(a) particles into the circulation
(Fig. 1). In addition, although it has not been studied in
COVID-19, it has been shown that OxPL are produced in
the lungs of humans and animals infected with SARS, an-
thrax, or HSN1 [41]. Lp(a) is the preferential lipoprotein ac-
cumulator of OXPL [12] and has been shown to be responsible
for many of'its proinflammatory effects [42—44, 45¢, 46¢, 47].

Lp(a) has been documented to be an acute phase reactant in
a variety of settings, including in myocardial infarction and
acute coronary syndromes [22-24], post percutaneous coro-
nary intervention [25, 26], major non-cardiac [22, 48] and
cardiac surgery [22, 48, 49], Crohn’s disease [50], and rheu-
matological disorders [51, 52], with an increase in Lp(a) levels
more than 100% of baseline in some studies. In contrast, the
effect of acute bacterial and viral infections on the plasma
Lp(a) level has not been reported in the literature to the best
of our knowledge, outside of one small study showing an
approximate doubling of Lp(a) levels 4 months after infec-
tious mononucleosis with Epstein-Barr virus [53].

In addition to preclinical studies in genetic, molecular bi-
ology and cell culture models, the relationship of IL-6 plasma
levels to Lp(a) has been evaluated in several clinical studies.
Horvath et al. [54] reported a strong relationship between
Lp(a) and plasma IL-6, which seemed to be stronger in sub-
jects with a higher number of KIV repeats on apo(a), which
are also associated with lower Lp(a) levels. Additional clinical
evidence has been provided with the approval of the IL-6
receptor (IL-6R) monoclonal antibody (mAb) tocilizumab
[40, 55, 56]. These studies have shown a 30-40% decrease
in Lp(a) levels in response to tocilizumab that occurs within
1 month of therapy. In contrast, in an elegant study by Muller

Fig. 1 Relationship of IL-6 to
LPA gene responses. In response
to any proinflammatory stimulus,
an increase in IL-6 may lead to
IKL-6 binding to a response
element in the LPA gene
promoter, which then leads to
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et al. [40], the anti-TNFalpha antibody (adalimumab) did not
affect Lp(a) levels, showing a specific effect to IL-6 on Lp(a)
biology as opposed to a generalized proinflammatory effect
[40]. In addition, sarilumab another anti-IL-6R mADb has been
shown to lower Lp(a) by 41% compared with 2.8% for
adalimumab [57]. Both tocilizumab and sarilumab have com-
pleted phase 2 trials in severe COVID-19 patients, and phase 3
trials are currently underway.

The specificity of IL-6 in regulating Lp(a) was further dem-
onstrated in 1153 subjects showing that subjects with elevated
serum IL-6 also were more likely to have elevated Lp(a). In
transcriptomic analysis of human liver biopsies, IL-6 response
genes correlated with LPA gene expression in vivo.
Furthermore, tocilizumab inhibited IL-6-induced LPA
mRNA and protein expression in human hepatocytes and the
Lp(a)-lowering effect was mediated by the responsive element
CTGGGA at promoter positions —46 to —40 [40].

Prevalence of Lp(a) and Population
Differences in Ethnic/Racial Groups

While data is still being collected, the CDC has reported that
racial and ethnic minority groups represent a greater propor-
tion of COVID-19 patients relative to the percentage of the
surrounding population. The preeminent driving force that
determines disease severity in each individual is unclear, but
a combination of socioeconomic status, age, and multiple co-
morbidities including weight, diabetes, hypertension, and
CVD history likely plays a partial role [58]. Furthermore,
living conditions including multigenerational households
and densely populated neighborhoods are more common in
minority groups. Working environment and types of employ-
ment can increase an individual’s risk of exposure for those

who have to continue working due to financial obligations.
Hispanic workers are less likely to have access to paid sick
leave compared with white non-Hispanic workers [59]. In the
USA, African Americans appear to have an increased risk of
morbidity and mortality in response to contracting COVID-19
infection and the disproportional response between races is
currently not elucidated.

Estimates vary between individual states, but higher mor-
tality has been documented in African Americans across the
USA. For example, in Louisiana where African Americans
make up 32% of the population, they account for 70% of the
people who have died from COVID-19 and similar projec-
tions are being seen across the country [60°]. Compared with
other races, individuals of African descent have a higher rate
of elevated Lp(a), as well as larger sized lipoproteins, which is
associated with an additional inflammatory risk, including IL-
6 elevations [54, 61]. Global estimates of Lp(a) levels are
noted in Fig. 2.

Apolipoprotein E (APOE) may also be implicated in
racial disparities in COVID-19. The APOE gene is com-
posed of 3 alleles (E2, E3, and E4) with six genotypes (E2/
2, E2/3, E2/4, E3/3, E3/4, and E4/4). The presence of
APOE4 indicates a higher risk for developing CVD and
dementia relative to the other isoforms [62, 63]. Subjects
with African descent have a higher frequency of APOE4
genotypes, in addition to a higher mean Lp(a) level by 2—4-
fold compared with Caucasians [64]. Relative to those of
European and Asian descent, individuals of African de-
scent may have up to twice the frequency of the E4 allele
[65, 66°¢]. APOEA4 is also associated with a higher level of
proinflammatory cytokines and promotes prothrombotic
properties [67]. Furthermore, in an analysis of >400,000
individuals, apoE4 isoforms strongly influenced mass
levels of Lp(a) with 65% higher Lp(a) levels in APOE4/4

Fig. 2 Global prevalence of
elevated Lp(a) levels. Estimated
prevalence of elevated Lp(a) (>
50 mg/dL or > 125 nmol/L) is > 1
billion people. Due to population
differences in the presence of the
number of KIV, isoform repeats
and other unknown factors, the
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from reference [61]
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subjects (Fig. 3) [68+¢], linking the presence of apoE and Lp(a)
in subjects with elevated levels of both. It has been suggested
that, possibly due to an increase innate immune response, indi-
viduals with an APOE4 polymorphism may be at a higher risk
for a severe response to COVID-19 [66°¢]. Whether APOE
genotypes influence the prognosis of COVID-19 has not been
explored to date.

Proposals for Research in COVID-19 to Define
a Potential Role in Lp(a) in COVID-19 Infection

The observation that COVID-19 is associated with a very high
rate of thromboses, its relationship to the cytokine storm and
specifically with high levels of IL-6, coupled with IL-6’s abil-
ity to strongly upregulate Lp(a) levels, and the high homology
of Lp(a) to plasminogen, suggests the hypothesis that some of
the prothrombotic and inflammatory effects of COVID-19
may be emanating from either baseline elevated Lp(a) or acute
increases in Lp(a). We propose the following studies to eval-
uate this hypothesis:

1. Measure Lp(a) serially in hospitalized subjects and ana-
lyze according to the incidence of thrombotic phenotypes.
Consider measurement of OxPL-apoB levels to identify
Lp(a) particles with particularly high OXxPL content that
may reflect high oxidative stress and potential for inflam-
mation and procoagulant effects. This could be enhanced

45 | p<0.0001 ANOVA
40 38.5

£2/e2 £2/e3 €2/ed £3/e3 €3/e4 4/l

Fig. 3 Relationship of APOE genotypes to Lp(a) mass. Corresponding
mean (SD) Lp(a) levels increased significantly according to APOE
genotype ranging from 23.4 for e2/e2 to 38.5 (44.1) mg/dL for e4/e4
(P<0.0001; ANOVA). Median Lp(a) levels also increased by
genotype, from 11 for €2/e2 to 20 mg/dL for e4/e4

by organizing consortia and pooling data for additional
power (Dutch COVID-19 biobank, Columbia University
COVID-19 biobank, UK biobank coronavirus research,
etc.). This will define the prevalence of baseline elevated
Lp(a) in subjects hospitalized with COVID-19 and also
assess temporal changes in levels. The population preva-
lence of Lp(a) is well known, and any deviation for this
would suggest a potential link [69].

2. Measure Lp(a) in subjects presenting with COVID-19 and
VTE, pulmonary emboli, acute ST-elevation MI, and
acute stroke; those who are troponin positive; and those
presenting with other manifestations of CVD, such as
heart failure and myocarditis. In particular, the transition
of a stable plaque to an inflamed, prothrombotic one may
be highly relevant to Lp(a)-OxPL as an etiologic entity
[70].

3. Measure Lp(a) at serial time points in ongoing clinical
trials of IL-6 inhibitors and other cytokine-directed thera-
pies and assess whether levels change in response to IL-6
inhibition. We hypothesize that Lp(a) levels would in-
crease significantly in subjects treated with the control
and this rise would be blunted in subjects treated with
IL-6-directed therapy. In prior studies with IL-6 antago-
nists in patients with rheumatoid arthritis, this effect
entailed a 30% reduction [51, 52].

4. Correlate baseline levels and the change in Lp(a) levels
with prothrombotic and inflammatory biomarkers
measured.

5. Assess if an association is present with Lp(a) levels and
ICU/ventilation parameters and in-hospital and long-term
outcomes.

With the association of high rates of thrombotic complica-
tions in COVID-19 patients, efforts are already underway to
assess for clinically silent DVT/PE and to treat with systemic
anticoagulation. Such a process can be considered for study as
a prophylactic measure in subjects with elevated Lp(a).

If indeed an association is shown and is suggestive of being
causal, consideration can also be given to lipid apheresis which
was recently approved by the FDA as a therapeutic option for
elevated Lp(a) (>60 mg/dL) in conjunction with CVD and
persistently elevated LDL-C > 100 mg/dL. Lipid apheresis
has been shown to rapidly reduce Lp(a) levels substantially
and also to improve blood rheology as well as reduce apoE4
isoforms and inflammatory markers, including IL-6 and oxi-
dized phospholipids [71, 72]. In fact, lipid apheresis has been
shown to reduce the frequency of refractory angina and im-
proved magnetic resonance imaging measured coronary blood
flow in subjects with elevated Lp(a) [73]. Consideration should
be given to initiating pharmacotherapy trials using RNA ther-
apeutics [74¢, 75] which can lower Lp(a) > 80% and which are
currently in phase 2 and 3 outcome studies, respectively, to
assess whether this may improve prognosis.
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In conclusion, the confluence of a large variety of cardiovas-
cular complications in COVID-19 patients, which have the
commonality of both thromboses and inflammation, may sup-
port the hypothesis that one potential etiological agent in the
clinical course is elevated Lp(a). Testing this hypothesis is
straightforward and would simply require the measurement of
Lp(a) levels in several clinical scenarios of the COVID-19 pre-
sentation and assessing relationships to clinical phenotypes that
may be linked pathophysiologically. We urge interested parties
to participate in such clinical research to further understand if a
potential role exists and if so to consider Lp(a)-lowering ap-
proaches to minimize cardiovascular complications.
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