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Abstract
Purpose of Review Atherogenesis, once thought to be a pas-
sive process, is now recognized as a dynamic, immune-driven
process. The critical innate immune cells, including neutro-
phils, normal-density granulocytes, and their newly identified
subset low-density granulocytes, are moving to the forefront
of interest in cardiovascular medicine due to their abundance
in atherosclerotic plaques and chronic inflammatory diseases
associating with early cardiovascular disease (CVD) such as
psoriasis. In this review, we discuss the emerging roles of
neutrophils in CVD and how they play a potential role in early
CVD observed in psoriasis patients. This review aims to de-
scribe the roles of neutrophils in both early atherosclerosis and
psoriasis.
Recent Findings Recent work has demonstrated mechanistic
links between vascular inflammation and neutrophil frequen-
cy. Evolving mouse models and clinical trials targeting IL-17-
associated pathways continue to elucidate contributions of
neutrophils in both atherosclerosis and psoriasis.
Summary Early animal, in vitro and human studies suggest an
important emerging role of neutrophils in atherosclerosis and
psoriasis.
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Introduction

Patients with systemic inflammatory diseases are at a high risk
of developing early-onset cardiovascular disease (CVD).
Although the elevated CVD risk has been established, it is
not known if the biological mechanisms associated with
early-onset CVD in inflammatory patients differ from those
observed in the general population. Psoriasis is a chronic in-
flammatory skin disorder affecting 2–4% of the population
and represents a systemic inflammatory disease associated
with an increased risk of atherosclerotic CV events [1–3].
Given the recent success of IL-17 biologic agents partially
targeting neutrophils in treating psoriatic skin disease, neutro-
phils may be a potential link driving the initiation and progres-
sion of CVD in psoriasis patients. Neutrophils, a short-lived
subset of granulocytes generated in the bone marrow, are the
most abundant circulating white blood cell in mammals.
Neutrophils are the first responders of the innate immune re-
sponse, where they attach, role, and migrate through the en-
dothelial barrier into various inflamed tissues upon recogni-
tion of pathogen invasion or tissue damage [4–6]. The primary
defense mechanism of neutrophils is that they harbor granule
proteins, such as myeloperoxidase, neutrophil elastase, and
LL-37, that target microbes and digests tissues, promoting
an inflammatory response. To this end, we summarize the
current understanding of the role of neutrophils in CVD and
their emerging mechanisms linking early atherogenesis in
psoriasis.

Neutrophils in Early Atherogenesis

Atherosclerosis was initially described as a passive accumu-
lation of lipids in the arterial wall at sites of disturbed laminar
flow [7], but is now acknowledged as an immune-driven

This article is part of the Topical Collection on Vascular Biology

* Nehal N. Mehta
nehal.mehta@nih.gov

1 Cardiovascular and Pulmonary Branch, National Heart, Lung and
Blood Institute, NIH, 10 Center Drive, CRC, Room 5-5140,
Bethesda, MD 20892, USA

Curr Atheroscler Rep (2017) 19: 53
https://doi.org/10.1007/s11883-017-0692-8

mailto:nehal.mehta@nih.gov
http://crossmark.crossref.org/dialog/?doi=10.1007/s11883-017-0692-8&domain=pdf


process leading to endothelial dysfunction [8]. Altered phys-
iological states such as hyperlipidemia, increased circulating
pro-inflammatory cytokines, and high shear stress all contrib-
ute to endothelial dysfunction which promotes atherogenesis
[9]. These dysfunctional endothelial cells are marked by de-
creased barrier integrity, vasodilation, and expression of cell
adhesion molecules, including intracellular adhesion mole-
cule-1, E-selectin, and vascular cell adhesion molecule-1
[10]. Endothelial dysfunction is further exacerbated by oxi-
dized lipids generated from reactive oxygen species that ac-
cumulate in the intima, resulting in leukocyte recruitment [9,
11]. If recruited leukocytes fail to clear the oxidized lipids,
they undergo apoptosis, increasing cellular debri and further
fueling the inflammatory response. Over time, the inflamed
lesions lead to luminal narrowing and subsequent ischemia or
superimposed thrombosis [12, 13].

It has become clear that both inflammation and hyperlipid-
emia are at the epicenter of atherosclerosis development [14].
While atherosclerotic murine models provide insight into cer-
tain mechanistic elements of atherogenesis, the full extrapola-
tion of the biological mechanisms responsible is difficult due
to differing immune systems between humans, mice, and rab-
bits [15, 16]. Despite this limitation, the innate and adaptive
immune cells identified as key players in atherosclerosis, in-
cluding T cells, monocytes, platelets, and dendritic cells, and
their mechanisms have been extensively investigated [17–19].
However, the roles of neutrophils in early atherogenesis are
understudied. Over the last decade, neutrophils are becoming
recognized as important contributors to atherogenesis devel-
opment and progression, despite their mechanisms of action
remaining elusive.

The defense mechanisms of neutrophils are rather unique
and specific to this short-lived innate immune cell.
Neutrophils serve as important primary defenders in acute
inflammatory responses, releasing reactive oxygen species
and proteolytic enzymes to challenge foreign pathogens
which can also contribute to tissue destruction [20].
Additionally, neutrophils possess important activator, regula-
tor, and effector cell functions in innate immunity [21] includ-
ing the synthesis and release of cytokines, chemokines, and
growth factors upon stimulation. When interacting with dam-
aged endothelium, neutrophils augment endothelial stress by
releasing granule-based proteins that increase leukocyte re-
cruitment to the endothelial cell layer and ultimately promote
inflammation and foam cell development, a dysfunctional
macrophage subset that drives atherosclerosis [22].

Neutrophil localization to atherosclerotic plaques has been
evidenced by immunohistochemical and pathological murine
and human studies. Using Ly6G, a murine neutrophil-specific
antigen, and antibodies to myeloperoxidase (MPO), a primary
neutrophil granule protein, neutrophils are identified in early
lesions both in the intimal, subendothelial, and shoulder re-
gions of atherosclerotic lesions in humans and murine models

[23–25]. In high-fat diet rabbit models of atherosclerosis, val-
ued because their lipoprotein metabolism is comparable to
humans [16], atherosclerotic plaques showed strikingly simi-
lar characteristics to human plaque designations, including
inflammation, cholesterol crystal development, diverse fi-
brous cap development, and increasedmacrophage andmono-
cyte density, all subsequent phenomena of neutrophil infiltra-
tion [26, 27]. Additionally, activated neutrophils marked by
Fpr2 and p22phox are observed in human atherosclerotic le-
sions [28]. Neutrophils expressing CD66b were found in high
volume in rupture-prone human plaques characterized by
large lipid cores, highmacrophage counts, low smoothmuscle
counts, and low collagen counts [29]. Furthermore, neutro-
phils are found in occlusive thrombi and culprit lesions of
acute coronary syndrome patients [30, 31] suggesting neutro-
phils play a role in atherosclerotic progression.

Neutrophil homeostasis is of primary importance in both
acute inflammation and immune dysfunction. The frequency
of circulating neutrophils at any given time is highly regulated
from the bone marrow to the blood by granulocyte colony
stimulating factor (G-CSF), which consequently is upregulat-
ed in atherosclerosis by pro-atherogenic cytokines including
IL-17 and TNF-α [32, 33]. In humans, mechanisms elucidat-
ing the pathway of bone marrow derived neutrophil genera-
tion are unclear; however, chronic stress, via the sympathetic
nervous system, increases circulating neutrophil counts in
both humans and mice [34]. In the bone marrow, the
CXCR4/CXCL12 and CXCR2/CXCL1-CXCL8 axes signifi-
cantly impact the release of neutrophils into the blood stream.
It has been shown that a disruption in the bone marrow
CXCR4/CXCL12 interaction leads to neutrophilia and in-
creased atherosclerosis [35]. Conversely, disruption in the
neutrophil-mobilization CXCR2/CXCL1-CXCL8 interaction
results in neutropenia and reduced atherosclerosis [36] sug-
gesting that neutrophil homeostasis is critical in the develop-
ment of atherosclerosis. Furthermore, neutrophil counts are
significantly higher in patients with increased incidence of
major adverse CVevents, and their frequency associated with
cardiovascular outcome, a relationship not observed with eo-
sinophil, basophil, monocyte, or lymphocyte counts [37].
Finally, in patients lacking NADPH oxidase resulting in de-
creased reactive oxygen species production (chronic
granulotomatous disease), the manifestation of atherosclerosis
is not observed despite elevated CVD risk factors [38]. Taken
together, neutrophil homeostasis and atherosclerosis share a
potential biological mechanism which warrants further inves-
tigation in humans.

Upon entry into the endothelial intima, neutrophils and
their granule proteins recruit and activate monocytes, facilitat-
ing atherogenic progression. In murine studies, the absence of
neutrophils significantly decreased the number of macro-
phages and monocytes within the arterial walls of
atherosclerosis-prone mice [23]. Additionally, the neutrophil
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lysate of patients suffering from neutrophil granule deficiency,
specifically alpha defensins, human neutrophil peptides, and
LL-37, lacked the chemotactic effect on monocytes [39].
Azurocidin, LL37, and cathepsin G, all prominent neutrophil
granule proteins found in atherosclerotic plaques, activate
FPRs leading to slowing and extravasation of monocytes into
the intima of endothelial cells [40, 41]. Proteinase-3, another
neutrophil granule protein, activates CCL2 expression on en-
dothelial cells, providing another mechanism to recruit mono-
cytes [41]. Indeed, neutrophil granule proteins provide and
augment monocyte recruitment to endothelial cells.

In addition to monocyte recruitment, neutrophil contents
also play a role in foam cell formation and macrophage acti-
vation, a mid-stage hallmark characteristic of atherosclerotic
plaques [42]. Human neutrophil peptides generated oxidative
stress in macrophages, a critical component in foam cell for-
mation [43]. MPO promotes the formation of oxidized low-
density lipoproteins through generated reactive nitrogen spe-
cies [44] and is present in high concentration in the shoulder
region of atherosclerotic plaques in both humans and mice
[25, 45]. MPO is also expelled during neutrophil extracellular
trap (NET) formation, a mechanism that is triggered by cho-
lesterol crystals. These NETs in turn trigger pro-IL-1 in mac-
rophages, activating the inflammasome and ultimately leading
to plaque destabilization [46, 47••]. Consequently, MPO
levels are associated with coronary artery disease risk and
independently predict endothelial dysfunction, suggesting that
neutrophils and their protein products affect early vascular
disease development [48].

The most intriguing defense mechanism of neutrophils re-
cently described is the release of their cytosolic granule pro-
teins bound to nuclear material to combat foreign pathogens
through a biological process termed NETosis [49–51]. Three
types of NETosis have been characterized: suicidal, vital, and
mitochondrial. Definitive characteristics of NETclassification
and pathological relevancy to various diseases are debated in
the scientific community [52]. Despite this, studies of NETs
show promising links to atherogenesis; immunochemical
stainings have identified the presence of NETs at sites of en-
dothelial cell erosion and plaque rupture in human carotid
plaque sections [53•]. NETs have been shown to potentiate
atherosclerosis by macrophage priming and cytokine release
to activate Th17 cells [47]. Additionally, in another chronic
inflammatory disease associated with early-onset CVD, sys-
temic erythematosus lupus (SLE), NETs are shown to induce
endothelial cell dysfunction, stress, activation, and apoptosis
[54–56]. In SLE, a subset of neutrophils termed low-density
granulocytes that undergo spontaneous NETosis have been
identified. Low-density granulocytes from SLE are currently
characterized by high pro-inflammatory activity, altered
phagocytic function, and elevated type I interferon production
upregulating the inflammatory response and ensuing tissue
damage [56–58]. While this specific neutrophil subset may

show important atherogenic properties, further profiling of
these cells and NET-specific action in atherogenesis and auto-
immune disease is needed.

Psoriasis and Early Atherogenesis

Psoriasis is a complex immune-mediated chronic inflammato-
ry disease that affects 2–3% of US adult population, with
higher prevalence among persons of northern European de-
scent [59]. Psoriasis prevalence has increased over time per
retrospective cohort studies of adults and children [60, 61].
Development of psoriasis has strong genetic components
[62–65] and much of this genetic susceptibility has been cen-
tered around the HLA-C locus [66]. Continued genetic anal-
ysis of psoriasis patients has helped elucidate potential asso-
ciation and susceptibility alleles [67]. Psoriasis causes
hyperproliferation of epidermal cells and premature matura-
tion of keratinocytes, subsequently manifesting as areas of red
and scaly skin [59]. The severity of psoriatic skin disease is
classified into mild (< 3% body surface area affected), mod-
erate (3–10%), and severe (> 10% area affected) [68].
Psoriasis can also be quantified using the Psoriasis Area
Severity Index (PASI) score, a score that combines severity
of lesions and the area affected, mainly used in clinical trials
(psoriasis.org/about-psoriasis) [68].

The inflammatory changes in the skin of patients with pso-
riasis can be divided into an infiltrate in the dermis—mainly
activated keratinocytes, dendritic cells, macrophages, and T
cells—and cells in the epidermis—neutrophils with some sub-
types of T cells [59]. In addition to inflammatory cells, a host
of innate immunity proteins, pro-inflammatory cytokines and
chemokines form a cornerstone of the pathophysiology of this
disease [69]. The most widely implicated culprits are pro-
inflammatory cytokines from the IL-1 family, with significant
contribution from the IL-36 sub-family, IL-17, and TNF-α
among others [70]. The inflammatory cells and accompanying
cytokines that are associated with skin disease in psoriasis
have direct and indirect effects in other parts of the body
including liver dysfunction, arthritis, metabolic syndrome,
and psychiatric illness [71].

Epidemiological studies demonstrate that severe psoriasis
has been linked to a 58% increased risk of major adverse
cardiovascular events and 57% increased risk of cardiovascu-
lar death, suggesting implications with psoriasis in atherogen-
esis [72, 73]. Moreover, it has been proposed that severity of
psoriasis may relate directly to the degree of systemic inflam-
mation and extent of cardiovascular disease as measured
in vivo beyond traditional risk factors [73, 74••]. The process
of atherosclerosis resulting from a primary defect in the endo-
thelial cells has been shown to be accelerated in chronic in-
flammatory states [75]. This hypothesis is strengthened by
recent studies that have shown that reduction in distant skin
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inflammation reduced vascular inflammation and coronary
plaque burden [76••, 77••].

In the setting of an unresolved inflammatory milieu, cyto-
kines released from damaged endothelial cells cause prolifer-
ation of smooth muscle cells in the wall of the artery, which
can lead to fibrous cap development. Thinning of the fibrous
cap and expansion of the necrotic core may lead to the forma-
tion of high-risk or “vulnerable” plaque (HRP) [78]. These
plaques are more likely to rupture, exposing the lumen of
the vessel to the prothrombotic contents of the plaque core.
As compared to healthy volunteers, patients with psoriasis
have increased prevalence of HRP [77••]. Furthermore, these
patients have equivalent HRP as older patients with hyper-
lipidemia [77••]. Another likely correlation between these
diseases may be the fact that patients with psoriasis have
been shown to have a more atherogenic lipoprotein profile
with impaired HDL efflux capacity [79]. In addition to this,
it has been shown that psoriasis severity directly correlates
to an increase in obesity, adipose tissue inflammation, and
insulin resistance [80–82]. Indeed, psoriasis presents a va-
riety of direct and indirect risk factors in the development
of atherosclerosis. Larger studies are required to further
elucidate these mechanisms.

Treatments for psoriasis range from topical therapy and
phototherapy (for mild to moderate severity) to systemic
and biologic therapies (moderate to severe severity).

There are several immunotherapeutic treatments targeting
TNF, IL-17, and IL-23 pathways that have shown promise
in recent years [83].

IL-17 Pathway: Atherosclerosis, Psoriasis,
and Treatment

The neutrophil-activating effects of IL-17 and this concordant
action in psoriasis and atherosclerosis implicate neutrophil
activation as a potential link between the two diseases. The
IL-17 pathway is an expansive pro-inflammatory pathway that
may be implicated in both atherosclerosis and psoriasis
(Fig. 1). Broadly defined, the IL-17 pathway is driven by
interactions of IL-17, secreted by specific CD4+ T cells,
neutrophils, monocytes, and NK cells, with other leuko-
cytes fostering pro-inflammatory environments [83]. In
the context of atherosclerosis, Th17 cells are present in
early and developed human plaques as well as Apoe−/−

mice aortic wall before and during atherogenesis
[84–86]. The IL-17 family increases neutrophil prolifera-
tion, circulation, and recruitment via interactions with
CXCL2 , G -CSF, TNF -α , a n d CXCL8 [ 8 7 ] .
Concordantly, multiple human studies summarized by
[88] investigating serum IL-17 levels have found correla-
tions to atherosclerosis development. Circulating IL-17

Fig. 1 The role of neutrophils in psoriasis and atherosclerosis may be
operated in part through an IL-17 mechanism. The inflammatory
microenvironment of a psoriatic lesion and early-stage atherosclerotic
plaque share common elements in the interaction between IL-17 (green)
and neutrophils (purple). Neutrophil net contents and released IL-17

activate keratinocytes in psoriatic lesions and activate endothelial cells
in resting blood vessels. Shared inflammatory cytokines, and neutrophil
and monocyte recruitment chemokines are released following activation,
potentiating inflammation
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was also increased in patients who have suffered unstable
angina [89]. In addition to clinical evidence of IL-17 im-
plications in atherosclerosis, translational mouse models
have augmented its importance in atherogenesis. With
the blockade of IL-17 in APOE−/− mice, monocyte migra-
tion and ultimately atherosclerosis was reduced [90].
There is substantial evidence that IL-17 plays an impor-
tant role in atherogenesis and contributes to neutrophil’s
role as well.

Th17 cells are critical in the pathogenesis of psoriasis.
Upon presentation of proliferation stimulants, Th17 cells, with
stimulus from dendritic cells, become activated, generating a
large pro-inflammatory environment of cytokines that drive
inflammation and recruit other pro-inflammatory leukocytes
to the psoriatic lesion [91–94].While it is known that psoriasis
patients exhibit elevated serum levels of IL-17 compared to
healthy controls, the paradigm of the cellular source of IL-17
in psoriatic lesions is shifting [95]. A study by Bruce et al.
reported in psoriatic lesions, IL-17 is released by neutrophils
and mast cells, suggesting the minor source of IL-17 in these
lesions is the Th17 T cell population. Immunohistochemical
staining of biopsied lesional skin demonstrated the majority of
IL-17 stain co-localized with MPO and multinuclear cells
[96]. Furthermore, it was determined that the release of IL-
17 from neutrophils is a NET-dependent process [96]. In mu-
rine models, the production of IL-17 from neutrophils was
confirmed and shown to be a IL-6/IL-23-dependent mecha-
nism. This finding was confirmed in human neutrophils by
stimulating with recombinant IL-6 and IL-23 combined, there-
fore inducing IL-17 expression [97]. Despite the source of IL-
17, this cytokine is independently implicated in both disease
states, potentially providing association between psoriasis and
accelerated atherosclerosis.

Limitations to verify these summations include both hu-
man and murine data. Currently, psoriasis-like murine models
with atherosclerosis are not fully developed. Current studies
investigating psoriasis-like skin inflammation and atheroscle-
rosis have produced intriguing results [98•, 99]. A model with
both psoriasis and atherosclerosis would be invaluable to elu-
cidating and characterizing mechanistic features between the
two.

Current IL-17 antagonist therapeutics for psoriasis in-
cluding secukinumab and ixekizumab have shown prom-
ising clinical efficacy, both targeting IL-17A chemokines.
Secukinumab, having FDA approval, showed 77.1–81.6%
response in PASI75 and 59% response in PASI90 patients.
Ixekizumab has shown similar results with PASI75 pa-
tients as well as brodalumab, an IL-17 receptor antagonist
[100, 101]. While these show promising results for psori-
atic lesion reduction, effects on the vasculature of the
patients with IL-17 antagonists remain unknown.
Currently, a study is being conducted to test this hypoth-
esis in psoriasis (Vascular Inflammation in Psoriasis-

Secukinumab Trial (NCT02690701)). It is worthy to note
that statin therapy, a common lipid lowering treatment for
psoriasis and cardiovascular disease, has immunomodulatory
effects on human immune cells that may be partially driven by
IL-17 production [102]. Compounded with this, resolving fac-
tors have been shown to attenuate atherosclerosis with and
without statin treatment, partially through downregulation of
key IL-17 producing Th17 cells [103]. Given the success of
biological therapy potentially reducing vascular inflammation
of psoriatic patients [76••], it is reasonable to put forward that
IL-17 antagonists could have similar effects.

Conclusions

Neutrophils play a critical role in the development of athero-
sclerosis. They contribute to endothelial dysfunction, mono-
cyte recruitment, and foam cell formation. Evidence of neu-
trophils in atherosclerotic plaques of humans and murine
models is abundant. Links to atherosclerosis and psoriasis
have been recently suggested, as a variety of direct and indi-
rect risk factors in the development of atherosclerosis are ele-
vated in psoriatic patients. Neutrophils have been shown to
play an important role in the pathogenesis of psoriasis as well.
Mechanistic similarities between psoriasis and atherosclerosis
through the IL-17 pathway give credence to the role of inflam-
mation, specifically neutrophils, in both disease states. Further
studies to better elucidate these relationships are highly need-
ed and warranted.
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