
NONSTATIN DRUGS (E. DEGOMA, SECTION EDITOR)

Targeting ApoC-III to Reduce Coronary Disease Risk

Sumeet A. Khetarpal1 & Arman Qamar1 & John S. Millar1 & Daniel J. Rader1

Published online: 21 July 2016
# Springer Science+Business Media New York 2016

Abstract Triglyceride-rich lipoproteins (TRLs) are causal con-
tributors to the risk of developing coronary artery disease
(CAD). Apolipoprotein C-III (apoC-III) is a component of
TRLs that elevates plasma triglycerides (TGs) through delaying
the lipolysis of TGs and the catabolism of TRL remnants.
Recent human genetics approaches have shown that heterozy-
gous loss-of-function mutations in APOC3, the gene encoding
apoC-III, lower plasma TGs and protect from CAD. This ob-
servation has spawned new interest in therapeutic efforts to
target apoC-III. Here, we briefly review both currently available
as well as developing therapies for reducing apoC-III levels and
function to lower TGs and cardiovascular risk. These therapies
include existing options including statins, fibrates,
thiazolidinediones, omega-3-fatty acids, and niacin, as well as
an antisense oligonucleotide targeting APOC3 currently in clin-
ical development. We review the mechanisms of action by
which these drugs reduce apoC-III and the current understand-
ing of how reduction in apoC-III may impact CAD risk.
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Introduction

The mainstay of reducing risk of developing coronary artery
disease (CAD) has been to pharmacologically decrease

circulating levels of low-density lipoprotein cholesterol
(LDL-C), the predominant risk factor for atherosclerosis.
Multiple effective therapies exist to lower blood LDL-C
levels, including hydroxymethylglutaryl coenzyme A reduc-
tase inhibitors (statins), a cholesterol absorption inhibitor
(ezetimibe), bile acid sequestrants, and most recently, inhibi-
tors of proprotein convertase substilisin kexin 9 (PCSK9), a
negative regulator of the LDL receptor pathway of LDL clear-
ance [1]. While LDL-C lowering through these means has
been remarkably effective, many patients are intolerant to
the adverse effects of these drugs. Additionally, many high-
risk patients continue to possess significant residual risk de-
spite maximal LDL-C reduction [2–4]. This has prompted the
search for additional targetable risk factors for CAD for novel
therapeutic development.

Plasma triglyceride (TG) levels may offer an orthogonal
therapeutic target for lowering CAD risk. TGs, both fasting
and randomly obtained, are directly and independently related
to both the risk of CAD and adverse events in CAD patients
[5•, 6•]. TGs are carried on TG-rich lipoproteins (TRLs) such
as very low-density lipoproteins (VLDLs) and chylomicrons.
TRLs are modified by lipolysis to yield remnants, which can
be cleared from the circulation by hepatic receptors, or may
deposit in the arterial wall similarly to LDL when in excess,
contributing to lipid deposition and vascular inflammation
[7–9]. Most recently, plasma TGs and TG-rich lipoproteins
(TRLs) have been shown to contribute significantly to residual
risk of CAD or adverse cardiac events in patients already
achieving optimal LDL-C levels through other therapies
[10–12]. These findings collectively suggest that TG and
TRLs may be prime targets for novel treatments to reduce
vascular risk on top of existing LDL-C lowering therapies.

Recent findings from human genetic studies have strongly
implicated the lipoprotein lipase (LPL) pathway of plasma TG
clearance in modifying the risk of myocardial infarction
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[13–21]. LPL is an enzyme secreted by multiple peripheral
tissues including adipose tissue, heart, and skeletal muscle.
LPL is localized to the adjacent vascular endothelium, where
it can hydrolyze TGs on circulating TRLs [22]. Released fatty
acids from LPL-mediated hydrolysis are taken up by nearby
tissues for storage or nutrition. Multiple circulating proteins
may modulate LPL function, including apolipoproteins C-II
and A-V, which promote LPL activity, and apolipoprotein C-
III (apoC-III), and the angiopoietin-like proteins 3 and 4
(ANGPTL3 and 4), which inhibit LPL activity and TRL clear-
ance. Both rare and common variants in the LPL gene and
genes encoding the pathway regulators have been implicated
in plasma TGs in humans.

Potential Promise of Targeting apoC-III

Recently, rare loss-of-function (LoF) variants in APOC3, the
gene encoding apoC-III, have been identified and not only
confer low TG levels but also protect against CAD. These
studies include an initial identification in 2008 of the
Arg19Ter (R19X) nonsense variant in APOC3 in the
Lancaster County Amish that was associated with reduced
TG and coronary artery calcification, a surrogate measure of
atherosclerosis [23••]. More recently in 2014, two large se-
quencing studies showed a similar relationship between addi-
tional APOC3 LoF variants and cardiovascular diseases [24••,
25••]. One of these studies by the National Heart Lung and
Blood Institute Exome Sequencing Project (NHLBI-ESP)
identified four rare APOC3 LoF variants through exome se-
quencing in 3374 participants that were associated in aggre-
gate with reduced TG of 38.5 %. Genotyping of these variants
in an additional 110,970 participants (34,002 with CAD vs.
76,968 control subjects) demonstrated a concordant reduction
in the incidence of CAD of 40 % in the carriers of any of the
four APOC3 LoF variants (25). Further evaluation in the
Framingham Heart Study demonstrated that these mutations
were associated in aggregate with reduced apoC-III levels in
plasma. Additionally, each 1 mg/dl decrease in apoC-III was
associated with a 4 % decrease in risk of CAD incidence, a
relationship that was dependent on other cardiovascular risk
factors (25). The other effort from the Copenhagen Heart
Study, published concurrently, showed through targeted
APOC3 exon sequencing that three of the same LoF variants
were associated with decreased TG and reduced incidence of
ischemic vascular diseases [24••]. Importantly, neither study
identified a relationship between the genetic variants with
LDL-C levels, suggesting that reduction ofAPOC3 gene func-
tion may protect from vascular risk independently of LDL-C.

Biochemical and animalmodel studies of apoC-III function
suggest that, in addition to its LPL inhibitory role, it delays
TRL remnant clearance [26, 27] and may facilitate hepatic
VLDL-TG secretion [28]. Notably, of the four LoF variants
described above, one was the R19X variant and two were

splice-site variants, all of which would be expected to reduce
the biosynthesis of full-length apoC-III. The fourth variant
was a missense A43T variant, and the mechanistic basis by
which this single amino acid substitution results in impaired
apoC-III concentration and/or function is very unclear.
Importantly, homozygotes for APOC3 LoF have not yet been
reported. In any case, because of the multifaceted roles apoC-
III may play, a critical question arising from the human genet-
ics efforts is which nodes of TG metabolism regulated by
apoC-III are critical for its proatherogenicity.

Motivated in part by these human genetics findings, inter-
est in therapeutically targeting apoC-III to reduce CAD risk
has surged in recent years. This has spawned novel apoC-III-
focused therapies currently under development as well as re-
evaluation of existing lipid-lowering treatments that in part act
through modulating circulating apoC-III levels. Here, we re-
view the existing therapies that impact apoC-III and new ther-
apies in clinical development. We divide the therapies into
those that accelerate apoC-III catabolism and those that reduce
apoC-III production.

Therapies That Reduce apoC-III Primarily by Enhancing
its Catabolism

Statins

Statins inhibit the rate-limiting step of cholesterol biosyn-
thesis catalyzed by HMG-CoA reductase, thereby altering
intracellular membrane cholesterol content and upregulat-
ing expression of the LDL receptor [29]. This causes in-
creased hepatic LDL-C uptake, markedly reduced plasma
LDL-C and decreased coronary disease risk and is the
fundamental reason that statins are the mainstay of treat-
ment for preventing cardiovascular events in at-risk pa-
tients. Statins also lower plasma TGs, and this may be
due to their ability to promote apoC-III reduction through
increasing catabolism of apoC-III containing lipoproteins.
In a randomized study of atorvastatin (10 or 80 mg) vs.
placebo in 217 patients with type 2 diabetes (T2DM),
statin treatment resulted in a dose-dependent reduction
in total apoC-III, apoB-associated apoC-III, and HDL-
associated apoC-III, and concomitant reduction in plasma
TGs [30]. Another study examined the kinetic properties
of apoC-III and TRLs in the setting of rosuvastatin treat-
ment [31]. Twelve men with the metabolic syndrome were
randomized to placebo or rosuvastatin (10 or 40 mg) for
5 weeks in a double-blinded crossover study and kinetics
were monitored using stable isotopes during each phase.
Rosuvastatin caused dose-dependent increases in the
apoC-III fractional catabolic rate compared to placebo.
Another study by these investigators compared the impact
of atorvastatin (40 mg) and fenofibrate (200 mg) on apoC-
III kinetics in eleven men with the metabolic syndrome
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and found comparable increases in apoC-III clearance in
both treatment arms [32]. While this study suggested that
statins might also lower VLDL-associated apoC-III pro-
duction but not the total apoC-III production rate, the
rapid exchangeability of apoC-III between VLDL and
HDL may complicate interpretation of this measurement
[33]. A subsequent study of atorvastatin by the same in-
vestigators in 39 obese men supported the previous find-
ings that statins increase apoC-III catabolic rates without
altering apoC-III production [34]. Thus, statins augment
apoC-III clearance and TRL turnover, an effect that may
contribute to their atheroprotective effect.

Omega-3 Polyunsaturated Fatty Acids

Omega-3 polyunsaturated acids (n-3 PUFAs), including
docosahexaenoic acid (DHA) and eicosapentaenoic acid
(EPA), are essential fatty acids derived from fish that
can be obtained through diet, prescription supplementa-
tion or over-the-counter [35]. N-3 PUFAs may confer
cardioprotective effects though this remains a debatable
issue [35, 36]. The JELIS study, a randomized trial of
EPA in 18,645 Japanese hypercholesterolemic subjects,
showed that EPA and statin combination therapy reduced
incidence of cardiovascular events by 18 % in patients
with a history of CAD compared to patients treated with
statins alone [37]. A post hoc analysis of this trial showed
that the CAD-protective effect of EPA and statins was as
high as 53 % in the group of patients with high TGs, low
HDL-C and increased CAD hazard ratio [38]. However,
some larger studies and meta-analyses of n-3 PUFAs and
cardiovascular events have not supported a clear reduction
in CV risk [39, 40]. None of the completed CV event trials
were performed in individuals with elevated TG levels at
baseline, though two such studies are currently ongoing.
These include the STRENGTH trial (NCT02104817)
involving Epanova, a prescription formulation of EPA
and DHA, and the REDUCE-IT trial (NCT01492361) of
AMR101, a purified ethyl ester of EPA.

At high pharmacological doses, n-3 PUFAs robustly de-
crease plasma TGs by 25–45 %. The TG-lowering properties
of n-3 PUFAs are multi-factorial, but may involve apoC-III
reduction. The EVOLVE trial evaluated the impact of
Epanova, a prescription formulation of EPA and DHA, on
plasma lipids over 12 weeks in 399 subjects with severe
hypertriglyceridemia (500–2000 mg/dL) who maintained a
low-fat diet [41]. This study found a dose-dependent reduction
of 25 to 31 % in plasma TGs in n-3 PUFA treated subjects
relative to those receiving placebo, as well as an 11 to 14 %
reduction in apoC-III levels. The mechanisms by which n-3
PUFAs reduce apoC-III levels remain unclear, though the bal-
ance of data supports an increase in apoC-III clearance from
the circulation [34, 42].

Therapies That Reduce apoC-III Primarily by Reducing
its Production

Fibrates

Fibrates are amphipathic carboxylic acids that serve as ligands
for the peroxisome-proliferator activated receptor alpha
(PPARα) [35, 36, 43]. They reduce circulating TGs by 20–
50 % through reducing both VLDL production and increasing
TRL catabolism. In 1995, several groups showed that fibrates
suppress the expression of APOC3 in hepatocytes [44–46].
One study in rats demonstrated that fenofibrate conferred a
dose-dependent and PPARα-mediated reduction in in hepatic
apoC-III expression [45]. Another study also in rats showed
that this PPARα-mediated effect involved disruption of hepa-
tocyte nuclear factor 4α binding to the APOC3 promoter in
the liver [46]. Consistent with this effect, radioisotope tracer
studies in hypertriglyceridemic human subjects showed that
fenofibrate reduced apoC-III production rate and VLDL-
associated apoC-III in humans [47].

Fibrate monotherapy has been demonstrated in some trials
to reduce cardiovascular events [48–50], though the effects
have in some cases been modest. Studies of the addition of a
fibrate to a statin compared with statin alone have not indicat-
ed a clear reduction in cardiovascular events [51]. However,
none of the fibrate trials were specifically performed in indi-
viduals with elevated TG levels at baseline. Subgroup analy-
ses have suggested that individuals with high TG levels may
be the most likely to benefit from fibrate therapy [48, 52].

Thiazoledinediones

Like fibrates, thiazoledinediones (TZDs) are nuclear re-
ceptor ligands [43]. TZDs are selective for PPARγ and
are indicated for the treatment of T2DM due to their
insulin-sensitizing effects. Though TZDs have largely
fallen out of favor due to their adverse effects, their risks
must be considered along with their potent ability to sus-
tain insulin sensitivity and potentially maintain pancreatic
cell function, which could merit utility in select popula-
tions of patients prone to diabetes and the metabolic syn-
drome [53]. A recent elegant study comparing two mouse
strains and human adipose demonstrated an important role
for natural genetic variation in affecting PPARγ binding
to target sizes and also the importance of this variation in
governing the ability of TZDs to exert their effects
through PPARγ [54]. This work supports the potential
of pharmacogenomics to help identify subsets of patients
most likely to benefit from these drugs. Among the TZDs,
pioglitazone is favored because of its comparatively fewer
side effects and demonstrated efficacy in preventing
T2DM and reducing nonalcoholic steatohepatitis [36, 53].
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The impact of TZDs on plasma TGs are drug-dependent
[55]. Studies in non-diabetic patients have suggested that both
pioglitazone and rosiglitazone haveminimal effects on plasma
TGs directly in these populations [56, 57]. However, in a
direct comparison of these TZDs in diabetic subjects, pioglit-
azone caused a 52 mg/dl reduction in plasma TGs while
rosiglitazone increased TGs by 13 mg/dl. In another study
using stable isotope tracers to measure lipoprotein kinetics in
8 subjects with T2DM, pioglitazone effectively lowered cir-
culating TGs due to increased VLDL-TG clearance [58]. This
study also showed that pioglitazone reduced apoC-III levels,
apparently due to decreased apoC-III production [58].
However, he mechanism of PPARγ-mediated regulation of
apoC-III expression, and the suggested selective regulation
by pioglitazone among the TZDs remains unknown.
Because apoC-III expression increases with insulin resistance,
it is possible that increased insulin sensitivity due to pioglita-
zone may help suppress aberrantly high apoC-III expression
and secretion in T2DM. Interestingly, dual PPARα/γ agonists,
such as tesaglitazar and aleglitazar, reduce proatherogenic
lipids and in some cases apoC-III levels [59], but they have
been discontinued from clinical development due to increased
adverse events [36].

Niacin

Niacin, also known as nicotinic acid or vitamin B3, is a water-
soluble vitamin. At pharmacological doses, niacin reduces
TGs by 25–40 % (as well as reduces LDL-C and increases
HDL-C) [35]. The exact mechanism of niacin’s lipoprotein-
altering effects is unresolved. Niacin activates the G-protein-
coupled receptor 109A (GPR109A) in adipocytes and inhibits
TG lipolysis and free fatty acid release [60–62]; historically it
was believed that the reduced flux of FFA to the liver resulted
in reduced VLDL-TG secretion [63–71]. Animal studies sug-
gested that niacin’s anti-lipolytic actions in the adipose sup-
press hepatic APOC3 expression by reducing PPARγ
coactivator-1β (PGC-1β), a circadian transcriptional coacti-
vator induced by fatty acids that coordinates VLDL secretion
and hepatic lipogenesis [72]. However, studies with niacin
receptor agonists in animals and humans strongly suggest that
activation of this receptor is unlikely to be the mechanism of
TG-lowering [73]. An early study of niacin showed that it
reduced plasma apoC-III associated with VLDL in humans
through promoting VLDL clearance [74]. Thus, the exact
mechanisms of action of niacin on TRL metabolism and spe-
cifically on apoC-III production vs. clearance remain un-
known and will require additional studies, such as incorpora-
tion of stable isotopes to study apoC-III production vs. clear-
ance in humans treated with niacin in order to resolve its roles.

Interest in using niacin clinically to reduce cardiovas-
cular risk has dwindled. The AIM-HIGH study, a study of
3414 patients with cardiovascular disease and managed

for LDL-C reduction, evaluated the impact of niacin vs.
placebo on cardiovascular events and was stopped early
after 3 years due to futility to demonstrate any benefit
from niacin [75]. Another larger study, HPS2-THRIVE,
evaluated extended-release niacin vs. placebo in 25,673
cardiovascular disease patients on simvastatin for LDL-C
control and similarly found no reduction in the incidence
of cardiovascular events compared to placebo-treated con-
trol subjects [76]. Both studies reported increased inci-
dence of certain adverse events in the niacin-treated
groups, adding additional concern [76, 77]. However, nei-
ther study focused on patients with elevated baseline TG
levels. There remains interest in the development of
niacin-based approaches that may be more efficacious
with less adverse effects. For example, CAT-2003 is a
conjugate of niacin and EPA that through linker-
technology is targeted specifically to the liver; it reduces
TG and apoC-III levels substantially and is currently in
clinical development for the treatment of severe hypertri-
glyceridemia (NCT02098278). The basic mechanisms by
which niacin modulates plasma TG and apoC-III still war-
rant further study as they may inform future therapeutic
developments.

Antisense Oligonucleotides Against APOC3

None of the above currently available therapies directly
target apoC-III but rather reduce apoC-III through mech-
anisms that are indirect. Approaches to directly targeting
apoC-III could theoretically include nucleic-acid based
approaches (antisense oligonucleotides or siRNA) or
monoclonal antibody based approaches. Antisense oligo-
nucleotides (ASOs) are small, single-stranded DNA- and
RNA-based oligonucleotides that pair with complementa-
ry mRNA targets and prevent their expression through
triggering ribonuclease H-mediated RNA cleavage or
inhibiting translation [78–80]. Because of the addition of
chemical modifications to the nucleotide backbones,
ASOs escape rapid degradation by endogenous nucleases
[80, 81]. ASOs are administered subcutaneously or intra-
venously and are primarily taken up by kidneys, liver, and
spleen but have a widespread distribution of tissue uptake
[80, 82]. Mipomersen, targeting the APOB gene, was the
first systemic ASO approved for clinical use and is on the
market in the US for the treatment of homozygous famil-
ial hypercholesterolemia [83].

In 2013, Ionis Pharmaceuticals (then Isis Pharmaceuticals)
reported the evaluation of ASOs targeting APOC3 in rodents
and humans [84•]. Generating 26 candidate ASOs against the
human APOC3 mRNA, the investigators screened these
in vivo in human APOC3 transgenic mice and selected the
candidate ISIS308401 because of its ability to reduce
APOC3 mRNA, apoC-III protein and triglycerides in vivo
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with high tolerability. They further explored the physiological
implications of ASO-mediated APOC3 silencing through
knockdown studies in rodent and nonhuman primate models
of metabolic dysfunction and dyslipidemia. In all models,
ASO-mediated knockdown reduced circulating apoC-III
levels and plasma TG over 6 weeks of ASO treatment.
Importantly, despite reports of insulin resistance in mice with
APOC3 deficiency [85], no differences in fasting glucose
were seen with ASO treatment in all models. Likewise, while
prior work in hepatocyte cell models suggested that apoC-III
might regulate intracellular TG metabolism and facilitate
VLDL-TG secretion [86, 87], no effect of the ASO was ob-
served on VLDL-TG secretion or hepatic TG content in WT
or Apoc3 KO mice. The authors further demonstrated the
safety, tolerability and pharmacokinetics of the lead human
APOC3 ASO ISIS308401 in a randomized phase I clinical
study in healthy human volunteers. Participants received ei-
ther a single dose or three doses of 50, 100, 200, or 400 mg of
the ASO or placebo by subcutaneous injection and were stud-
ied for 50 days following the initiation of dosing. No serious
adverse events were noted, and participants receiving the ASO
demonstrated a dose-dependent reduction in both circulating
apoC-III levels and TG, which were sustained for more than
4 weeks after administration of the last dose, though for some
measurements statistical significance was not achieved likely
due to insufficient power. Thus, this proof-of-principle study
served as the first demonstration of an apoC-III-specific ther-
apeutic and showed efficacy in preclinical and early clinical
investigations.

Following the success of the preclinical and phase I study,
ISIS308401 was tested as a potential treatment for patients
with familial chylomicronemia syndrome, an autosomal re-
cessive disorder caused by inactivating mutations in the LPL
gene leading to severe hypertriglyceridemia, recurrent pancre-
atitis and additional potentially fatal complications [88•].
Three patients with this disorder were treated with 300 mg
of the ASO once weekly for 13 weeks and monitored for this
duration and an additional 13 weeks after the last dose. The 3
participants all demonstrated a robust >70 % reduction in
plasma apoC-III levels and >55 % reduction in plasma TGs
within the first 2 weeks of treatment, with a high correlation of
apoC-III levels and TG levels at each study time point. These
patients also demonstrated large reductions in apoB48 levels
(surrogate measure of chylomicron particle number), VLDL
particle number, apoE, and non-HDL-C levels. These find-
ings, albeit in a limited number of patients, offer support to
the notion that apoC-III modulates TRLmetabolism in a man-
ner that is partially independent of its LPL inhibitory role. This
work also provided further support for hepatic APOC3mRNA
targeting as a means to reduce both fasting and postprandial
TRL levels in humans.

In a subsequent randomized phase II monotherapy trial
in 57 hypertriglyceridemic patients treated with 100, 200,

or 300 mg of ISIS308401 once weekly vs. a placebo con-
trol group, the investigators further demonstrated the dose-
dependent apoC-III and TG-lowering effect of the ASO
[89••]. In addition, the authors reported substantial de-
creases in VLDL particle number, VLDL-C, and increased
HDL-C and LDL-C in ASO-treated subjects, which were
also dose-dependent. The cause of the increased LDL-C
was unclear but may have resulted from increased conver-
sion of VLDL to LDL due to improved LPL function, or
additional particle remodeling. Interestingly, in a parallel
study of 28 hypertriglyceridemic subjects treated with ei-
ther fenofibrate alone or in combination with the APOC3
ASO at either 200 mg or 300 mg weekly doses, the ASO
lowered apoC-III, TG, and VLDL-C but without elevations
in total non-HDL-C or LDL-C. This finding was thought to
be due to the LDL-lowering ability of fibrates. In a recent
follow-up analysis of lipoprotein-associated apoC-III from
this phase II trial, the highest dose of APOC3 ASO resulted
in >80 % reductions in apoC-III associated with all lipo-
protein classes measured (ApoB, ApoA-I, and lipoprotein
(a)) [90]. Additionally, a preliminary evaluation of this
ASO in 15 hypertriglycerdemic T2DM patients demon-
strated a 57 % improvement in whole-body insulin sensi-
tivity that was related to the degree of apoC-III and TG
reduction over 15 weeks [91]. Currently, three phase III
studies are ongoing to study the efficacy of ISIS308401
(now termed Volanesorsen) for the treatment of
hypertriglyceridemic states. The Approach Extension
study (NCT02658175) is a trial evaluating the ASO for
the treatment of familial chylomicronemia syndrome,
LPL deficiency, or familial lipoproteinemia type I.
Participants will be randomized to placebo or 300 mg
weekly doses of the APOC3 ASO for 52 weeks and eval-
ua ted fo r TG reduc t ion . The COMPASS s tudy
(NCT02300233) is another study evaluating the ASO for
26 weeks in hypertriglyceridemic patients of multiple eti-
ologies that demonstrate fasting TG of ≥500 mg/dL. The
t h i r d o n g o i n g t r i a l i s t h e BROADEN s t u d y
(NCT02527343), an evaluation of the ASO in patients with
partial lipodystrophy and hypertriglyceridemia (fasting
TG ≥ 500 mg/dL). Results from these studies have the po-
tential to offer a new treatment for severe hypertriglyc-
eridemia due to myriad causes. The potential of this ASO
targeting apoC-III to reduce atherosclerotic risk and car-
diovascular diseases associated with TRLs has yet to be
determined in preclinical models and humans.

Another approach to targeting APOC3 could be using
siRNA. Alnylam Therapeutics reported that a GalNAc-
conjugated siRNA targeting apoC-III in mice resulted in
knockdown of apoC-III levels of up to 95 % and a reduc-
tion in triglyceride levels of up to 68 % with durability out
to over 20 days [92]. In addition, because apoC-III is a
secreted protein, it could in theory be targeted with a
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monoclonal antibody as in the example of PCSK9. In prac-
tice this may be challenging because of the relatively high
abundance of apoC-III and its association with lipopro-
teins, but efforts toward this approach are likely.

Conclusions

Since its discovery more than 40 years ago, apoC-III has
been an important and intensely studied regulator of TG
and TRL metabolism. Recent human genetics advances
have solidified the connection between apoC-III and coro-
nary disease risk in humans, reigniting interest in therapeu-
tically targeting this protein. As discussed, many existing
therapies already in clinical use effectively reduce apoC-III
levels, either by promoting catabolism of apoC-III and as-
sociated TRLs or by suppressing APOC3 gene expression.
Perhaps most exciting is the potential of apoC-III directed
therapies, such as the ASO currently in clinical develop-
ment by Ionis Therapeutics. Such approaches will help
address the specific contribution of apoC-III to cardiomet-
abolic disease in humans. As interest in targeting apoC-III
grows, critical questions arise. For example, can apoC-III
specific therapies work well with existing lipid-lowering
medications such as statins to further reduce cardiovascu-
lar risk or residual vascular risk in patients already con-
trolled for LDL-C? Likewise, are there any adverse conse-
quences of sustained, near-zero levels of circulating apoC-
III and does the source of apoC-III (liver vs. small intes-
tine) dictate its function and contribution to vascular risk?
Also, can human genetics be leveraged to identify addi-
tional strategies to target circulating apoC-III (e.g., through
disruption of lipoprotein binding or partitioning between
TRLs and HDL)? And finally, do any emerging therapies
for cardiovascular risk reduction that reduce circulating
apoB-containing lipoproteins, such as glucagon like pep-
tide analogues and receptor agonists as well as PCSK9
inhibitory antibodies, act in part through perturbing
apoC-III levels or function? Further investigation through
preclinical studies focused on the complex physiology of
apoC-III coupled with innovative drug design, perhaps in-
formed by disease-protective APOC3 genetic variants, will
help answer these and many other questions surrounding
the potential promise of apoC-III as a new target for CAD.
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