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Abstract There is growing evidence to suggest that statin
therapy is associated with an increased risk of incident diabe-
tes. The risk for statin-related diabetes depends upon many
factors including age, pre-existing diabetic risk, type and
potency of statin. Several mechanisms have been suggested
for the diabetogenic effects of statins involving processes that
alter islet ß-cell function, resulting in impaired glucose me-
tabolism. Recent evidence suggests that the association of
statin therapy with the development of diabetes may be partly
mediated by a statin-induced decrease in circulating
adiponectin and coenzyme Q10. The available evidence sug-
gests the benefit of statins in reducing cardiovascular events
outweigh the risk of developing diabetes. Moreover, statin
therapy does not impair glycemic control in diabetic patients.
Expert recommendations for the use of statins in people at risk
of developing diabetes have recently been published. Howev-
er, further research is required to elucidate both the association
between statin use and incident diabetes as well as underlying
mechanisms.
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Introduction

Type 2 diabetes (T2DM) is a major health epidemic
affecting at least 382 million people worldwide. The
World Health Organization estimates that the incidence
of diabetes will escalate to 471 million by 2035 [1].
People with diabetes are at increased risk for cardiovas-
cular disease (CVD), and low-density lipoprotein choles-
terol (LDL-C) is a significant determinant of CVD in this
population [2]. Current guidelines for primary and sec-
ondary CVD prevention recommend a multifactorial ap-
proach, including therapeutic lifestyle changes and
cholesterol-lowering therapy, to achieve optimal control
of LDL-C [2, 3, 4•]. Statin therapy is the cornerstone of
dyslipidemia management in high-risk patients, including
T2DM [2, 4•]. Although statins have a good safety record
in clinical practice, an association with new-onset diabetes
has been suggested [5•, 6, 7, 8••, 9]. We review the
current knowledge on the diabetogenic effects of statin,
with emphasis on the role of adiponectin and coenzyme
Q10 (CoQ10) in developing diabetes.

Statins and Risk of New-Onset Diabetes Mellitus: Clinical
Evidence

Statins are the most effective drugs for treating hyper-
cholesterolemia due to increased plasma levels of LDL
particles. Large prospective primary and secondary pre-
vention studies have demonstrated the cardiovascular
benefit of statins in a wide variety of people, including
those with T2DM [3, 10–12]. Although there has never
been a prospective, randomized study to support the link
between statins and diabetes risk, several retrospective
cohort studies have examined this relationship.
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Major Statin Trials The West of Scotland Coronary Preven-
tion Study (WOSCOPs) cohort involved 5974 men aged 45 to
64 (mean age 55.2 years) with follow-up ranging from 3.5 to
6.1 years. Pravastatin therapy resulted in a 30% risk reduction
for incident diabetes [13]. Contrary to this, there was a 32 %
higher incidence of diabetes with pravastatin therapy in the
Prospective Study of Pravastatin in the Elderly at Risk
(PROSPER), a study of elderly patients aged between 70
and 82 years [14]. Pravastatin therapy was not, however,
associated with increased risk of T2DM in the Long-term
Disease (LIPID) trial (n=9014, 31 to 75 years of age) [15].
Age-dependent loss of beta cell function has been suggested
to explain the observed increase in new-onset diabetes in the
PROSPER trial. In the Anglo-Scandinavian Cardiac Outcome
Trial-Lipid-Lowering Arm (ASCOT-LLA), low-dose atorva-
statin (20 mg) was not associated with the incidence of new-
onset diabetes [16]. However, a significant 34 % increase in
new-onset T2DM was observed with high-dose atorvastatin
(40 mg) in the Stoke Prevention by Aggressive Reduction in
Cholesterol Levels (SPARCL) trials [17]. In the Heart Protec-
tion Study (HPS), increased new-onset diabetes was not noted
with simvastatin (40 mg) [18]. In the JUPITER (Justification
for the Use of Statins in Primary Prevention: An Intervention
Trial Evaluating Rosuvastatin) trial [19••], rosuvastatin thera-
py (20mg) caused a 28% increased risk of new-onset diabetes
in those participants with pre-existing risk factors for diabetes
(e.g. metabolic syndrome, impaired fasting glucose, obesity or
raised glycated haemoglobin A1c [HbA1c]); no increase in
diabetes with rosuvastatin was observed in individuals with-
out major diabetes risk factors. This observation has raised the
possibility that people with pre-existing risk factors for T2DM
are more likely to develop diabetes with statin therapy. Con-
sistent with this notion, in WOSCOPS, the patients who
entered the study did not generally have pre-existing diabetic
risks (e.g. obesity and atherogenic dyslipidemia), and those
who have developed T2DM were in fact already at risk of
diabetes (e.g. a higher body mass index and elevated triglyc-
eride levels) [13].

Meta-analyses Several meta-analyses have addressed the as-
sociation between statin therapy and new-onset diabetes. In a
meta-analysis of six trials with a total of 57,593 patients [20],
Rajpathaket et al. reported that the incidence of diabetes was
13% higher in patients receiving statin therapy comparedwith
those not receiving a statin. In another meta-analysis,
Coleman et al. found that statin therapy resulted in a signifi-
cant 14 % increase in the relative risk of developing diabetes
[21]. However, the relative increase in risk of incident diabetes
was not statistically significant in these reports when the
WOSCOPS was included. Using a larger database with
91,140 participants in 13 major statin trials including the
WOSCOPS trial [6], Sattar et al. demonstrated that the risk
of developing diabetes was 9 % higher (95 % confidence

interval [CI], 2–17 %) over a 4-year period compared with
patients randomized to placebo or standard care.

Low-Dose vs High-Dose Statin Therapy Compelling evi-
dence indicates that high-potency statin therapy provides a
significant benefit in preventing CVD compared with lower
potency therapy [12, 22]. However, the adverse effect of
intensive statin therapy on new-onset diabetes remains a seri-
ous concern. Waters et al. compared the incidence of new-
onset diabetes between low-dose (10 mg) and high-dose ator-
vastatin (80 mg) in the Treating to New Targets (TNT) and
Incremental Decrease in Endpoints Through Aggressive Lipid
Lowering (IDEAL) trials [17]. Compared with low-dose ator-
vastatin therapy, high-dose atorvastatin therapy resulted in a
24% increase in incident diabetes in those participants with 2–
4 pre-existing diabetic risk factors (e.g. raised fasting glucose
and triglyceride levels, reduced high-density lipoprotein
[HDL]-cholesterol, history of hypertension and obesity at
baseline). This effect with atorvastatin therapy was not ob-
served in those with 0–2 diabetic risk factor, however. Again,
this finding suggests a role of pre-existing diabetic risks in the
development of T2DM with statin therapy. In a meta-analysis
of five statin trials involving 32,752 participants [23•],
intensive-dose statin therapy was associated with an increased
risk of new-onset diabetes compared with moderate-dose
statin therapy (+12 %). More recently, in a meta-analyses of
eight population-based cohort studies involving 136,966 pa-
tients aged ≥40 years [24], higher potency statin use
(rosuvastatin ≥40 mg, atorvastatin ≥20 mg and simvastatin
≥40 mg) was associated with a 15 % increase in the risk of
new-onset diabetes compared with lower potency statins in
patients treated for secondary prevention of CVD.

Types of Statins The potential diabetogenic effects of statins
may differ between statins. In a population-based study [25],
Carter et al. examined the risk of incident diabetes among
patients treated with different statins. Compared with prava-
statin (the reference drug in all analyses), treatments with
high-potency statins, including atorvastatin, simvastatin and
rosuvastatin, were associated with increased risk of incident
diabetes. There was no significant increased risk among pa-
tients who received fluvastatin or lovastatin. The study also
found that the risk of incident diabetes was similar whether
statins were used for primary or secondary prevention of
CVD.

Pitavastatin is a newer and more tolerable LDL-C-lowering
agent with effect similar to comparable doses of atorvastatin
(−40 % at daily standard doses of 4 and 20 mg, respectively)
[26, 27]. While most statins show inconsistent effects on
HDL-C levels, pitavastatin has been shown to improve HDL
function, including elevations in HDL-cholesterol by 15–
25%.More importantly, pitavastatin has demonstrated neutral
or favorable effects on glucose control in patients with and
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without T2DM or metabolic syndrome [27]. In some studies,
pitavastatin has been shown to decrease homeostatic model
assessment (HOMA) score and HbA1c in T2DM patients
[28]. Experimental data has shown that pitavastatin increases
glucose uptake and sensitivity to intraperitoneal insulin in
KKAy mice [28, 29]. Given the pleiotropic effects of HDL
in preventing oxidation, vascular inflammation and pancreatic
beta cell dysfunction [30, 31], improvement in HDL function
may be associated with enhanced insulin sensitivity in sub-
jects treated with pitavastatin.

Taken together, there is strong evidence indicating that
statin therapy is associated with increased risk of new-onset
diabetes. However, the risk of statin-related diabetes may
depend upon age, pre-existing diabetic risks, type and potency
of statins.

Statins and Risk of New-Onset Diabetes Mellitus: Possible
Mechanisms

Type 2 diabetes mellitus is a disorder of glucose metabolism
and encompasses individuals who have insulin resistance and
relative insulin deficiency where insulin secretion is insuffi-
cient to compensate for insulin resistance and normal glucose
metabolism [2]. Insulin-resistance and insulin-secretory de-
fects caused by beta cell dysfunction are key metabolic char-
acteristics contributing to the pathogenesis of T2DM.

The precise mechanisms of action to explain a cause and
effect between statin and T2DM have not yet been identified.
Several mechanisms have been suggested for statin-induced
impairment of glucose metabolism (Fig. 1) [32••, 33]. (1)
Intracellular glucose uptake via glucose transporter 2
(GLUT2) initiates phosphorylation by glucose kinase and
subsequently ATP-dependent potassium and voltage-gated
calcium channel-mediated signalling cascades for the synthe-
sis and secretion of insulin. Statins can reduce mRNA and
protein expression of GLUT2 and voltage-dependent calcium
channel, thereby inhibiting insulin synthesis and secretion
[34]. (2) Statins can also directly reduce insulin-stimulated
glucose uptake by impairing insulin pathway via the inhibition
of phosphatidylinositol triphospho-kinase [35]. (3) Statin in-
hibition of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA)
reductase can suppress synthesis of isoprenoids which in turn
inhibits the expression of GLUT4 (another rate-limiting pro-
tein for glucose transport), leading to impaired glucose uptake
[36, 37]. (4) Upregulation of LDL receptor with statins en-
hances uptake of LDL cholesterol. However, increased abun-
dance of plasma-derived cholesterol can inhibit glucose ki-
nase (the rate-limiting enzyme for intracellular glucose me-
tabolism), thus impairing normal glucose uptake [38]. (5)
Oxidation of plasma-derived cholesterol can incite pro-
inflammatory and pro-oxidative cascades that compromise

the structural integrity and function of the islet beta cells,
thereby worsening glucose metabolism [39]. (6) Statin treat-
ment increases the production and bioavailability of nitric
oxide (NO) via the upregulation of endothelial nitric oxide
synthase. However, overproduction of NO can induce beta
cell apoptosis via the activation of calcium-dependent prote-
ase (calpain), thereby impairing beta cell function [40, 41]. (7)
Statin-induced inflammation and mitochondrial dysfunction
in skeletal muscle can impair beta cell function and trigger the
development of T2DM [42]. Consistent with these mecha-
nisms, a recent Mendelian randomization study reported that
the inhibition of HMG-CoA reductase activity with statin,
particularly due to genetic variation in the HMGCR gene
(rs17238484 and rs12916 alleles), was associated with an
increased risk of T2DM [43, 44]. This implies that the asso-
ciation is an on-target effect of the drug and that the risk of
diabetes is causally related to the degree inhibition of HMG-
CoA reductase activity and hence to the potency of the statin.
However, unlike other statins (e.g. atorvastatin or simvastat-
in), pravastatin does not suppress glucose-induced elevation
of intracellular calcium ion level and glucose-stimulated insu-
lin secretion [34]; it also does not reduce sensitivity to insulin
nor attenuate the expression of GLUT4 [45]. As will be
discussed later, pravastatin increases the expression of
adiponectin mRNA and enhances adiponectin secretion [46,
47].Whether these effects with pravastatin are related to lower
incidence of diabetes remain to be elucidated.

While the relative roles of contribution of these mecha-
nisms remain to be elucidated, it appears that the potential
diabetogenic effects of statins may involve multiple mecha-
nisms that alter islet beta cell function, resulting in impaired
glucose metabolism and insulin sensitivity. Recent experi-
mental and clinical evidence also highlights the role of
adiponectin and ubiquinone, also known as CoQ10, in the
modulation of glucose metabolism. As discussed below, statin
may impair glucose metabolism via effects on adiponectin and
CoQ10 metabolism.

Adiponectin and T2DM

It has been well documented that adipose tissue is not only a
store of excess energy, but also a hormonally active metabolic
system [48]. Several adipocyte-derived biologically active
molecules (adipocytokines) have been identified that can po-
tentially impact on glucose metabolism and contribute to the
pathogenesis of insulin resistance and T2DM [49]. These
adipocytokines include adiponectin, leptin, resistin, retinol-
binding protein-4, interleukin-6 and tumour necrosis
factor-α (TNF-α). Of these adipocytokines, adiponectin
is a 244-amino acid collagen-like protein that circulates
at relatively high concentrations, accounting for 0.01 %
of total plasma protein in the circulation [50, 51•]. In a
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meta-analysis of seven prospective studies involving a
total of 1318 CHD cases, higher adiponectin levels were
associated with a lower risk of CHD (odds ratio, 0.84
[95 % CI, 0.70 to 1.01]) [52]. However, the association
between adiponectin levels and CVD was not found in
T2DM patients [53]. Unlike other adipocytokines, plas-
ma adiponectin levels correlate inversely with a wide
range of cardiometabolic factors including insulin sensi-
tivity, blood glucose, obesity and dyslipidaemia [50, 54].
Hypoadiponectinaemia has been found in individuals
with T2DM and obesity [55]. The precise mechanism for
this remains unclear but may be attributable to the inhibition of
adiponectin gene transcription by inflammatory and angiogenic
factors secreted by hypertrophic adipocytes [56]. Several stud-
ies have addressed the association of plasma adiponectin levels
and risk of T2DM. In a meta-analysis of 13 prospective studies
in 14,598 individuals, higher adiponectin levels were associat-
ed with a lower risk of T2DM across diverse populations [57].
Hypoadiponectinaemia is well known to be substantially asso-
ciated with genetic factors which may contribute to increased
diabetic risk. Single nucleotide polymorphisms in the
adiponectin gene (e.g. −11377CG and +45T>G) have been
identified to be associated with hypoadiponectinaemia and
increased T2DM [58]. Moreover, two meta-analyses of
genome-wide association studies (GWAS) have demonstrated
that several loci associated with adiponectin levels (e.g. variants
in ADIPOQ and GPR109A genes) are linked to increased risk
of T2DM [59, 60].

The protective role of adiponectin against T2DM remains
unclear. Experimental and human evidence suggests that

adiponectin may protect against the development of T2DM
by improving insulin sensitivity. Animal studies show that
adiponectin knockout mice develop insulin resistance and
glucose intolerance with a high fat diet whereas mice overex-
pressing adiponectin are insulin sensitive and are resistant to
diet-induced diabetes [61, 62]. Administration of adiponectin
to rodents has also been shown to improve insulin sensitivity
via stimulation of insulin-induced tyrosine phosphorylation of
the insulin receptor in skeletal muscle [63]. Consistent with
this, plasma adiponectin concentration has been shown to be
associated with skeletal muscle insulin receptor tyrosine phos-
phorylation [64]. Several molecular mechanisms of action of
adiponectin on insulin sensitivity have been proposed, includ-
ing suppression of hepatic gluconeogenesis, stimulation of
fatty acid oxidation in the liver, stimulation of glucose uptake
and fatty acid oxidation in skeletal muscle [65, 66]. These
effects are at least in part involved in the activation of AMP-
kinase and peroxisome proliferator-activated receptor-α in
skeletal muscle [67]. Adiponectin also stimulates insulin
gene expression and secretion in pancreatic beta cells
via the induction of extracellular signal-regulated kinase
(ERK) and Akt phosphorylation in insulin signalling path-
way [68, 69]. Adiponectin has been shown to increase
mitochondrial biogenesis and fatty acid oxidation in skel-
etal muscle by enhancing mitogen-activated protein ki-
nase (MAPK) and PPAR-ϒ coactivator 1α (PGC-1α)
[70]. In addition, the anti-inflammatory effect of
adiponectin can protect beta cell function, thereby im-
proving insulin sensitivity. One potential mechanism has
also been suggested involving the antagonistic effect of

Fig. 1 Potential mechanisms of
action in the development of
diabetes
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adiponectin to attenuate the adverse effect of TNF-α on
beta cell function [71, 72].

Adiponectin and Statins

It has been postulated that the association of statin therapy
with the development of T2DM may be partly mediated by a
statin-induced decrease in circulating adiponectin levels. This
evidence is reviewed below regarding the effect of statins on
plasma adiponectin levels.

Lipophilic Statins

There are conflicting results on the effect of atorvastatin on
adiponectin levels [73–76]. However, at a basic science level,
there is some evidence showing that atorvastatin can attenuate
adipocyte maturation, thus decreasing adiponectin production
[37]. Another lipophilic statin, simvastatin, appears to not
have an affect or reduce adiponectin levels [77–79]. A study
by Forst et al. demonstrated a significant 12 % adiponectin
reduction on 12 weeks of simvastatin in nondiabetic subjects
[78]. However, simvastatin failed to alter adiponectin levels in
subjects with T2DM, hypertension or the metabolic syndrome
[79]. Fluvastatin showed no effect on adiponectin levels [80].

Hydrophilic Statins

Pravastatin has been shown to improve insulin sensitivity and
reduce risk of new-onset T2DM [13]. Several studies have
demonstrated that pravastatin therapy increases adiponectin
levels [81, 82]. In one study, pravastatin (20 mg/day;
6 months) demonstrated an up to 35% increase in adiponectin
levels in CAD patients with impaired glucose tolerance [81].
Experimental data has suggested that pravastatin increases the
expression of adiponectin mRNA and enhances adiponectin
secretion in adipocytes [47].

Another hydrophilic statin, rosuvastatin, has been shown to
not have an effect or increase plasma adiponectin levels. In one
study, rosuvastatin (10 mg/day) resulted in 65 % increase in
adiponectin levels in patients with hypercholesterolemia while
in other studies, rosuvastatin therapy showed no effect on
adiponectin levels [75, 76, 82–84]. Previous studies show that
rosuvastatin was not associated with any change in insulin
sensitivity [85]. However, in a study employing rosuvastatin, a
significant dose-dependent increase (10, 20 and 40 mg) was
observed in plasma insulin levels and HOMA score [86]. This
result indicates a deterioration of insulin sensitivity, consistent
with the outcomes from the JUPITER, showing a 28% increased
risk of new-onset diabetes with rosuvastatin therapy [19••].

Pitavastatin is another relatively potent hydrophilic
statin that has consistently been shown to increase
adiponectin levels and, in some studies, improve insulin
sensitivity [27, 87]. In two studies of patients with

hyperlipidemia, pitavastatin therapy (2 mg) showed a
significant increase (∼25 %) in adiponectin levels [88,
89]. By contrast to atorvastatin [78], pitavastatin does
not impair maturation of pre-adipocytes, thereby
preventing adipocyte hypertrophy and adipocytokine dys-
regulation [29].

Taken together, the lack of consistent effects of statins on
adiponectin levels may relate to differences in biophysical
properties of statin used. It is unclear whether lipophilic and
hydrophilic statins have differential effect on adiponectin
metabolism. In contrast to lipophilic statins, hydrophilic
statins (pravastatin, rosuvastatin and pitavastatin) are general-
ly more consistent to increase adiponectin levels and insulin
resistance. However, the increased incidence of T2DM with
rosuvastatin in the JUPITER trial challenges this speculation
[19••], but the effect may be dependent on pre-existing risk
factors for T2DM. Hence, we maintain that there is no con-
vincing evidence that the effect of statin on adiponectin is
associated with changes in insulin sensitivity and, by impli-
cation, the development of T2DM. More studies are required
to examine the role of adiponectin on insulin sensitivity and
risk of diabetes with statins, particularly pitavastatin.

CoQ10 and T2DM

CoQ10 (or ubiquinone) is a lipid-soluble molecule with a side
chain of 10 isoprenoid units, endogenously synthesized in the
body from phenylalanine and mevalonic acid with some ob-
tained from diet (meat products). CoQ10 is presented in all
cellular membranes, blood and lipoproteins, but its concentra-
tion is the highest in the heart, kidney, liver andmuscles owing
to their high energy requirements or metabolic activity. The
synthesis of CoQ10 is regulated by the HMG-CoA reductase
reaction in the mevalonate pathway [90, 91]. Biologically,
CoQ10 serves as an energy transporter in mitochondrial and
extra-mitochondrial membranes. It accepts electrons from
several donors (such as NADH, succinate and glycerol-3-
phosphate) and transfers them to the cytochrome complex
which, in turn, drives ATP synthesis [90]. Hence, deficiencies
in mitochondrial CoQ10 levels can impair the electron trans-
port rate, thus uncoupling ATP production. CoQ10 is also a
potential antioxidant and free-radical scavenger protecting cell
membranes and lipoprotein from protein and lipid peroxida-
tion. CoQ10 also acts as a membrane-stabilizing agent that
enhances resistance of bacterial cell and liposome membranes
to salt stress. CoQ10 deficiency has been implicated in several
clinical disorders, including heart failure, hypertension, ma-
lignancy and T2DM [92].

CoQ10 is known to be deficient in the diabetic state [93].
The underlyingmechanism for CoQ10 deficiency (quantitative
or functional) in T2DM may be a consequence of impaired
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mitochondrial substrate utilization and/or increased oxidative
stress. It has been suggested that CoQ10 deficiency can de-
press islet beta cell function, thus impairing glucose metabo-
lism [94]. Moreover, a reduction in CoQ10 levels in muscle
tissue can impair mitochondrial function, thus increasing the
risk of statin-induced myopathy [95].

CoQ10 and Statins

HMG-CoA reductase catalyses the conversion of HMG-CoA
to mevalonate, a precursor of both cholesterol and CoQ10.
Hence, the inhibition of conversion of HMG-CoA to
mevalonate with statins reduces not only cholesterol synthesis
but also other products downstream of mevalonate such as
CoQ10. In the LIPID trial, pravastatin lowered plasma CoQ10

concentrations by 15 % [96]. A more potent statin, atorvastat-
in, has been shown to reduce plasma CoQ10 concentration by
40 % [97], suggesting a dose-related effect of statins in low-
ering CoQ10 concentrations. Given the fundamental role of
CoQ10 in mitochondrial bioenergetics and its antioxidant
properties, the cardiovascular benefits of statin therapy may
be attenuated by its inhibition of endogenous CoQ10

production.
Several mechanisms have been proposed to explain the

association between statin-induced CoQ10 depletion and dia-
betes. Statins suppress the synthesis of CoQ10, resulting in
reduced insulin secretion due to direct inhibition of ATP
production. Sub-optimal beta cell levels of CoQ10 with statin
therapy reduce mitochondrial glycerol-3-phosphate-dehydro-
genase (G3PD) levels [94], which are critical to the function of
mitochondria. As mentioned earlier, statin-induced mitochon-
drial dysfunction can impair beta cell function and induce
insulin resistance in skeletal muscles [98]. Furthermore, the
depletion of CoQ10 induces myocyte inflammation and fiber
damage. This may be one explanation to underlie the patho-
physiology of statin-induced myopathy and potentially con-
tribute to insulin resistance in skeletal muscle [99]. In addi-
tion, it has been proposed that the decline in tissue CoQ10 with
aging is causally related to oxidative stress and mitochondrial
dysfunction in skeletal muscle, thereby accelerating statin-
induced peripheral insulin resistance [100]. This speculation
is consistent with the increased incidence of diabetes with
pravastatin therapy in the PROSPER trial [14].

Supplementation with oral CoQ10 can restore plasma
CoQ10 in patients receiving statin therapy. CoQ10 can also
improve glycemic control and other metabolic disorders asso-
ciated with insulin resistance [101–103]. Experimental evi-
dence has demonstrated that CoQ10 administration improves
pancreatic beta cell function, increases insulin sensitivity and
preserves the mitochondrial function in the islets [104]. The
antidiabetic or insulin-sensitizing mechanisms underlying its
favourable effects remain unclear but may involve the upreg-
ulation of insulin and adiponectin receptor, stimulation of

insulin signalling pathways (tyrosine kinase and PI3K) in
addition to improvement in the redox system (oxidative stress)
and elevation of soluble receptor for advanced glycation end
products (sRAGE) and adiponectin levels [105]. In addition,
CoQ10 has also been shown to ameliorate the reduction in
GLUT4 transporter by simvastatin in adipocytes [106].

Collectively, there is strong and consistent evidence indi-
cating that CoQ10 plays an important role in the regulation of
mitochondrial function, which is critical for beta cell function
in the islets. However, direct clinical evidence linking between
CoQ10 deficiency and the onset of T2DM is not yet available.
Statin therapy has been shown to reduce the production of
CoQ10, and potentially induce myopathy, but it is unclear
whether this contributes to impaired insulin sensitivity and
increase risk of T2DM. More research is needed to determine
whether supplementation of CoQ10 can prevent the develop-
ment or progression of T2DM, especially in those with pre-
existing diabetic risk and receiving statin therapy.

Cardiovascular Benefits and Diabetes Risks: a Question
of Balance

Data from several clinical trials, as well as meta-analyses,
consistently indicate that statin therapy reduces the risk of
CVD by 25–30 %, with greater effects for those receiving
higher doses or potent statins. A meta-analysis by Sattar et al.
estimated that the number needed to treat over a 4-year period
to cause one excess case of T2DM was 255 [8••]. In contrast,
5.4 fewer deaths from CHD and cases of nonfatal myocardial
infarction would be prevented per 255 patients treated over
4 years for each 1-mmol/L reduction in LDL cholesterol
compared with controls [8••]. In another meta-analysis, Preiss
et al. found that the number needed to treat with high-dose
statin per year to produce one excess case of T2DM compared
with moderate-dose statin therapy was 498. However, the
estimated number of CVD events prevented would be 3.2, in
comparison with one excess case of T2DM [23•]. In the
JUPITER trial, the primary CVD endpoint was reduced by
36 %, but incident diabetes was increased by 28 % for partic-
ipants with one or more major diabetes risk factors allocated
rosuvastatin. In absolute terms, 134 total vascular events or
deaths were avoided for every 54 new case of T2DM [19••].
For participants without major diabetes risk factors allocated
rosuvastatin, the primary endpoint was reduced by 53 %, with
no increase in incident diabetes. In absolute term, 86 total
vascular events or deaths were avoided with no excess inci-
dence of diabetes [19••].

Collectively, the overall CV benefits outweigh the contro-
versy surrounding the potential diabetogenic effects of statin.
There is currently no evidence to suggest that glycemic con-
trol is impaired in T2DM receiving statin therapy [107].
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However, as a matter of best clinical practice, all individuals
on a statin who have major risk factors for T2DM need to be
informed about the increased diabetic risk, monitored regular-
ly for hyperglycemia, and advised to lose weight and partic-
ipate in regular physical exercise to mitigate the potential
emergence of T2DM.

Guidance for Clinical Practice

Expert recommendations for the use of statins in people with
or at risk of developing T2DM have recently been published
[8••]. Briefly, overall CV risk using a validated score (e.g.
Framingham Risk Calculator [FRC] or Systematic COronary
Risk Evaluation [SCORE]) should be assessed in all patients
prior to starting statin therapy [108, 109•]. All with high CV
risk considered for statins should have their assessment of the
risk of developing T2DM (e.g. Finnish Diabetes Risk Score
[FINDRISC]) [109•]. The possible consequences of statin
treatment should be discussed with the patient who should
be strongly encouraged to reduce both their CV and T2DM
risk through lifestyle changes. For patients with low to mod-
erate T2DM risk (e.g. FINDRISC score <15 or equivalent
using other T2DM risk scores), measurement of HbA1c and/
or fasting glucose levels are not required. In those with CVD
and/or high CV risk, and high to very high T2DM risk score,
HbA1c or fasting glucose should be measured pre-statin and
re-assessed 3months after statin initiation. Patients with a high
T2DM risk score and/or fasting glucose >5.6 mmol/L
(>100 mg/dL), or HbA1c 6.0–6.4 %, should be given inten-
sive lifestyle advice to reduce the risk of conversion from pre-
diabetes to T2DM. Patients who develop T2DM during statin
therapy should be treated according to national guidelines on
diabetes management [2].

Conclusions

Statins have been demonstrated to be beneficial for primary
and secondary prevention of atherosclerotic cardiovascular
events in adults. However, post hoc analyses of major statin
trials indicate a definite but small increase in the development
of diabetes with statin therapy, especially in those with pre-
existing diabetic risk factors, such as older age, obesity, im-
paired glycemic control and insulin resistance. Results from
recent risk/benefit analyses support the continual use of statin
indicating that the absolute benefit of treatment far outweighs
the diabetes risk with statin therapy. Several hypotheses have
been proposed to underlie the association between statin use
and increased risk of diabetes, but more research is required to
substantiate the mechanisms. Although adiponectin and
CoQ10 appear to be key players in the regulation of glucose
metabolism, more solid evidence or research data is required

to support their roles in linking the association between statin
and incidence of diabetes. Further studies are required to
investigate whether the diabetogenic effects differ between
statins and whether some patient groups (e.g. elderly and
obese subjects) are at a higher risk of developing T2DM with
statin than others. Whether combination therapy of statin and
CoQ10 will prevent increased risk of diabetes, particularly in
the elderly and those with pre-existing diabetic risks, merits
further investigation. All patients should be assessed for CV
and diabetic risks prior to starting statin therapy. They should
be educated about the risk of statin therapy and encouraged to
reduce diabetic risk through lifestyle changes. Patients who
develop T2DM during statin therapy should be managed
according to national guidelines.
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