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Abstract Obesity and type 2 diabetes mellitus (T2DM) are
major drivers of cardiovascular disease (CVD). The link be-
tween environmental factors, obesity, and dysglycemia indi-
cates that progression to diabetes with time occurs along a
“continuum”, not necessarily linear, which involves different
cellular mechanisms including alterations of insulin signaling,
changes in glucose transport, pancreatic beta cell dysfunction,
as well as the deregulation of key genes involved in oxidative
stress and inflammation. The present review critically addresses
key pathophysiological aspects including (i) hyperglycemia
and insulin resistance as predictors of CVoutcome, (ii) molec-
ular mechanisms underpinning the progression of diabetic vas-
cular complications despite intensive glycemic control, and (iii)
stratification of CV risk, with particular emphasis on emerging
biomarkers. Taken together, these important aspects may con-
tribute to the development of promising diagnostic approaches
as well as mechanism-based therapeutic strategies to reduce
CVD burden in obese and diabetic subjects.
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Introduction

Worldwide, at least 2.8 million people die each year due to
complications of being overweight or obese [1]. Increased
body weight leads to adverse metabolic effects on blood
pressure, cholesterol, triglycerides, and insulin sensitivity

[2]. Risk of coronary heart disease, ischemic stroke, and type
2 diabetes mellitus (T2DM) rises steadily with increasing
waist circumference, an important hallmark of impaired glu-
cose tolerance [3]. The worldwide prevalence of obesity has
nearly doubled between 1980 and 2008. In 2008, 10% of men
and 14 % of women were obese, compared with 5 % of men
and 8 % of women in 1980 [3]. Obesity and insulin resistance
(IR) strongly predispose an individual to T2DM with a pro-
gressive increase of fasting glucose levels. IR is a major
feature of T2DM and develops in multiple organs, including
skeletal muscle, liver, adipose tissue, and the heart. The onset
of hyperglycemia and diabetes is often preceded by many
years of IR. Obesity plays a pivotal role in this phenomenon,
providing an important link between fat accumulation and
T2DM [4].

Obesity and T2DM Across the Cardiovascular
Continuum

The link between environmental factors (high caloric intake,
sedentary lifestyle), obesity, and subsequent dysglycemia in-
dicates that the progression to diabetes with time occurs along
a “continuum”, not necessarily linear, which involves differ-
ent cellular mechanisms including alterations of insulin sig-
naling, changes in glucose transport, pancreatic beta cell dys-
function as well as deregulation of key genes involved in
oxidative stress and inflammation [5]. The progression from
prediabetes to T2DM may take many years to occur, leading
to different intermediate disease phenotypes with continuous
changes in glucose parameters and shifts in glucose tolerance
category. Although obesity is an established risk factor for
T2DM, a large proportion of obese individuals do not develop
diabetes [2]. Recent studies have identified connections be-
tween obesity and T2DM involving proinflammatory cyto-
kines, insulin-related pathways, and lipid metabolism, as well
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as an array of cellular processes including mitochondrial
dysfunction, epigenetic modifications, and endoplasmic retic-
ulum stress [5–7]. A better understanding of these interactions
may lead to the development of mechanism-based therapeutic
approaches for the prevention of T2DM.

Among different specialists dealing with the diabetic dis-
ease, cardiologists are undoubtedly in a first-line position [8,
9]. Indeed, diabetes has a strong impact on atherosclerotic
vascular disease [10–12]. This phenomenon is best document-
ed in terms of its association with coronary heart disease and
cardiovascular events [13]. Several studies have clearly shown
that patients with diabetes are several-fold more prone to
develop myocardial infarction than matched subjects without
diabetes [10]. A seminal Finnish study demonstrated that
diabetes increases the 7-year risk of myocardial infarction
and death in older subjects [10]. The concept of diabetes as
a coronary heart disease risk-equivalent emerged from this
study and culminated in its coronation as a high-risk cardio-
vascular state requiring secondary prevention-level care. This
concept has been further strengthened in the recent 2013
guidelines of the European Society of Cardiology (ESC) on
the management of diabetes and CVD [14, 15••]. Notably, the
risk of macrovascular complications increases with the sever-
ity of blood glucose impairment. Data from the prospective
Whitehall study revealed that the risk for CVD was almost
doubled in subjects with impaired compared with normal
glucose tolerance [16]. Estimates predict that 40–50 % of
individuals with prediabetes will develop T2DM within
10 years, highlighting the importance of early detection of
abnormal glucose metabolism to prevent the progression of
prediabetes to T2DM and, hence, delay the occurrence of
macrovascular and microvascular complications. Although
impaired glucose tolerance and diabetes are considered very
high-risk conditions, we can still appreciate differences in CV
outcome between these two groups. Indeed, follow-up of the
Euro Heart Survey showed that 1-year survival is significantly
higher in prediabetic as compared with diabetic individuals
[17]. However, survival curves tend to overlap in the long
term, thus strengthening the concept that all stages of glucose
abnormalities are associated with increased risk of CV mor-
bidity and mortality [18, 19].

Different diabetes-related conditions contribute to enhanc-
ing cardiovascular risk. Among them, IR and hyperglycemia
are major drivers of atherothrombotic events leading to poor
cardiovascular outcome [20]. Recent meta-analyses have
shown that elevated insulin and glucose concentrations are
associated with an increased CVD risk, regardless of diabetes
[21–23]. A pooled analysis of 65 trials examined the impact of
the validated and frequently used marker Homeostasis Model
Assessment IR (HOMA-IR) on cardiovascular outcomes in-
cluding coronary heart disease, stroke, or combined CVD
[24]. Interestingly, the pooled relative risk of CHD was 1.52
(1.31, 1.76; 62.4 %) for glucose, 1.12 (0.92, 1.37; 41.0 %) for

insulin and 1.64 (1.35, 2.00; 0 %) for HOMA-IR [24]. The
high predictive value of HOMA-IR is due to the fact that such
an index incorporates both glucose and insulin concentrations
and is more strongly associated with CVD than glucose or
insulin concentrations alone. These data suggest that hyper-
glycemia and IR are powerful predictors of cardiovascular
events and their combination exerts a detrimental, synergic
effect [25]. This concept is also outlined by the notion that
patients with the combination of T2DM and visceral obesity
display worse myocardial function than patients having
T2DM or obesity alone [26]. Other studies have reported
significant associations between HOMA-IR and post-
procedural myocardial injury and clinical outcome after a
percutaneous coronary intervention (PCI) with drug-eluting
stents [27, 28]. A recent study showed that post-procedural
troponin T and creatine kinase-myocardial band levels pro-
gressively rose across tertiles of HOMA-IR in 516 patients
undergoing PCI [28]. During a median follow-up of 623 days,
patients with the highest tertiles of HOMA-IR had the highest
risk of cardiovascular events. The Cox proportional hazard
models identified HOMA-IR as independently associated
with worse clinical outcome after adjustment for clinical and
procedural factors [HR 1.98 (CI 95 % 1.510–2.608)] [28].
These data clearly suggest that preventing features of T2DM
may strongly reduce the burden of cardiovascular disease
(CVD) [29]. The prevalence of impaired glucose tolerance is
extremely high among patients admitted for an acute coronary
syndrome. International surveys have demonstrated that
dysglycemia is more common than normoglycemia in CVD
patients admitted to the hospital, and the oral glucose toler-
ance test (OGTT) is able to detect glucometabolic alterations
in 55–60% of patients with overt CVD [30]. In this regard, the
recent European guidelines strength the concept that early
detection of glucose perturbations by OGTT in patients with
coronary artery disease (CAD) offers an opportunity to pre-
vent the development of DM by means of lifestyle programs
and/or pharmacological treatments [15••].

Mechanisms of Atherosclerotic Vascular Disease
in Patients with Obesity and T2DM

In the diabetic vasculature, hyperglycemia and IR trigger an
array of signaling pathways and gene-activating events favor-
ing the atherosclerotic process [25] (Fig. 1). Although a large
number of studies have characterized the mechanisms of
diabetic vascular disease, the individual contributions of hy-
perglycemia and IR remain largely unknown. Indeed, factors
increasing CV risk tend to cluster together in the diabetic
patient. IR is believed to be a pathophysiological disturbance
that underlies many of the risk factors, but it is not clear
whether IR is a CV risk factor per se [4]. Likewise, it is hard
to appreciate the detrimental effects of chronic hyperglycemia
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across the spectrum of many other cardiovascular risk factors
concurring in the diabetic patient. Indeed, intensive treatment
of hyperglycemia failed to improve cardiovascular outcome
[31], whereas a systematic, multifactorial treatment signifi-
cantly reduced cardiovascular mortality [32]. Accordingly, the
ORIGIN trial failed to show that early implementation of
insulin-based regimens reduces macrovascular complications
[33]. In line with these findings, the new guidelines do not
recommend very tight glucose control if the goal is to reduce
macrovascular complications [15••]. Taken together, these
disappointing results have recently contributed to the emerg-
ing skepticism of clinicians toward the importance of hyper-
glycemia as a CV risk factor. A possible interpretation is that
glucose levels may represent a marker instead of a predictor of
CVD. This might contribute to an explanation of why the
normalization of glycemia does not reduce CVD burden.
However, the scenario is much more complex, since an array
of experimental and clinical studies clearly shows that glucose
levels and impaired insulin signaling are potent drivers of the
atherosclerotic process, even in the absence of concomitant
risk factors such as hypertension, obesity, and dyslipidemia
[12]. Hence, the major challenge to curing diabetes is to
unravel the intricate networks linking different risk factors
with atherosclerotic disease and, hence, to develop
mechanism-based therapeutic approaches in this setting.

The “Bad Legacy Effect” of Hyperglycemia

High glucose levels favor the imbalance between endothelial
nitric oxide (NO) availability and accumulation of reactive
oxygen species (ROS) [12]. The generation of ROS rapidly
inactivates NO to form peroxynitrite (ONOO-), a powerful
oxidant triggering protein nitrosylation and dysfunction of key
enzymes implicated in endothelial homeostasis [34]. In pa-
tients with diabetes, hyperglycemia leads to the accumulation
of mitochondrial ROS and subsequent activation of important
biochemical pathways including advanced glycation end
products, protein kinase C (PKC), nuclear factor-kB (NF-
kB), polyol, and hexosamine flux [35]. A recent study showed
that PKC is highly activated in endothelial cells isolated from
diabetic subjects and correlates with oxidative stress, impaired
insulin signaling and, most importantly, endothelial dysfunc-
tion, as assessed by flow-mediated vasodilation [36•]. In the
diabetic endothelium, PKC leads to increased ROS generation
via activation of the adaptor p66Shc and NADPH oxidase
signaling (Fig. 1) [12, 37]. The mitochondrial adaptor p66Shc

functions as a redox enzyme implicated in mitochondrial ROS
generation and translation of oxidative signals into apoptosis
[38–41]. We have reported that diabetic p66Shc-/-mice are
protected against hyperglycemia-induced endothelial dys-
function and oxidative stress [42]. The relevance of p66Shc

in the clinical setting of diabetes is supported by the notion

that p66Shc gene expression is increased in peripheral blood
mononuclear cells obtained from patients with T2DM and
correlates with oxidative stress [43]. We have recently dem-
onstrated that hyperglycemia-induced p66Shc upregulation is
not reverted by intensive glycemic control in diabetic mice,
thus contributing to persistent oxidative stress and vascular
dysfunction [44•]. Interestingly enough, in-vivo silencing of
p66Shc, performed at the time of normoglycemia restoration,
suppressed persistent endothelial dysfunction, suggesting that
p66Shc is an important source of free radicals involved in the
“bad legacy effect” of hyperglycemia [44•]. This latter phe-
nomenon, also known as hyperglycemic memory, might

Fig. 1 Schematic representing the detrimental effects of endothelial
insulin resistance and hyperglycemia. Inhibitory IRS-1 phosphorylation
by protein kinase C impairs downstream targets PI3K and Akt leading to
eNOS dysfunction and reduced synthesis of NO. This chain of events
blunts NO-mediated capillary recruitment and impairs insulin delivery in
hormone-sensitive organs leading to systemic insulin resistance. On the
other hand, hyperglycemia causes PKC-dependent activation of NADPH
oxidase and mitochondrial adaptor p66Shc, leading to ROS generation,
NF-kB activation, and the upregulation of inflammatory molecules. Tran-
sient hyperglycemic spikes as well as ROS trigger epigenetic changes,
which are responsible for persistent vascular dysfunction despite the
restoration of normoglycemia. Such an oxidative and inflammatory mi-
lieu triggers important precursors of vascular damage including circulat-
ing cytokines, microRNAs, microparticles, and AGEs, which may serve
as important CVD biomarkers in obese and diabetic subjects. ROS
reactive oxygen species, PKC protein kinase C, IRS-1 insulin receptor
substrate-1, AGEs advanced glycation end products, IL-6 interleukin 6,
NO nitric oxide
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represent an important determinant of residual vascular risk in
diabetes and is becoming the focus of many ongoing investi-
gations [45, 46]. Understanding the mechanisms underpin-
ning hyperglycemic memory may help to unravel why inten-
sive glycemic control does not exert any beneficial effect on
macrovascular complications in patients with T2DM. In this
context, we have also reported that alterations of chromatin,
known as epigenetic changes, are responsible for persistent
p66Shc overexpression during subsequent normoglycemia
[44•] (Fig. 1). Epigenetic alterations, namely methylation
and acetylation of DNA/histone complexes, are emerging as
important modulators of gene expression in diabetic vascular
disease [47–50].

Glucose Fluctuations

An important breakthrough in the etiologic pathway linking
hyperglycemia and vascular damage is the demonstration that
glucose fluctuations rather than constant high glucose are able
to maintain the activation of molecular machineries involved
in oxidative stress and inflammation and, hence, to trigger
atherosclerotic disease [48, 51]. A recent study demonstrated
that transient hyperglycemic spikes activate epigenetic chang-
es responsible for long-lasting activation of the transcription
factor NF-kB and subsequent upregulation of inflammatory
adhesion molecules [52••]. The clinical relevance of these
findings is supported by the notion that, although HbA1c is
reduced to target levels, blood glucose concentrations in pa-
tients with diabetes always fluctuate from hyperglycemic
peaks to glucose nadirs [53]. Moreover, current evidence
suggest that HbA1c explains <25 % of the variation in the risk
of developing diabetic complications. Indeed, HbA1c does not
correlate with glycemic variability when adjusted for mean
blood glucose [54]. Collectively, these data suggest that
targeting transient spikes of hyperglycemia in addition to
HbA1c may suppress detrimental processes responsible for
the progression of vascular complications in T2DM (Fig. 1).

Endothelial Insulin Resistance

The onset of hyperglycemia and diabetes is often preceded by
many years of IR [12]. The impact of IR as an individual CV
risk factor in patients with diabetes has emerged only recently
[2, 55, 56]. Indeed, over the last decade IR has been regarded
as the consequence of visceral obesity, without any active
role in the etiology of diabetic cardiovascular complications
[57]. After many years of seminal research in this area we
may conclude that it is rather naïve to regard IR as the
epiphenomenon of obesity and metabolic syndrome.
Against this, several experimental studies have shown that
the loss of insulin signaling in the endothelium leads to

vascular dysfunction, expression of adhesion molecules, and
atherosclerotic lesions in mice [58••, 59–62]. Although IR has
been attributed to adipocyte-derived inflammation, recent ev-
idence is overturning the “adipocentric paradigm” [57]. In-
deed in obesity, inflammation and macrophage activation
seem to primarily occur in non-adipose tissue. This concept
is supported by the notion that suppression of inflammation in
the vasculature prevents IR in other organs and prolongs
lifespan [58••]. Transgenic mice with endothelium-specific
overexpression of the inhibitory NF-kB subunit IkBα were
protected against the development of IR. In these mice,
obesity-induced macrophage infiltration of adipose tissue
and plasma oxidative stress markers were reduced, whereas
blood flow, muscle mitochondrial content, and locomotor
activity were increased, confirming the pivotal role of the
transcription factor NF-kB in oxidative stress, vascular dys-
function, and inflammation [58••]. Another study confirmed
these findings, showing that genetic disruption of the insulin
receptor substrate 2 (IRS-2) in endothelial cells reduces glu-
cose uptake by skeletal muscle [61]. These novel findings
strengthen the central role of endothelium in obesity-induced
IR, suggesting that a blockade of vascular inflammation and
oxidative stress may be a promising approach to prevent
metabolic disorders. Consistently, pharmacological improve-
ment in insulin sensitivity in patients with T2DM and meta-
bolic syndrome is associated with the restoration of flow-
mediated vasodilation [63, 64]. In other words, the mainte-
nance of endothelial homeostasis warrants physiological nitric
oxide release with subsequent capillary recruitment and ap-
propriate insulin delivery within hormone-sensitive organs
[65].

Stratification of Cardiovascular Risk

In Europe alone, about 63 million people are affected by
prediabetes and 53 million by diabetes, and these numbers
will grow exponentially over the coming decades [15••]. The
most powerful strategy for reducing cardiovascular mortality
is represented by early diagnosis and, hence, treatment of
vascular complications. At present, we are still lacking cost-
effective markers able to identify atherosclerotic disease at an
early stage. The issue of risk stratification deserves attention
because not every obese/diabetic subject carries the same
degree of inflammation and oxidative stress. The diversity of
metabolic phenotypes with different outcomes underscores
the need for cardiovascular risk stratification within such a
heterogeneous population. Despite diabetes being associated
with a significant atherosclerotic burden, the role of vascular
imaging in this setting remains poorly defined [9]. Coronary
artery calcium imaging has been found to be superior to
established risk factors for predicting silent myocardial ische-
mia and short-term outcome in a small cohort of high-risk DM
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subjects [66]. This is a rather expensive tool that may not be
sustainable in developing countries. Moreover, the benefits of
myocardial revascularization in asymptomatic patients remain
to be determined [14, 67]. The issue with the emerging bio-
markers is that they hardly perform beyond traditional cardio-
vascular risk scores. TheAtherosclerotic Risk in Communities
(ARIC) study prospectively evaluated whether adding C-
reactive protein or 18 other novel risk factors individually to
a basic risk model would improve prediction of incident CAD
in middle-aged men and women [68]. Unfortunately, none of
these risk markers predicted CVD, regardless of the risk score.
Besides these disappointing results, current European guide-
lines confirm that albuminuria remains the most powerful
predictor of incident CV events and heart failure in T2DM
patients and recommend the estimation of urinary albumin
excretion rates when performing risk stratification in DM
subjects (class I, level B) [15••].

Novel Biomarkers

Circulating molecules, such as proinflammatory and anti-
inflammatory cytokines, are being considered as potential
cardiovascular biomarkers in diabetes [69]. A case-control
study, within the prospective, population-based EPIC (Euro-
pean Prospective Investigation into Cancer and Nutrition)
study, has demonstrated that a combined elevation of IL-1β
and IL-6 was independently associated with an increased risk
of T2DM, suggesting the importance of low-grade inflamma-
tion in the pathogenesis of diabetes [70]. A cross-sectional
analysis performed in patients with and without type 1 diabe-
tes (T1DM) showed that IL-6 and fibrinogen levels were
significantly elevated in T1DM patients, regardless of adipos-
ity and glycemic control [71]. Another study showed that IL-6
is significantly increased in diabetics undergoing PCI with a
peri-interventional hyperglycemic state, and inversely corre-
lates with responsiveness to clopidogrel and aspirin [72].
Increased oxidative stress in the vasculature is a major con-
tributor of endothelial dysfunction in DMvia the generation of
superoxide and subsequent impairment of NO bioavailability
[12]. In this regard, a previous work examined glomerular and
cortical eNOS expression in renal biopsies of patients with
diabetic nephropathy and noticed a strong correlation between
eNOS activity and degree of proteinuria, which is indicative of
glomerular endothelial dysfunction [73]. Moreover, circulat-
ing markers of oxidative stress, including F2 isoprostanes and
antibodies against oxLDL, are increased in humans with
diabetes, obesity, and IR [74]. The analysis from the
community-based Framingham Offspring Study found an
increased prevalence of IR across 8-epi-prostaglandin F2α
tertiles [74]. Thus, systemic oxidative stress seems to be
related to IR in prediabetic subjects. Advanced glycation end
products (AGEs) have been linked to the atherosclerotic

process and are emerging as a novel signature of atheroscle-
rotic disease [75]. Measuring AGEs in the skin using auto-
fluorescence may provide important information on risk strat-
ification in diabetic patients. In a study involving 972 diabetic
patients, the addition of skin AGEs to the UKPDS risk engine
resulted in the re-classification of 27% of the patients from the
low- to the high-risk group [76]. Indeed, the 10-year cardio-
vascular event rate was higher in patients with a UKPDS score
>10%when skin AGEswere above the median (56 vs. 39%).
Novel markers in diabetes certainly include microRNAs
(miRs), a newly identified class of small, non-coding RNAs
that are emerging as key players in the pathogenesis of
hyperglycemia-induced vascular damage [77, 78]. These
small non-coding RNAs orchestrate different aspects of dia-
betic vascular disease by regulating gene expression at the
post-transcriptional level. Microarray profiling has shown an
altered profile of miRs expression in subjects with T2DM
[79•]. In this study, diabetic patients displayed a significant
deregulation of miRs involved in angiogenesis, vascular re-
pair, and endothelial homeostasis. Among other miRs, miR-
126, an important pro-angiogenic effector [80], was signifi-
cantly downregulated in plasma samples of 822 patients from
the Brunick cohort [79•]. Closely related to the miRs are the
microparticles (MPs). The latter are shed membrane particles
of <1 mm in diameter, thought to be budded into the circula-
tion from endothelial cells (EMPs) and various blood cells,
including platelets, leukocytes, and erythrocytes [81]. A re-
cent study showed that MP characteristics are associated with
the type of vascular complication involved in DM and might
serve as a biomarker for the pro-coagulant state and vascular
pathology in patients with DM [82]. Moreover, plasma EMPs
have been associated with the presence of hypertension and
arterial stiffness in diabetic patients [83], whereas another
study suggested that EMPs could be used as surrogate markers
of unstable plaques and might help to improve cardiovascular
prediction in DM patients [84]. Taken together, these new
findings indicate that microRNAs and microparticles may
represent a novel diagnostic opportunity for the early identi-
fication of obese and diabetic subjects at high cardiovascular
risk.

Conclusions

In the present review, we have delineated the major mecha-
nisms as well as the connections linking obesity and T2DM.
These interactions are complex and the relative importance of
IR and hyperglycemia remain undefined as to the stratification
of cardiovascular risk in these heterogeneous populations.
Further genetic and epigenetic studies may help to elucidate
additional common pathophysiological pathways for obesity
and diabetes and identify new promising treatment targets to
reduce CVD in this setting.
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