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Abstract Recent genetic studies have put the spotlight back
onto lipoprotein(a) [Lp(a)] as a causal risk factor for coronary
heart disease. However, there remain significant gaps in our
knowledge with respect to how the Lp(a) particle is assem-
bled, the route of its catabolism, and the mechanism(s) of
Lp(a) pathogenicity. It has long been speculated that the
effects of Lp(a) in the vasculature can be attributed to both
its low-density lipoprotein moiety and the unique
apolipoprotein(a) component, which is strikingly similar to
the kringle-containing fibrinolytic zymogen plasminogen.
However, the ability of Lp(a) to modulate either purely throm-
botic or purely atherothrombotic processes in vivo remains
unclear. The presence of oxidized phospholipid on Lp(a) may
underlie many of the proatherosclerotic effects of Lp(a) that
have been identified both in cell models and in animal models,
and provides a possible avenue for identifying therapeutics
aimed at mitigating the effects of Lp(a) in the vasculature.
However, the beneficial effects of targeted Lp(a) therapeutics,
designed to either lower Lp(a) concentrations or interfere with
its effects, on cardiovascular outcomes remains to be
determined.
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Introduction

Emerging clinical and epidemiological evidence strongly sup-
ports elevated plasma lipoprotein(a) [Lp(a)] concentrations as
an independent risk factor for cardiovascular diseases [1°].
First, new approaches and insights from the field of genetics
have implicated Lp(a) as a causative agent in the
atherothrombotic process [2¢]. Second, although manifold
potential pathogenic mechanisms for Lp(a) are still considered
to underlie the harmful effects of Lp(a), evidence is beginning
to emerge that the modification of Lp(a) by oxidized phos-
pholipids may be a common denominator [3¢]. Finally, several
approaches to lower plasma Lp(a) concentrations may soon
lead to studies that address the proposition that decreasing
plasma Lp(a) concentrations can prevent cardiovascular
events [4¢]. This review aims to summarize the most recent
data with respect to each of these developments.

Modulation of Lp(a) Synthesis, Assembly, and Clearance
Properties of Lp(a) and Apolipoprotein(a)

Lp(a) is a unique lipoprotein particle whose biological func-
tion and metabolic role remain unknown. Lp(a) consists of a
lipoprotein moiety essentially indistinguishable from low-
density lipoprotein (LDL) [5] to which the signature glyco-
protein apolipoprotein(a) [apo(a)] is covalently linked (see
Fig. 1). Itis apo(a) that appears to confer the unique properties
of Lp(a), including its remarkable heterogeneity in size and
plasma concentrations, its very different metabolism, and the
multiple ways by which it may promote atherosclerosis and
thrombosis [6¢].

Apo(a) is evolutionarily related to the serine protease zy-
mogen plasminogen [7], and this homology underlies many of
the potentially harmful properties of Lp(a) [8]. Plasminogen is
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Fig. 1 Structure of lipoprotein(a) [Lp(a)] and its manifold potential
pathogenic mechanisms. Lp(a) consists of a lipoprotein moiety identical
to low-density lipoprotein, consisting of a core of cholesteryl esters (CE)
and triglycerides (7G), an outer shell of phospholipids (PL) and free,
unesterified, cholesterol (FC), and a single molecule of apolipoprotein B-
100 (apoB-100). Apolipoprotein(a) is covalently linked to apoB-100
through a single disulfide bond, and consists of ten types of plasminogen

composed of an amino-terminal “tail” domain that participates
in maintaining the “closed” tertiary structure of native plas-
minogen, five different domains known as kringles, and a
trypsin-like protease domain that is activated by tissue-type
or urokinase-type plasminogen activators. Kringles are tri-
looped structural domains containing three invariant disulfide
bonds and are found in a variety of proteases involved in
coagulation and fibrinolysis, where they appear to mediate
protein—protein interactions. Apo(a) lacks domains homolo-
gous to the plasminogen tail domain or kringles I-11I. Instead,
apo(a) contains multiple copies of sequences homologous to
kringle IV of plasminogen, followed by single copies of a
kringle V-like domain and the protease domain (see Fig. 1)
[7]. The apo(a) protease domain is catalytically inert and
cannot be cleaved by plasminogen activators [9]. There are
ten types of kringle IV domains in apo(a), which differ in
amino acid sequence; nine of these (kringle IV types 1 and 3—
10) are present in a single copy, whereas kringle IV type 2
(KIV,) is present in differing numbers of repeated copies (as
few as three to more than 30; see Fig. 1) [10-12]. The differing
numbers of KIV, copies are specified by the different alleles
of LP4—the gene encoding apo(a)—present in the population
and accounts for the marked size heterogeneity of Lp(a). LPA
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kringle (KIV)-like sequences (KIV ;—KIV 1), a kringle V (KV)-like do-
main, and an inactive protease-like domain (P). KIV, is present in
different numbers of repeated copies in different apoliprotein(a) isoforms.
A large number of mechanisms by which Lp(a) could promote the
initiation and progression of atherosclerosis have been described in the
literature, as indicated (reviewed in [1¢, 2+, 3¢, 62, 9]). EC endothelial cell,
SMC smooth muscle cell

allele size is an important determinant of plasma Lp(a) con-
centrations as there is a general inverse correlation between
LPA allele size and plasma Lp(a) concentrations [13]. This
correlation can largely be explained by the less efficient post-
translational processing and secretion of large apo(a) isoforms
by hepatocytes, where apo(a) is synthesized [14].

Plasma Lp(a) concentrations differ widely—over 1,000-
fold—in the population, and most of this variation (up to
90 %) is attributable to the LP4 gene itself [2¢]. Although
LPA allele size plays a significant part in this variation (up to
60 % of the total), other sequence variations within LPA4 also
contribute, as do certain nongenetic factors [2+, 15].

Modulation of LPA Gene Expression

Although plasma Lp(a) concentrations are largely resistant to
dietary and drug interventions, several nongenetic modulators
of LPA gene transcription have been identified. These findings
have important implications for the development of therapies
aimed at lowering plasma Lp(a) concentrations.

Work from Kostner’s group [16] in Austria discovered that
patients with biliary obstructions had very low levels of plas-
ma Lp(a), and that these concentrations rose on surgical
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intervention to relieve the obstruction. These findings sug-
gested a potential role for the farnesoid X receptor (FXR),
which is activated by bile acids, in suppressing LPA transcrip-
tion. Indeed, transgenic mice harboring the human LP4 gene
on a yeast artificial chromosome showed reduced plasma
apo(a) levels in response to common bile duct ligation, where-
as this effect was not observed in mice harboring this trans-
gene on a background of FXR gene knockout [16]. Further
molecular studies identified sites in the LP4A promoter that
mediate, both directly and indirectly, the effect of bile acids
[16, 17]. Elucidation of the pathways by which bile acid
activation of FXR suppresses apo(a) expression identifies
targets that could be exploited in the design of therapeutics
to lower plasma Lp(a) concentrations, although targeting ex-
pression of LPA alone may prove challenging.

It has been appreciated for a number of years that niacin
administration lowers plasma Lp(a) concentrations, in addi-
tion to several other effects on the lipid profile [18]. Although
the mechanisms underlying this effect have remained a mys-
tery, a recent biochemical study also from Kostner’s group
[19] indicates that the effect of niacin may be mediated at the
level of LPA gene transcription. Niacin was shown to decrease
LPA messenger RNA levels both in transgenic LPA-YAC
mice and in primary hepatocytes and hepatoma cell lines.
Analysis of the LP4 promoter revealed the presence of several
cyclic AMP response elements, accounting for the ability of
niacin, which decreases cyclic AMP levels in the cell, to
suppress LPA transcription. However, the negative results of
two large clinical trials of niacin (see later) might suggest that
this agent is not a promising strategy for lowering the risk for
cardiovascular disease attributable to elevated Lp(a) concen-
trations [20, 21].

Site of Lp(a) Assembly

The dogma in the Lp(a) field for several decades has been that
Lp(a) is assembled extracellularly, perhaps on the surface of
hepatocytes, from apo(a) and an apolipoprotein B (apoB)-
100-containing lipoprotein. The basis for this was (1) the lack
of observation of covalently linked apo(a) and apoB-100
intracellularly [22] (except for one study, which used a trun-
cated, nonphysiological, and highly over expressed form of
recombinant apo(a) [23]), (2) the observation that Lp(a) as-
sembly can proceed spontaneously outside the cell [22, 24],
and (3) the existence of a secreted oxidase-type enzyme that
catalyzes specific disulfide bond formation between apo(a)
and apoB-100 [25]. A major missing piece of this puzzle has
been the identity of the apoB-100-containing lipoprotein that
couples to apo(a) to form the nascent Lp(a) particle. A recent
study using an in vivo stable-isotope kinetic approach
threatens to topple this dogma [26¢]. It was found that the
apoB associated with Lp(a) has production kinetics very dif-
ferent from that of apoB associated with either LDL or very

low density lipoprotein (VLDL); Frischmann et al. [26¢] took
this as evidence that Lp(a) assembly must occur intracellular-
ly. It may be more accurate to state that the results in fact
suggest that Lp(a) arises from a specific and distinct pool of
apoB; this may be consistent with intracellular assembly, but
also with assembly directly on the surface of hepatocytes or in
the space of Disse [26¢]. Intracellular assembly of Lp(a) from
a physiological isoform or direct observation of an Lp(a)-
targeted apoB population has never been observed, although
Frischmann et al. [26¢] correctly point out that the existing cell
models may not faithfully represent human hepatocytes in
situ. Clearly, additional work is required to reconcile the
existing data. These advances will likewise be crucial for the
development of therapeutics aimed at inhibition of Lp(a)
biosynthesis and/or assembly.

Lp(a) Clearance and Catabolism

The route of clearance of Lp(a) is also an unresolved area
replete with controversy. It is clear that differences in plasma
Lp(a) concentration primarily are a function of differences in
the rate of synthesis, not of the rate of clearance [27]. Yet, the
receptors in the liver that clear Lp(a) from the circulation
remain undefined. In vivo evidence in human subjects homo-
zygous for familial hypercholesterolemia strongly suggests
against a role for the LDL receptor (LDL-R) in Lp(a) catab-
olism [28]. Indeed, this finding is in keeping with the relative
resistance of Lp(a) concentrations to the effects of drugs that
affect lipid metabolism. In particular, statins, which increase
the number of hepatic LDL-Rs, have been very well studied,
and various reports have shown that different statins can
increase, decrease, or have no effect on plasma Lp(a) concen-
trations (reviewed in [29]). Although a recent meta-analysis of
randomized trials (3,540 patients) showed that atorvastatin
does indeed decrease plasma Lp(a) concentrations (although
to what extent was not presented) [30], data from the large
Collaborative Atorvastatin Diabetes Study (CARDS) (1,156
patients) showed no effect of atorvastatin [31]. Interestingly,
this same report (also using additional statin trials) showed a
strong contribution of Lp(a) to the genetic determinants of
response of LDL cholesterol (LDL-C) to atorvastatin. A
single-nucleotide polymorphism (SNP) in LP4 emerged from
a genome-wide association study of the LDL-C response to
this statin, an effect that was entirely accounted for by the
association of this SNP with plasma Lp(a) concentrations
[31]. Since Lp(a) was resistant to atorvastatin, the patients
with high Lp(a) appeared to be comparatively resistant to the
therapy as Lp(a) cholesterol could account for as much as
20 % of their apparent LDL-C.

A very interesting recent report demonstrated that infusion
of a monoclonal antibody against proprotein convertase
subtilisin/kexin 9 (PCSK9) into healthy human volunteers
decreases plasma Lp(a) concentrations by 25-30 % [32¢].
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PCSKD9 is an enzyme that normally functions to decrease the
number of LDL-Rs on the cell surface by promoting shunting
of the receptor to degradative pathways during recycling
inside the cell [33]. The idea that PCSK9 might target recep-
tors other than the LDL-R is an emerging one, with LDL-R-
related protein 1, VLDL receptor, and apolipoprotein E recep-
tor 2 being identified as candidates [34, 35]; further analysis of
this phenomenon may thus address three key questions: (1)
whether the LDL-R is truly involved in Lp(a) catabolism; (2)
what the receptor or receptors that mediate Lp(a) catabolism
are; and (3) whether PCSK9 can indeed operate through
receptors other than the LDL-R.

A recent study examined relationships between plasma
Lp(a) concentration [both Lp(a) particle number (Lp(a)-P)
and Lp(a) cholesterol] and markers of triglyceride and high-
density lipoprotein (HDL) metabolism [36]. At low concen-
trations of triglycerides, Lp(a)-P and Lp(a) cholesterol were
highly related, but at elevated concentrations of triglycerides
the relationship between these parameters was much weak-
ened, surprisingly, and Lp(a)-P was related more to parame-
ters of HDL lipidation, VLDL, and triglycerides. The mech-
anistic basis for these findings could not be explained by the
approach used in this study, and it is not clear that the non-
Lp(a) lipid parameters influence Lp(a) synthesis or catabo-
lism. Yet, there are certainly elements in the literature that may
be germane, including the ability of certain modulators of lipid
metabolism to, at times unexpectedly, modulate plasma Lp(a)
concentrations, as described in the following section.

Therapeutic Modulation of Lp(a)

For elevated plasma Lp(a) concentrations to graduate from
“emerging” to “established” cardiovascular risk factor status,
one key criterion is demonstration that lowering plasma Lp(a)
concentrations leads to a reduction in indices of cardiovascu-
lar disease such as events. However, there is as yet no therapy
that lowers plasma Lp(a) concentrations in the absence of
other salutary effects on the lipid profile. In addition, it is
not known if some of these therapies may be more effective
in patients with elevated plasma Lp(a) concentrations.

Niacin

Niacin (nicotinic acid) has long been known to favorably
influence concentrations of LDL-C, triglycerides, and HDL
cholesterol (HDL-C), through a variety of mechanisms [37].
Niacin is also able to substantially decrease plasma Lp(a)
concentrations [38]. One mechanism for this may involve
the effect on LP4 gene transcription, as outlined earlier. Niacin
also inhibits apoB secretion by inhibiting triglyceride synthe-
sis, thus promoting intracellular degradation of apoB during
synthesis [39]. It will be interesting to determine if the pre-
sumptive Lp(a)-specific pool of apoB (see earlier) is similarly
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modulated by niacin. Although niacin can lower plasma Lp(a)
concentrations by as much as 40 %, not all studies have
reported an effect of niacin on plasma Lp(a) concentrations
and not all patients exhibit a decrease [18].

Niacin is probably the most recognized means to therapeu-
tically lower plasma Lp(a) concentrations. In fact, the Euro-
pean Atherosclerosis Society Consensus Panel has recom-
mended that patients at intermediate or high risk of cardiovas-
cular disease be screened for plasma Lp(a) concentration, and
that reduction of a patient’s Lp(a) level to under 50 mg/dL
with the use of niacin should be a treatment priority after
management of lipoprotein cholesterol [40]. A major side
effect of niacin that has stood in the way of its wide use has
been flushing. However, sustained-release niacin formulations
and antiflushing adjunct therapy have promised to decrease
this side effect. Unfortunately, two large trials of niacin using
these respective approaches (AIM-HIGH and HPS2-
THRIVE) have both failed to show a cardiovascular benefit
of niacin treatment over treatment with a statin (with or
without ezetimibe) alone [20, 21]. Although this would seem
to mark the end of the road for niacin as a treatment of elevated
Lp(a) concentrations, it should be noted that the effects of
niacin were not examined as a function of initial plasma Lp(a)
concentration. In addition, although Lp(a) concentrations in
AIM-HIGH decreased by 25 % with niacin treatment [20], the
analogous data from HPS2-THRIVE have yet to be presented.

Cholesteryl Ester Transfer Protein Inhibitors

Modulation of HDL-C levels as a way to prevent cardiovas-
cular disease has been a long-standing target of drug develop-
ment [41, 42]. Phase III trials of two cholesteryl ester transfer
protein inhibitors, torcetrapib and dalcetrapib, have been
halted prematurely because of safety and futility, respectively,
even though both were successful at raising HDL-C levels
[43, 44]. Two other compounds, anacetrapib and evacetrapib,
have been developed that are more potent than dalcetrapib
while lacking the off-target effects on blood pressure of
torcetrapib [45—47]. Anacetrapib has been demonstrated to
markedly (by 36 %) lower plasma Lp(a) concentrations [45].
The mechanism by which this occurs remain unknown, but
investigation of this effect will likely yield new insights into
Lp(a) production and/or catabolism and the role of triglycer-
ides and HDL in these processes.

Mipomersin

Mipomersin is an antisense oligonucleotide directed against
apoB. In addition to lowering LDL-C concentrations,
mipomersin also lowers plasma Lp(a) concentrations by 40—
50 % [48¢]. These findings suggest that a specific pool of
apoB directed towards Lp(a) assembly is synthesized in
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hepatocytes and may couple with apo(a) prior to becoming
incorporated into the circulating apoB pool.

Apheresis

Removal of apoB-containing lipoproteins by lipid apheresis is
a very effective technique for the treatment of familial hyper-
cholesterolemia. Although it is generally not specific for
Lp(a), in a recent study that targeted familial hypercholester-
olemia patients with elevated Lp(a) concentrations, lipid aphe-
resis reduced plasma Lp(a) concentrations by 73 % and the
rate of major adverse coronary events by 87 % [49]. All
patients were also taking statins to lower LDL-C concentra-
tion; subgroup analysis allowed the investigators to conclude
that a major contributor to the reduction of events was the
decrease in Lp(a) concentration, rather than the decrease in
LDL-C concentration. More recently, a study has been report-
ed in which Lp(a) was selectively removed in CHD patients
with normal LDL-C concentration by apheresis [Lp(a) aphe-
resis]; this technique also reduced plasma Lp(a) concentra-
tions by 73 % and yielded significant regression of coronary
atherosclerosis as measured by angiographic determination of
the percent diameter stenosis and minimum lumen diameter
[50+]. This study is thus the first to directly demonstrate that
reduction of Lp(a) concentrations (albeit by a relatively inva-
sive technique that is not appropriate for use in the general
population) can reverse atherosclerotic disease. These find-
ings provide a clear impetus to investigate the efficacy of
Lp(a) lowering in larger populations.

Lp(a) as a Risk Factor for Atherothrombotic Disease
New Insights from Genetics

The strong genetic component underlying elevated plasma
Lp(a) concentrations has been recognized for decades. Early
studies determined that the LPA4 gene itself was responsible for
up to 90 % of the variation in plasma Lp(a) concentrations,
and that a large component of this variation resided in differ-
ences in the number of KIV, repeats in different LP4 alleles
[51]. In fact, the current genetic revolution in appreciating the
role of Lp(a) was presaged by the observation in 1992 that
individuals who inherited smaller LP4 alleles were at greater
risk of coronary artery disease (CAD) [52]. More contempo-
rary genetic studies, taking advantage of new technologies
offering a higher-resolution genetic approach and larger num-
bers of subjects, have validated this initial result and have
thrust Lp(a) once more to prominence.

Two key articles published in 2009 identified sequence
variants in LP4 associated both with elevated plasma Lp(a)
concentrations and with risk of CAD. Using a genome-wide
approach, Clarke et al. [53] determined that the LPA4 locus was

the strongest candidate locus for CHD among all those exam-
ined; two variants, namely, rs3798220 and rs10455872, were
identified as mediating this observed relationship. The former
SNP represents an isoleucine to methionine substitution at
position 4,399 within the apo(a) protease-like domain, where-
as the latter is intronic. It is not known whether apo(a) con-
taining either isoleucine or methionine at position 4,399 dif-
fers in its properties. However, both of these SNPs were
associated with LPA4 allele size and plasma Lp(a) concentra-
tions, suggesting that they may be markers, rather than func-
tional variants [53]. Indeed, it was recently reported that
additionally considering these SNPs explained the previous
association of four-SNP haplotypes within the SLC2243—
LPAL2-LPA locus with CAD [54]. A recent report failed to
detect an association of the original four-SNP haplotypes with
CAD in a Chinese Han population [55]; it would be interest-
ing to determine if consideration of rs3798220 and
rs10455872 would affect this finding and thus imply a differ-
ent genetic architecture for LPA4 in this population. On the
other hand, two studies have shown that carriers of the
Met4399 allele respond more favorably to aspirin treatment
for prevention of CHD [56, 57]. It remains to be determined if
this result is because of an inherent functional difference in the
Met4399 variant or because of the elevated Lp(a) concentra-
tions and small isoform sizes in these carriers.

The second key article was the result of a “Mendelian
randomization” study which found that small LPA allele sizes
[which are inherited randomly and which are themselves
correlated with elevated plasma Lp(a) concentrations] are
associated with CAD risk [58]. The study design therefore
allowed the authors to pronounce elevated Lp(a) concentra-
tion as a “causal” risk factor for atherosclerosis, as the random
inheritance of LP4 alleles accounts for several potential con-
founding factors in association studies, including selection
bias and reverse causality. The demonstration that elevated
Lp(a) concentrations are a causal risk factor was a key mile-
stone, and it helped prompt the European Atherosclerosis
Society Consensus Panel recommendations regarding screen-
ing for and management of elevated Lp(a) concentrations (see
earlier) [40].

What remains a key question is whether small Lp(a)
isoforms are more harmful in their own right, i.e., independent
of'their association with elevated plasma Lp(a) concentrations,
by analogy to the situation with rs3798220 (Ile4399Met). In
this case, there is direct functional demonstration that smaller
Lp(a) isoforms are more harmful (see later). Indeed, several
studies have concluded that smaller apo(a) isoforms are inde-
pendent predictors of vascular risk in multivariate analyses
[59, 60]. More recently, a meta-analysis of 40 studies showed
that individuals with a small (fewer than 22 kringle [V repeats)
isoform are at twofold increased vascular risk [61]. On the
other hand, in the genetic studies cited above, the effects of the
genetic variants in LPA (either KIV, repeats or SNPs strongly
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associated with isoform size) were eliminated after adjustment
for plasma Lp(a) concentrations [53, 58]. Therefore, addition-
al investigations are clearly required in this regard, preferably
taking into account “allele-specific” Lp(a) concentrations, as
advocated by Berglund’s group [62]. On the other hand, from
a practical standpoint, it might be argued that a sufficient
degree of the excess risk conferred by Lp(a) could be captured
clinically by merely measuring plasma Lp(a) concentrations.

Elevated Lp(a) Concentrations as a Risk Factor
for Noncoronary Atherosclerosis

The vast majority of the clinical studies on Lp(a) conducted to
date have examined CAD, both in terms of events and in terms
of surrogate markers. It is reasonable to expect, on the basis of
pathophysiological considerations, that elevated plasma Lp(a)
concentrations would similarly be a risk factor for
atherothrombotic disease in other vessel beds. Indeed, evi-
dence is accumulating that this is in fact the case. Results from
the large EPIC-Norfolk prospective population study showed
that elevated plasma Lp(a) concentrations were associated not
only with CAD outcomes, but also with peripheral artery
disease [63]. They were not associated with ischemic stroke
(albeit with comparatively few occurrences even in this large
cohort), adding to the conflicting literature on this topic. A
very recent case—control study of childhood ischemic stroke
found that Lp(a) levels were not different between subjects in
the case group and subjects in the control group, although
when the subjects in the case group were followed as a
prospective cohort study, higher Lp(a) concentrations (and
smaller isoforms) increased the risk of stroke recurrence
[64]. In a genetic study, a series of SNPs and corresponding
haplotypes were significant predictors for carotid artery ath-
erosclerotic disease [65]; these SNPs conferred these effects
through their influence on Lp(a) concentrations. Another re-
cent study found that increasing Lp(a) concentrations were
associated with increasing atherosclerotic plaque scores in the
abdominal, but not thoracic, aorta [66]. It is not unreasonable
to expect that elevated Lp(a) concentrations will ultimately be
found to be associated with most, if not all, forms of athero-
sclerotic disease. Hence, therapeutic lowering of plasma Lp(a)
concentrations may be beneficial with respect to several of
these disorders. At the same time, as our understanding of the
pathophysiological role of Lp(a) comes into focus, this may
provide a rationale in the event that Lp(a) does not turn out to
be a risk factor for certain types of atherothrombotic disease.

Utility of Lp(a) as a Tool for Improving Prediction
Although the evidence is scant that therapeutic lowering of
Lp(a) concentrations (such as by administration of niacin)

would be an effective cardiopreventative measure, a more
proximal utility of measuring Lp(a) concentrations may be
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to assist in risk stratification of patients. Measurement of Lp(a)
concentrations has long been problematic owing to the ab-
sence of an accepted reference standard, nonstandardized
assays that suffer from an apo(a) isoform-dependent bias,
and lack of agreement on the appropriate cut points and assay
units [67]. Many of those issues have been addressed in the
past decade, except for the fact that most assays express Lp(a)
concentrations in mass units (mg/dL), whereas a molar con-
centration (i.e., the number of particles per unit volume) is
more appropriate [68]. This is because different Lp(a)
isoforms possess widely divergent molecular weights. Fur-
thermore, it has become apparent that different ethnic groups
have distinct distributions of Lp(a) concentration. For exam-
ple, sub-Saharan Africans have higher median Lp(a) concen-
trations and less skewedness to their distribution than Cauca-
sians [13]. Therefore, it is currently recommended that elevat-
ed Lp(a) concentration be defined at greater than the 75th
percentile (molar concentrations) of a race-specific distribu-
tion [68].

Several consensus panels have recommended measure-
ment of Lp(a) concentration in specific groups [40, 69¢].
Although screening of the general population is not recom-
mended [most individuals possess Lp(a) concentrations below
the concentration which appears to confer risk], those with
greater than intermediate risk of CHD according to the Fra-
mingham criteria, with existing CHD or recurrent events, or a
strong family history of CHD are recommended to be
screened. Another population that may be targeted is that in
which LDL-C has proven refractory to statin therapy. It is
thought that identifying individuals with elevated plasma
Lp(a) concentrations would define a population that could
benefit from more aggressive management of modifiable risk
factors.

Although the efficacy of this approach has not been for-
mally examined, some studies have sought to determine if
measuring plasma Lp(a) concentrations in addition to standard
lipoprotein analysis might improve prediction of CHD risk
[70, 71]. As is the case with other forms of advanced lipopro-
tein testing such as non-HDL-C and LDL particle number
[72], the results have been disappointing, with only a marginal
increase, if any, in risk prediction observed [71, 72]. Once
again, however, these study designs did not take into consid-
eration what the outcomes might be if a finding of elevated
Lp(a) concentration triggered more aggressive management.

Pathophysiological Mechanisms of Lp(a)

A large number of pathophysiological mechanisms for Lp(a)
have been proposed (see Fig. 1). These include both
proatherogenic and prothrombotic/antifibrinolytic mecha-
nisms, and arise both from the homology of Lp(a) to LDL
and plasminogen and from unique properties of apo(a) itself
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[8]. As yet, none of the proposed mechanisms have been
validated in vivo, which reflects the lack of strong animal
models for Lp(a) and the difficulty of modeling several as-
pects of atherosclerosis in animal models [73].

An alternative means to gain mechanistic insights is to use
clinical studies. For instance, it is still not clear whether it is
the proatherosclerotic or the prothrombotic/antifibrinolytic
effects of Lp(a) that are the more important contributors.
Several recent articles have examined this issue. Goldenberg
etal. [64] found that elevated plasma Lp(a) concentrations and
small apo(a) isoforms increased the risk of recurrent arterial
ischemic stroke in children, which presumably lacks an ath-
erosclerotic component. They only partially attributed this
link to impaired fibrinolysis on the basis of a weak correlation
between Lp(a) concentrations and euglobulin lysis time, al-
though it is debatable whether this assay as implemented by
the Goldenberg et al. (lacking tissue plasminogen activator)
captures fully the effect of Lp(a) on arterial thrombi [74].
Kamstrup et al. [75¢] used a Mendelian randomization ap-
proach to determine that genetically elevated Lp(a) concen-
tration (KIV, repeat number) is more related to atherosclerotic
stenosis than it is to venous thrombosis. Although they con-
cluded that this argues against a role for the prothrombotic/
antifibrinolytic mechanisms of Lp(a) in arterial atherothrom-
botic events, it should be emphasized that venous thrombi
have a genesis and composition very different from those of
their arterial counterparts. Helgadottir et al. [76°] achieved
similar results with analysis of rs3798220 and rs10455872,
and also reported that genetically elevated Lp(a) con-
centration was not associated with ischemic stroke subtypes
that are not primarily atherosclerotic in origin. A role for Lp(a)
in the thrombogenic phase of CAD remains to be formally
ruled out.

Novel Mechanisms of Lp(a) Action
Role of Oxidized Phospholipids and Phospholipase A,

Lp(a) has been shown to play a key role as a carrier of
oxidized phospholipids, which are damaging molecules with
a variety of proatherosclerotic effects [3¢]. As such, modifica-
tion by oxidized phospholipids may be a common denomina-
tor in many of the proatherosclerotic mechanisms ascribed to
Lp(a), which include proinflammatory effects on endothelial
cells and macrophages [8]. Oxidized phospholipids associated
with apoB-containing lipoproteins are strongly related to
CAD risk [3¢]. Oxidized phospholipids were subsequently
shown to preferentially associate with Lp(a) compared with
other apoB-containing lipoproteins [77], and to accumulate to
a greater extent on Lp(a) containing small apo(a) isoforms
[78]. It is thought that most of the Lp(a)-associated oxidized
phospholipids are covalently linked to apo(a), possibly in the
kringle V region [79]. The coronary risk attributable to the

oxidized phospholipids on Lp(a) is potentiated at high con-
centrations of either soluble phospholipase Ajor lipoprotein-
associated phospholipase A,, an enzyme that can liberate the
covalently attached oxidized phospholipids [80, 81].

Recent studies have delineated a specific mechanistic link
between Lp(a)-associated oxidized phospholipids and the de-
velopment of advanced, unstable atherosclerotic lesions. The
oxidized phospholipids on apo(a) were able to promote
macrophage apoptosis through a pathway dependent on
Toll-like receptor 2/CD36 [82]. These findings were
brought into greater focus by a subsequent immunohis-
tochemistry study in which apo(a), oxidized phospholipids,
and macrophage epitopes were found in increasing abundance
in vulnerable plaques [83¢]. Clearly, the full spectrum of the
proatherosclerotic and prothrombotic effects of Lp(a)-associ-
ated oxidized phospholipids needs to be discovered, as this
modification may prove to be a fruitful target for therapeutic
modulation.

Effect of Lp(a) on Calcification

Coronary artery calcification is a parameter that can be mea-
sured noninvasively using computed tomography and pro-
vides an index of atherosclerotic burden. The relationship
between plasma Lp(a) concentrations and coronary artery
calcification has been a point of controversy through the years.
The is evidence both for [84-86] and against [87, 88] such an
association, as well as evidence from a transgenic rabbit
expressing apo(a) that Lp(a) can promote this process [89].
Two recent studies detected such an association, albeit either
in a dyslipidemic population [90] or in a population with a
high degree of preexisting disease [91]. An intriguing genetic
study showed that genetically elevated Lp(a) concentrations
are a causal risk factor for aortic valve calcification and aortic
stenosis [92¢]. Although a direct mechanistic link between
coronary artery calcification and aortic valve calcification
(which is not an atherosclerotic process) remains to be deter-
mined, the data speak for the ability of Lp(a) to accumulate in
the vessel wall and hence accelerate the calcification process.

Conclusions

Although much recent progress has been made in validating
the concept of Lp(a) as a key player in vascular disease and in
unlocking the secrets of its pathogenic mechanisms, there are
still enormous knowledge gaps that need to be addressed. The
foremost challenge is to demonstrate that lowering Lp(a)
concentrations ameliorates the risk of cardiovascular events.
These studies are currently impaired by the lack of availability
of a therapeutic agent, appropriate for widespread use, that
specifically lowers Lp(a) levels without affecting the levels of
other lipoproteins. An alternative approach would be to
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develop a therapeutic that interferes with the harmful effects of
Lp(a). The unique structural and functional properties of Lp(a)
suggest that a specific agent is a feasible prospect. But first,
the appropriate mechanisms to target—among the plethora
that have been proposed for Lp(ay—need to be definitively
identified. Therefore, there are many basic and clinical re-
search goals related to Lp(a) on the immediate horizon.
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