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Abstract Neurologic rehabilitation aims to reduce impair-
ments and disabilities so that persons with serious stroke can
return to participation in usual self-care and daily activities
as independently as feasible. New strategies to enhance
recovery draw from a growing understanding of how types
of training, progressive task-related practice of skills, exer-
cise for strengthening and fitness, neurostimulation, and
drug and biological manipulations can induce adaptations
at multiple levels of the nervous system. Recent clinical
trials provide evidence for a range of new interventions to
manage walking, reach and grasp, aphasia, visual field loss,
and hemi-inattention.
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Introduction

Stroke remains a leading cause of long-term disability in the
United States at a cost of $38 billion per year. About
650,000 persons survive a new stroke yearly and 7 million
Americans live with the complications of stroke [1]. Despite
evidence that participation in formal rehabilitative therapies
lessens disability after stroke [2], less than a third receive
inpatient or outpatient therapies [3]. Of those who do access
therapies, the frequency of use varies by geographic location
and socioeconomic status. For these patients, the amount of
rehabilitation available has progressively fallen as subacute

stroke inpatient stays have dropped to an average of less
than 16 days and as Medicare has capped the number of
outpatient therapy sessions to 15/year [4•]. In effect, these
declines in service may limit rehabilitation gains and place
greater burdens on caregivers. In contrast to these fiscally
driven realities, the science underlying stroke rehabilitation
offers new directions to improve outcomes.

Scientific advances based on animal models have sharp-
ened our understanding of the genetic, molecular, physio-
logic, cellular, and behavioral adaptations that drive and
may limit the recovery of function [5]. Novel types of
therapies based on manipulating mechanisms of learning
and memory, neurogenesis and axonal regeneration, and
neurotransmitters and growth factors can facilitate the re-
covery process in models. In patients, non-invasive modal-
ities including functional and structural magnetic resonance
imaging (MRI) and neuronal excitatory and inhibitory stim-
ulation tools such as transcranial magnetic stimulation
(TMS) are characterizing changes in connectivity between
brain regions after stroke [6]. Therapeutic strategies for
patients are also being drawn from engineering and comput-
er science. Wireless health and communication technologies
have produced wearable sensors to remotely record the
quality and quantity of walking practice, smartphone apps
to cue practice, and tele-rehabilitation programs to enable
treatment in the home or community [7].

Evidence from adequately powered, randomized control
trials demonstrating the efficacy of new interventions when
compared to existing therapies has been far outpaced by the
number of novel strategies being developed. Trials can be
confounded by the patho-anatomic and functional heteroge-
neity of patients, the complexity and cost of delivering an
intervention, and uncertainties regarding optimal therapy
timing, dose, and duration [8]. Additionally, the outcome
measures used in trials are often relative surrogates for
patient performance rather than direct measures of the types,
quantity, and quality of physical functioning [9]. When the
goal is to assess the use of the upper extremity, walking,
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exercise, and participation in home and community activi-
ties [10], existing measures may not fully capture clinically
important changes in physical or cognitive impairments,
disability, or health-related quality of life and participation
[11]. Despite these confounds, recent trials do provide use-
ful evidence about behavioral, pharmacologic, and
neurostimulation treatments for stroke, as well as near future
hope for biological interventions for the most highly im-
paired patients.

Overview of Care in Rehabilitation

Patients are admitted for inpatient stroke rehabilitation usu-
ally because they are unable to walk without considerable
human assistance and are dependent in other self-care tasks,
yet have adequate memory, attention, and home support to
be able to be discharged without the need for skilled nursing
placement [12]. In the U.S., Medicare requires that patients
can tolerate at least three hours of therapist-directed treat-
ment a day, usually begun within 5-10 days after onset of
stroke. Internationally, the time from stroke onset to rehab
admission is 1-6 weeks and the duration of inpatient care is
3-8 weeks, but longer in Japan where a more comprehensive
post stroke care system is available [13].

The goals of inpatient therapy can include increased
independence for self-care activities (e.g., feeding,
grooming, bowel and bladder care); the ability to perform
safe toilet and wheelchair transfers; walking with or without
assistive devices such as canes and orthoses that can brace
the ankle and help control the knee; improved receptive and
expressive language skills; and better executive, visual-
perceptual, working memory, and other cognitive skills. In
the outpatient setting, patients work with therapists to refine
and build upon these skills to increase their functional
independence in the home and community [14•].

During rehabilitation, physical, occupational, and speech
therapists enable the practice of tasks of importance to
patients, set and update realistic goals within the limitations
of residual reflexive and voluntary neural control, and instill
a regimen of daily skills practice of progressive intensity
and difficulty. Therapists may utilize neuromuscular facili-
tation techniques to begin to guide the re-acquisition of
motor skills, before building from simple to more complex
actions that comprise goal-directed behaviors [15].

Principles Underlying Rehabilitative Therapies

Two basic principles influence approaches to patient treat-
ment. The first is that the adult central nervous system is
adaptive, or plastic, and has some capacity to re-organize itself
to recover degraded cognitive and motor functions. Animal

studies are identifying genetic and biochemical pathways
involved in the establishment of new anatomic connections
and functional network reorganization (e.g., axonal sprouting,
dendrite proliferation, neurogenesis) [16•]. In patients, chang-
ing patterns of brain activation appreciated by MRI and other
non-invasive imaging techniques reflect regional plasticity of
the neuronal ensembles that represent actions and thoughts.
Such changes are time-dependent and associated with learning
and practice, as well as behavioral compensation for the loss
of pre-stroke neural control. Thus, the brain of stroke patients,
like healthy persons, constantly undergoes anatomic and
physiologic changes induced by motor learning.

The second principle is that progressive, skilled motor
practice is essential for continued gains at any time after
stroke onset. Training must engage the attention, motiva-
tion, and learning networks of the brain to be effective.
Better gains also depend on greater sparing of the neural
networks that represent the components of a behavior. Al-
though observational studies suggest that maximal function-
al gains are made by 3 months after onset, these studies do
not account for other changes that can occur with regular
practice, such as improved walking speed and distance or
greater coordination in the use of an affected hand [17].
Large, randomized controlled trials in neurologic rehabilita-
tion have reported long-lasting functional improvements
after 2-12 weeks of skilled motor practice in patients who
were weeks to years past onset of hemiparesis [18, 19••,
20••]. Thus, starting at the time of initial rehabilitation,
physicians ought to instill in their patients a regimen of
daily repetitive skills practice that can be carried over into
the outpatient setting and into daily activities.

Interventions for Mobility

Fitness and Muscle Strength

Clinicians should emphasize ways for persons with stroke to
augment their general conditioning and muscle strength in
both the affected and unaffected limbs. Pre-morbid
deconditioning due to sedentary behavior exacerbates the
fall-off in activity resulting from new neurologic disability
[21]. Indeed, patients disabled by stroke take half as many
steps, use their affected arm much less, and have longer daily
sedentary periods compared to healthy age-matched persons
[22•, 23, 24]. It becomes very difficult for the hemiparetic
person to achieve an aerobic effect from exercise, due to a
combination of central weakness, inactivity, and muscle atro-
phy [25]. This is of concern because secondary stroke preven-
tion recommendations include at least a half-hour of daily
exercise rigorous enough to have at least a mild aerobic effect
[26]. Just as important, higher levels of physical activity are
associated with greater neurogenesis, better performance on
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cognitive tasks, less age-related hippocampal atrophy, and a
reduced risk for vascular dementia.[27•, 28].

Standard rehabilitative therapies include selective
muscle strengthening by isometric and isokinetic exer-
cises to improve the power and endurance of affected
and unaffected muscle groups. Sets of moderate resis-
tance exercise with weights or elastic bands are feasible
for most patients. Simply standing up and sitting down
5-10 times during commercials on television can im-
prove proximal leg strength. Aerobic exercise training,
whether by treadmill, over ground walking, or recum-
bent cycling, can produce a conditioning effect and
increase walking speed and endurance [29]. The most
impressive results for aerobic exercise training have
been reported in chronic stroke patients who have re-
covered sufficient motor control to participate in
moderate-to-vigorous physical activity [30••]. Questions
remain about how best to provide and reinforce aerobic
exercise, such as through a support group [31], and how
to maintain compliance with exercise [32]. Physicians
can encourage more frequent daily walks over longer
distances and at faster speeds in addition to more formal
exercise.

Over-ground Walking and Balance Training

Over-ground gait training is an integral component of
standard physical therapies to improve dynamic balance
and ensure safe ambulation in the home. Patients first
practice trunk and head control, sit-to-stand balance, and
then stepping in the controlled environment of the par-
allel bars. Over-ground training emphasizes clearance of
the paretic foot to initiate leg swing, knee stability in
stance, and stepping with a more rhythmic, safe gait
pattern, using an assistive device or orthotic as needed.
A Cochrane review found positive correlations between
the amount of over-ground training and small improve-
ments in gait speed with no significant increase in the
number of adverse events such as falls [33]. Falls are a
common outcome for patients recovering from stroke,
with an incidence of over 40 percent for more than one
fall in the first year [34]. The addition of a series of
balance and truncal exercises, either as a supplement to
inpatient therapies [35] or as part of an outpatient tele-
rehabilitation intervention, [36] may prove to be a cost-
effective means by which to prevent further disability.

Body Weight-supported Treadmill Training

Body weight-supported treadmill training (BWSTT) enables
supervised, repetitive, task-related practice of walking. Pa-
tients with limited motor control wear a chest harness
connected to an overhead lift to reduce the need to fully

load a paretic leg. The treadmill induces rhythmic stepping,
although the paretic leg and trunk often require physical
assistance by therapists. The expectation, based on animal
studies, was that BWSTT would increase the amount of
practice while enabling more normalized sensory inputs to
better drive motor output for stepping. The Locomotor Ex-
perience Applied Post Stroke (LEAPS) trial, however, failed
to identify an additional clinical benefit of BWSTT as com-
pared to a home exercise program of a similar intensity and
duration [20••]. Although initially a highly regarded poten-
tial intervention for poor walkers, BWSTT may not reflect
the task-related environment of over-ground training for
motor learning [37•]. The cost in equipment and personnel
with the expertise to deliver BWSTT make it an intervention
to be tried only for patients who have at least modest motor
control, but are not making progress with intensive over-
ground training.

Robotic Gait Assist Devices

Electromechanical-assistive devices, including robotic
steppers and exoskeletons, provide patients with either
full or partial guidance of the lower limbs during the
phases of the gait cycle [38]. As compared to BWSTT,
for example, these devices can provide automated gait
training on a treadmill or elliptical-like device and re-
quire no hands-on supervision by therapists. To date,
the devices have generally not led to greater overall
gains in over-ground walking parameters than the same
intensity of more conventional physical therapy [39].
Robotic devices are being introduced that may better
enable motor learning by letting patients make kinemat-
ic errors during practice. Very recently, wearable, light-
weight, motorized exoskeletons have become available
that assist with hip or knee flexion and weight bearing
while stepping over ground. Although rather expensive,
they may enable slow ambulation when otherwise not
feasible; controlled studies will be needed to determine
if their use can augment standard rehabilitation practice.

Functional Electrical Stimulation

FES is a technique that takes advantage of peripheral nerves
and muscles left unaffected by damage to the central ner-
vous system. Electrical stimulation is applied to trigger
contraction and relaxation of select muscle groups. In the
case of walking, excitation of the common peroneal nerve
by an externally placed stimulator results in dorsiflexion at
the ankle to aid paretic foot clearance. Small, randomized
studies of external [40] and implanted [41] electrodes
have reported improvements in gait lasting at least six
months after the intervention. Though several commer-
cial devices are available in the United States, efforts
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have only recently begun to demonstrate their potential
cost effectiveness [42].

Interventions for the Upper Extremity

Constraint-induced Movement Therapy and Bimanual
Practice

Therapy for the hemiparetic arm might begin with single-
joint attempts at movement before proceeding gradually to
more complex, multi-joint actions, then task-specific prac-
tice such as reaching to grasp a coffee cup, a process known
as shaping. Facilitation of skilled motor practice for the
upper extremity can take several forms, including shaping
plus constraint-induced movement therapy (CIMT). This
technique includes 6 hours a day of progressive task-
related practice with restraint of the unaffected limb all
day for 2 weeks. Increased use and faster skilled movements
of the affected limb may result and persist for up to two
years [43•]. However, the intervention has shown efficacy
only in patients who can partially extend the wrist and
fingers, meaning they have fair motor control and at least
modest corticospinal tract sparing. Extensive restraint may
not be as critical to gains as the high intensity of practice
with a therapist; gains have been seen with just 2 hours of
daily practice and without restraining the unaffected hand all
day [44•, 45]. When the hand is chronically very weak,
commercially available forearm-hand orthotic devices with
embedded FES electrodes can enable a hand grasp or finger
pinch to assist functional use.

Bimanual practice with simultaneous arm movements
aims to activate the bilateral motor cortices and enhance
input to the affected upper extremity, thereby leading to
increased functional use of the paretic arm and hand. In
small trials, bimanual practice has resulted in a similar
degree of functional recovery as CIMT [46•].

Mechanical Devices to Assist Arm Movements

Mechanical devices range from spring-loaded orthotics
to assist a specific movement, such as wrist extension,
to fully automated, robotic limb prostheses for patient-
triggered assistance of shoulder, elbow and wrist move-
ments. Patients practice a series of specific joint move-
ments by guiding an object on a computer screen
through a maze. As with the electromechanical-
assistive devices designed for gait training, robotic arm
devices may enable more practice with more normalized
limb kinematics. Used as a supplement to standard care,
such devices may provide a benefit, [47, 48] but a
similar degree of function can usually be achieved using
standard therapies at the same intensity [19••]. Most are

too expensive for home use. These devices may prove
more efficacious in combination with other rehabilitative
therapies such as non-invasive brain stimulation, [49]
but further research is needed.

Pharmacologic Therapies to Limit Spasticity

It is often not medically necessary to treat increased muscle
tone, unless spasms or flexor postures of the upper extremity
cause pain, skin breakdown or interfere with hygiene. Bac-
lofen and tizanidine are frequently used as first-line agents
and dantolene’s effects on calcium action may also reduce
hypertonicity. Botulinum toxin injected into selected muscle
groups will reduce flexor or extensor postures around a joint
for about 3 months, but usually does not improve functional
use of a highly paretic hand [50, 51]. Shoulder pain is
common after hemiplegic stroke, associated with subluxa-
tion and joint stresses [52]. Rapid management of pain with
light exercise, range of motion, and anti-inflammatory med-
ications can help prevent pain-induced spasticity in the arm
and hand. Inversion and plantar flexion of the foot can also
be lessened by medications and botulinum toxin to try to
improve stepping. When a muscle is partially paralyzed by
the toxin, daily stretching and ranging of the affected joint
are necessary to maintain the improvement.

Interventions for Aphasia

Melodic Intonation and Constraint-induced Therapies

A range of individual speech and language therapy
techniques have been developed to address the wide
variety of aphasic syndromes that occur after stroke
[53]. Most patients need a multi-modal approach to
build on their strengths and to limit frustration in word
finding and fluency. Melodic intonation therapy was
developed for patients who have poor expression but
good comprehension. This technique uses simple melo-
dies and rhythmic tapping to engage networks that
subserve prosody of language [54]. In a nod to the
massed-practice paradigm of CIMT, constraint-induced
aphasia therapy was developed as a means to improve
verbal output [55]. Where comprehension is poor and
output is perseverative, therapies have little effect. Re-
gardless of the treatment modality employed, regular
home-based practice with the family is imperative for
the development of social communication.

Digital Technologies

Advances in digital communication technology have led to
treatments for aphasia that can be personalized and
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delivered in the home setting [56]. For example, a recent
study of speech entrainment that delivered an audiovisual
intervention on an iPod screen reported a significant in-
crease in verbal output for chronic stroke patients with
Broca’s aphasia [57]. Several helpful computer programs
for home practice are also available. Treatment of speech
and cognitive disorders is likely to be a growing application
of smartphone, tele-rehab, and other Internet-enabled practice
and cueing paradigms.

Interventions for Visual Field Deficits and Inattention

Visual field loss and visual hemi-inattention degrade long-
term functional outcomes in patients with stroke [58]. While
it is unlikely that rehabilitation will result in recovery from a
hemianopia, computer-based compensatory therapy may as-
sist in directing visual search and attention into the area of
loss [59]. The direct dopamine agonist rotigotine modestly
lessened hemispatial neglect in sub-acute stroke patients
[60•]. For spatial hemi-neglect, a prism in eyeglasses will
shift the center of vision toward the abnormal field to
improve reading and some self-care tasks [61].

Interventions for Locked-In Syndrome

Brain-machine interfaces utilize direct communication be-
tween the nervous system and devices outside of the body to
enable communication or the performance of goal-directed
movements. The devices are most needed for people with
locked-in syndrome from brainstem stroke who are without
voluntary control of their limbs. Alterations in the amplitude
of the mu rhythm by thoughts about an action, are recorded
with electroencephalography electrodes and interpreted by a
computer algorithm, allowing patients to select letters or
words on a computer screen for communication or to search
the Web [62]. More advanced systems can record directly
from implanted microelectrodes over a variety of cortical
regions. An interface then controls directional movements
of a prosthetic limb [63•]. While some of these technologies
are coming into routine use, many challenges about cost and
reliability remain.

Non-invasive Brain Stimulation

In addition to being employed to study brain physiology and
neuroplasticity [64], techniques including TMS and trans-
cranial direct current stimulation (tDCS) have been used to
modulate cerebral plasticity in combination with physical
training. Most trials focus on the recovery of arm function,
[65] though the techniques are being exploited to increase

verbal output in aphasia [66], improve swallowing [67], and
increase walking speed [68] to give but a few examples.
Generally modest gains in aspects of motor control have
been reported when TMS is combined with other rehabili-
tative therapies [49, 69•, 70]. Similar equivocal results have
been reported for tDCS protocols [71•]. A lack of consensus
persists regarding appropriate patient selection, stimulation
protocol, location, and duration [72]. The Food and Drug
Administration has not approved their use outside of re-
search, except for some types of depression. These tech-
niques seem to work best in patients who have some
residual voluntary movement.

Modulation of sensorimotor cortex excitability can also
be achieved through the stimulation of peripheral nerves,
either in isolation [73] or in conjunction with cortical stim-
ulation [74] [75]. Definitive evidence that peripheral ner-
vous system activation leads to improved functional
outcomes is not yet available [76].

Mirror and Virtual Reality Therapies

The connections between parietal cortex and pre-motor and
primary motor regions can be modulated by action observa-
tion and mirror therapy [77]. These techniques involve
patients watching the movements of healthy individuals or,
via a mirror, the unaffected limb. The subject attempts to
mimic the observed movements. In contrast to other reha-
bilitative techniques such as CIMT, action observation and
mirror therapy can be performed on patients with more
severe limb paresis [78]. Clinical benefit has been reported
in meta-analysis of small trials, but the magnitude of benefit
depends upon the comparator therapy provided [79].

Virtual reality (VR) therapies use technology to combine
action observation with repetitive skills practice. The hope
is that this strategy will be especially engaging and reinforce
practice paradigms. As simple as a commercially available
video game that can be played at home or as complex as a
system that measures joint angles in the arm and provides
visual corrective feedback, VR has generated much excite-
ment in the rehabilitation community as a means to promote
and monitor skills practice [80]. Individual trials have
reported benefits [81], but given the diversity of interven-
tions and outcomes used, efficacy for a particular type or
degree of impairment has not yet been demonstrated [82•].

Pharmacologic Interventions

Attempts to augment stroke recovery by modulating the
neurotransmitter pathways of the central nervous system
can also involve medications. Amphetamine showed prom-
ise in highly selected patients for motor gains, but no
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adequately powered trial has been completed after twenty
years of small studies [83]. Efforts to boost cerebral dopa-
minergic action through the use of ropinirole proved inef-
fective in patients with chronic stroke [84]. The NMDA
receptor antagonist memantine was reported to improve
spontaneous speech and naming skills in chronic stroke
patients with aphasia [85]. While individuals seem to occa-
sionally improve in response to neurotransmitter-related
drugs, no specific recommendations can be made.

The FLAME trial [86] tested fluoxetine in combination
with standard rehabilitative therapies and reported better
Fugl-Meyer motor scores, which tests voluntary movements
against gravity, for those patients who received the drug.
This work needs to be replicated [87]. The drug may also
provide benefits as an anti-depressant, as depression affects
at least 30 % of patients within one year after stroke.

Cell-based and Biologic Therapies

Embryonic and mesenchymal stem cells, cultivated precur-
sors of neurons and oligodendrocytes, and other autologous
and commercialized cells are actively undergoing investiga-
tion as potential treatments for stroke. Cells could replace
lost neurons or glial cells, remyelinate damaged axons, or
produce substances such as growth factors that could help
drive network function and plasticity [88]. Several reported
trials have not reported clinical efficacy, but others are being
planned [89, 90]. To be of value, cellular and biologic
interventions will have to be combined with applicable
rehabilitation strategies to optimize their incorporation and
action in neural networks.

Off-shore stem cell clinics are all too easy to find on the
Internet. These high-priced cellular interventions can have a
powerful placebo effect for patients with neurologic disease.
Organizations that study stem cell research policies recom-
mend that no patient should participate in or pay to receive a
cellular intervention outside of a registered trial with a
formal safety monitoring committee, in order to enable
scientifically valuable information to be derived from the
trial [91, 92].

Miscellaneous Approaches

Acupuncture is frequently offered in Asian countries for
stroke rehabilitation. While individual patients may report a
benefit, controlled trials have generally found little or no
added value for improving specific impairments and disabil-
ities [93, 94]. A recent trial reported that hyperbaric oxygen
therapy may improve functional outcomes after stroke [95].
The study design was less than optimal, however. The cost of
this treatment modality is high, there are risks accompanying

its use, and the science underlying its utilization in chronic
stroke is difficult to support. Etanercept, approved by the FDA
for use in psoriatic and rheumatoid arthritis, has been prof-
fered as a treatment for chronic stroke in various clinics. The
manufacturer, Amgen, specifically points to a lack of evidence
for its use in stroke and the few published reports by one
dermatologist are highly biased and lack proper scientific
theory, design, and interpretation of results [96].

Conclusions

Most survivors of a stroke are left with chronic disability.
Rehabilitation efforts during the initial three to six months
after stroke should aim to maximize patients’ physical,
communicative, and cognitive functioning. Continued im-
provement in the chronic phase of stroke can occur with
regular, progressive skills practice of goal-directed tasks in
the home [12]. Many new rehabilitation strategies, built
upon attempts to leverage technological developments to
augment the effects of practice, are opening innovative
avenues to amplify gains in performance at any time after
stroke. The future of stroke rehabilitation remains one of
promise and challenge in treating residual disabilities, espe-
cially for testing biological interventions for neural repair in
the most profoundly affected individuals.
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