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Inflammation long has been recognized as a hallmark 
of atherosclerotic lesions, but more recently attention 
has focused on chronic low-level elevations of specific 
plasma inflammatory proteins such as C-reactive pro-
tein (CRP) and serum amyloid A (SAA), which may not 
only represent markers of atherosclerosis risk but also 
participate directly in atherogenesis. This article briefly 
reviews evidence for and against potential roles of CRP 
as an atherosclerosis risk marker and in atherogenesis. 
The remainder of the article focuses on SAA, an 
inflammatory protein that is carried on, and may funda-
mentally alter the function of, high-density lipoprotein. 
Data are reviewed regarding the regulation of SAA  
by dietary cholesterol, obesity, and insulin resistance, 
and its potential role as an atherosclerosis mediator. 
Lying at the intersection of inflammation, dyslipidemia, 
obesity, and insulin resistance, SAA may play a key  
role in regulating the contributions of these processes 
to atherogenesis.

Introduction
Inflammation long has been recognized as a hallmark 
of atherosclerotic lesions [1,2], but recently substantial 
attention has been paid to the role of serum proteins that 
are increased in response to inflammation. These proteins 
have been studied primarily as markers of atherosclerotic 
risk, but some also have been implicated as potential 
mediators of the atherosclerotic process. This review 
briefly discusses studies evaluating one of these “inflam-
matory” proteins, namely C-reactive protein (CRP), 
but then focuses primarily on serum amyloid A (SAA), 
which is a less well-studied protein that may serve as a 
link between atherosclerosis, inflammation, and obesity/
insulin resistance.

The Acute-phase Response  
In acute inflammation, whether triggered by infection, 
direct tissue injury, or other diseases, circulating cyto-
kines induce the liver to synthesize a number of proteins 
that attempt to respond to the insult. Many of these 
proteins play key roles, not only in the inflammatory 
and immune response to injury, but also in activating 
the fibrinolytic and complement systems. Some acute-
phase proteins are carried in the plasma on circulating 
lipoproteins.  Though the functions of many acute-phase 
proteins are well understood, this is not true of all pro-
teins involved in the acute-phase response, particularly 
CRP and SAA, which may increase by as much as 1000-
fold above their baseline levels in acute inflammation [3].  
More recently, it has become apparent that levels of many 
acute-phase proteins, including CRP and SAA, may be 
chronically elevated in some individuals, albeit at levels 
much lower than those seen in the acute-phase response. 
Although acute elevations of these proteins are likely 
to have beneficial effects, chronic elevations might be 
deleterious. It is, therefore, of interest that levels of CRP 
and SAA may be chronically elevated in individuals with 
atherosclerosis, diabetes, obesity, insulin resistance, and 
rheumatologic diseases, all of which are associated with 
an increased risk of cardiovascular disease.  Therefore, the 
potential significance of these proteins in chronic disease 
states, both as clinical markers and as pathologic media-
tors of cardiovascular disease, has undergone substantial 
scrutiny. This is particularly true for CRP, which several 
studies have associated with increased risk for ischemic 
heart disease events and stroke. In addition, while the 
liver classically has been considered the primary source 
of most acute-phase proteins, recent studies have demon-
strated that other tissues might also be sources of these 
proteins, especially SAA. These observations have raised 
the exciting possibility that specific acute-phase proteins 
might be exploited for diagnostic or therapeutic benefits 
in chronic disease states such as atherosclerosis. 

C-Reactive Protein: The “Orthodox”  
Inflammatory Protein  
C-reactive protein is the most studied of the acute-phase 
proteins and was named for its property of binding to the 
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C-polysaccharide of Streptococcus pneumoniae. CRP is a 
pentraxin, composed of five identical protein molecules 
noncovalently linked around a central protein core. CRP 
circulates in plasma unbound to lipoproteins, but it can 
bind to oxidized lipoproteins and apoptotic cells [4] as 
well as to aggregated low-density lipoprotein (LDL) in 
vitro [5,6]. In addition, CRP can bind complement and 
can bind to the Fc-gamma-II (CD32) receptor [6].

C-reactive protein as a marker of cardiovascular risk  
Recently, CRP has been studied extensively as a marker 
for atherosclerosis risk, and elevated levels have been 
associated with increased risk for important atherosclero-
sis endpoints, including myocardial infarction and stroke 
[7–10]. CRP levels are increased in a number of condi-
tions that are associated with increased cardiovascular 
risk, including obesity [11,12•,13•], insulin resistance 
[13•,14–17], type 2 diabetes [16], and smoking [18]. More 
recently, increased dietary cholesterol intake has been 
shown to increase CRP levels in lean, insulin-sensitive 
subjects [13•]. However, CRP has been less firmly associ-
ated with atherosclerosis severity, at least as measured by 
electron beam computed tomography [19,20] or coronary 
angiography [21]. Recent studies have suggested that, 
following acute coronary syndromes, CRP levels give 
prognostic information beyond that provided by LDL 
levels alone [22,23]. However, these studies do not take 
into account the relationships of obesity and insulin resis-
tance to CRP levels [13•,14,15], nor do they prove that 
CRP has incremental prognostic value over a composite of 
traditional risk factors that, in aggregate, may account for 
up to 94% of the population-attributable risk for coronary 
events [24]. In addition, a recent study by Danesh et al. 
[25], which included data from the Reykjavik Prospective 
Study as well as an updated meta-analysis of CRP levels in 
over 20,000 subjects, concluded that the additional risk 
associated with elevated CRP levels was less than that for 
hypercholesterolemia, systolic hypertension, or smoking. 
Finally, one recent study demonstrated that, even in the 
absence of changes in either medication or clinical status, 
nearly 40% of ischemic heart disease patients changed 
their CRP-based risk category [26] over 1 month of fol-
low-up [27]. Thus, despite its apparent utility as a risk 
predictor in large groups, the marked inter-individual 
variability in CRP levels may limit its clinical utility as 
a tool for either predicting risk or following response to 
therapy in individual patients. 

C-reactive protein as a mediator of atherogenesis  
A number of recent studies also have suggested mecha-
nisms by which CRP might participate directly in 
atherogenesis. CRP has been shown to have a number of 
potentially proatherogenic effects on endothelial effects 
in vitro. These include induction of leukocyte adhesion 
molecules [28], monocyte chemoattractant protein-1 
[29], interleukin-8 [30], and plasminogen activator 

inhibitor-1 [31], as well as inhibition of tissue plasmino-
gen activator [32] and of the vasodilators prostacyclin 
[33] and nitric oxide (NO) [34,35]. However, a more 
recent study reported that purified, native-form human 
CRP actually increased NO bioavailability in endothe-
lial cells and isolated arterial rings [36]. Thus, some 
authorities have raised the concern that proinflamma-
tory effects identified in some previous in vitro studies 
might have been due to use of CRP with low levels of 
contaminants, such as endotoxin, sodium azide, or CRP 
in non-native forms [37].  

In vivo evidence of a direct proatherogenic role of 
CRP consists of one study in the apoE-deficient mouse 
model of atherogenesis, demonstrating a modest increase 
in atherosclerotic lesion area in male, but not in female, 
mice expressing a human CRP transgene. In contrast, three 
recent studies found no effect on atherosclerosis of over-
expression of either a human [38••,39•] or rabbit [40•] 
CRP transgene. Thus, more recent in vivo studies do not 
support a role for CRP as a mediator of atherogenesis.  

Serum Amyloid A:  
The “Other” Inflammatory Protein 
Serum amyloid A is a family of four homologous, 
amphipathic, alpha-helical proteins encoded for by genes 
located on chromosome 7 in mice and on chromosome 
11 in humans. SAA includes SAA1 and SAA2, which 
are acute-phase proteins, and SAA4, which is expressed 
constitutively. Like CRP, hepatic expression of SAA1 and 
SAA2 is increased markedly in response to a variety of 
inflammatory stimuli [3,41]. In contrast, SAA4 is con-
stitutively expressed by the liver [41]. Though clasically 
thought to be produced primarily by hepatocytes, both 
the acute-phase and constitutive forms of SAA have been 
shown to be expressed by endothelial cells, macrophages, 
and smooth muscle cells in human atherosclerotic 
plaques [42], and by cytokine-stimulated smooth muscle 
cells in vitro [42]. SAA3 is a truncated protein primarily 
expressed in mice by extrahepatic cells, including adipo-
cytes and macrophages. SAA3 typically is not expressed 
in humans due to the presence of a premature stop codon 
in exon 2 [3,41]. SAA are transported in the plasma 
primarily on HDL particles, but also may be carried on 
triglyceride-rich very low-density lipoprotein (VLDL) par-
ticles, particularly in circumstances where SAA levels are 
elevated [3,41]. In general, serum levels of CRP and SAA 
are highly correlated in humans [12•,13•,43] and, like 
CRP, SAA levels are elevated in obesity [12•,13•,16,21,44], 
insulin resistance [12•,13•,45], and diabetes [16,45,46]. 
In multivariate analyses, CRP levels generally have cor-
related better with atherosclerosis risk than have levels of 
SAA [43], though a recent study has demonstrated better 
correlation of SAA levels than of CRP levels with angio-
graphic coronary artery disease severity in women [21]. 
Thus, whereas SAA may not be as sensitive a marker of 
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atherosclerosis risk as CRP, it might prove to be a better 
marker of atherosclerosis severity. An important caveat is 
that SAA levels are subject to substantial inter-individual 
variation over time, as are levels of CRP [12•].

Regulation of serum amyloid A  
As noted previously, SAA levels generally correlate with lev-
els of CRP in a variety of disease states in humans. However, 
in mice, only SAA levels, but not those of CRP, are regulated 
by inflammatory stimuli. For example, it was shown several 
years ago that feeding of an atherogenic diet containing fat, 
cholesterol, and cholate induces SAA expression in mice 
[47] through induction of nuclear factor-κB. More recently, 
it has been demonstrated that mild, chronic elevations 
of SAA can be found in both the apoE-deficient and LDL 
receptor–deficient mouse models of atherogenesis, even in 
mice fed a chow diet [48•]. Another recent study has dem-
onstrated in LDL receptor–deficient mice that SAA levels 
are elevated by adding fat to a chow diet, and are elevated 
even more dramatically by the further addition of cho-
lesterol [49••]. Interestingly, both studies demonstrated, 
either by immunoprecipitation in chow-fed mice [48•] or 
by fast protein liquid chromatography in chow-, fat-, or fat 
and cholesterol–fed mice [49••], that SAA was detected not 
only on high-density lipoprotein (HDL), but also on VLDL. 
These findings suggest that SAA may influence the roles of 
both HDL and VLDL in atherogenesis.

In humans, the relationship of dietary composition to 
SAA levels is more complex and appears to be mediated, 
at least in part, by both insulin resistance and obesity. 
The relationship of obesity [16,21,44] and insulin resis-
tance [45] to elevated levels of SAA is well established. 
However, four recent studies have extended these obser-
vations. Three of these studies have demonstrated that 
dietary weight loss is associated with reduction in SAA 
levels [12•,50••,51••]. However, in one of these stud-
ies, the correlation of weight loss with reduction in SAA 
was found even in a group of obese women receiving a 
weight-loss diet that contained high levels of fat and cho-
lesterol [12•]. Interestingly, in that study, decrease in SAA 
also correlated with improvement in basal insulin resis-
tance [12•]. The fourth study [13•] differed in that it was 
not a weight-loss study but rather examined the effect of 
feeding four eggs per day for 1 month on plasma levels in 
insulin-sensitive and insulin-resistant groups of subjects. 
Surprisingly, egg feeding had no effect on SAA levels in 
the insulin-resistant groups, but dramatically increased 
SAA levels in insulin-sensitive subjects [13•]. Thus, in 
contrast to mice, in which feeding dietary fat and/or cho-
lesterol raises SAA levels, short-term increases in dietary 
fat and cholesterol appear to raise SAA levels only in 
insulin-sensitive individuals. In contrast, whereas obese 
subjects and insulin-resistant subjects have elevated SAA 
levels at baseline, short-term increases in dietary fat and/
or cholesterol do not further raise their plasma SAA levels.  
Specific mechanisms that might account for why obesity 

and insulin resistance inhibit diet-induced elevations in 
SAA levels are not known. One possibility is that dietary 
cholesterol absorption is inhibited in the presence of obe-
sity [52] and/or insulin resistance [53]. Alternatively, it 
may be that the presence of adipose tissue macrophages, 
which recently have been shown to accumulate in obesity 
[54,55], may blunt the inflammatory response to dietary 
cholesterol by mechanisms as yet unknown.

Extrahepatic sources of serum amyloid A
As noted previously, with the exception of SAA3, the liver 
classically has been considered the primary source of SAA 
protein expression in both normal and disease states. How-
ever, several years ago, Meek et al. [42] demonstrated that 
acute-phase and constitutive SAA also may be expressed 
by plaque cells, especially macrophage and smooth muscle 
foam cells. More recently, two important studies have chal-
lenged the commonly held notion that the liver is the major 
source of SAA in obesity, by demonstrating that adipocytes 
represent a major site of SAA expression in obese individu-
als [50••,51••]. In the first study, investigators found that  
1) SAA expression is 20-fold higher in mature adipocytes 
than in stromal vascular cells of subcutaneous white 
adipose tissue (sWAT); 2) mRNA and adipocyte immuno-
reactivity for SAA were much higher in sWAT of obese as 
compared with lean subjects; and 3) sWAT mRNA levels 
(and plasma SAA levels) were decreased following dietary 
weight loss [50••]. In the second study, SAA mRNA and 
protein were detected in subcutaneous and omental adi-
pose tissue, and SAA protein was localized to adipocytes 
by immunohistochemistry.  Also, similar to the first study, 
diet-induced weight loss was associated with a reduction in 
adipose tissue SAA expression that correlated with reduc-
tion in plasma SAA levels [51••]. Finally, the second study 
also demonstrated by microarray analysis that omental and 
subcutaneous adipose tissue had substantially higher levels 
of SAA mRNA expression than did any other tissue studied, 
including liver [51••]. Taken together, these findings sug-
gest that adipocyte SAA expression (and its regulation by 
obesity) may account for the strong correlation of SAA lev-
els with obesity and insulin resistance. A summary of the 
potential sources for the increased levels of CRP and SAA 
seen in response to dietary cholesterol and obesity/insulin 
resistance are shown in Figure 1.

Serum amyloid A in atherogenesis  
The potential links between SAA, obesity, and insulin resis-
tance, as well as the association of SAA with specific plasma 
lipoproteins, have stimulated recent interest in a potential 
role for SAA as a mediator of atherogenesis. In addition, 
SAA has been shown in vitro to have a number of effects 
that could potentially promote atherosclerosis, including 
mediating HDL binding to differentiated macrophages 
[56,57] and endothelial cells [57], and impairing the capac-
ity of HDL to promote cholesterol efflux from macrophages 
[58]. Free SAA also has been shown in vitro to induce 
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expression of extracellular matrix–degrading metallopro-
teinases [59,60] and to promote chemotaxis and adhesion 
of both monocytes [61] and T lymphocytes [62].  

In addition, SAA may play major roles in lipid trans-
port. As noted previously, SAA associates with both HDL 
and VLDL in plasma. The teleologic reason why SAA might 
associate with HDL in inflammatory states is not known, 
but one theory [56,58] is based on the observations that 
1) SAA can displace apolipoprotein A-I from HDL par-
ticles [63]; and 2) as compared with HDL without SAA, 
SAA-containing HDL has decreased affinity for hepato-
cytes [56] and increased affinity for macrophages [56,58]. 
In this scheme, the presence of SAA changes HDL from a 
particle that removes cholesterol from peripheral tissues 
to the liver (so-called reverse cholesterol transport) to a 
particle that delivers cholesterol to peripheral tissues, in 
particular to sites of inflammation [56,58]. In contrast, a 
recent study has demonstrated that SAA2 (but not SAA1) 
contains a lipid transport activity in its amino-terminal 
region that promotes cholesterol efflux from cholesterol-
laden macrophages in vitro [64].

Two recent studies [48•,49••] also have demonstrated 
that SAA might play a role in retention of HDL particles in 
atherosclerotic tissue by acting as a “bridging” molecule 
mediating binding of HDL to vascular proteoglycans. 
SAA has a number of positively charged amino acids in 
its carboxy-terminal region that have been implicated in 
proteoglycan binding [65]. The recent studies have shown 
that the presence of SAA on HDL particles increases its 
binding in vitro to perlecan [48•], a proteoglycan that 

accumulates in murine atherosclerotic lesions [66], and 
to biglycan [49••], another proteoglycan that accumu-
lates in both murine [66] and human [67] atherosclerosis.  
Moreover, both studies co-localized SAA and apoA-I to 
perlecan-rich regions of murine atherosclerotic lesions, 
but not in perlecan-free, nonlesioned areas, providing 
in vivo evidence for a role for SAA in plaque HDL reten-
tion [48•,49••]. Importantly, one of these studies also 
showed that plasma levels of SAA, but not of cholesterol, 
correlated strongly with atherosclerotic lesion area [49••], 
further supporting a potential direct role for SAA in ath-
erogenesis. However, firm confirmation of a role for SAA 
in atherogenesis will require direct testing in both trans-
genic and SAA-deficient animal models.

The retention of HDL on atherosclerotic extracellular 
matrix by SAA could promote atherogenesis in several 
ways. Firstly, HDL trapped in the atherosclerotic plaque 
would be unavailable for transport of cholesterol out 
of the plaque in the reverse cholesterol transport path-
way. Secondly, HDL retained in plaque might be more 
susceptible to oxidation as well as to other chemical mod-
ifications such as nitrosylation [68], chlorination [69], 
and acrolein adducts [70], all of which may render HDL 
more atherogenic. In addition, SAA might also play a role 
in mediating plaque retention of VLDL, as both murine 
studies have confirmed that SAA also is present on VLDL 
particles [48•,49••].

Thus, the association of SAA with HDL (and VLDL) in 
chronic disease states, including insulin resistance, obesity, 
and diabetes could account, at least in part, for the associa-
tion of these diseases with increased risk for atherosclerosis. 
Some of the multiple potential mechanisms by which SAA 
might stimulate atherogenesis are shown in Figure 2.

Serum amyloid A as a therapeutic target  
If SAA is a mediator of atherosclerosis, what therapies may 
decrease its expression? In general, many therapies that 
decrease circulating CRP levels also decrease those of SAA, 
including weight loss [12•,50••,51••], statin treatment 
[71,72], and improvement in insulin resistance through 
weight loss [12•] or treatment with peroxisome prolifera-
tor activated receptor gamma (PPARγ) activators [45,73]. 
In addition, because dietary fat and cholesterol appear to 
increase SAA levels in lean subjects [13•] but not in indi-
viduals who are obese [12•,13•] and/or insulin-resistant 
[13•], decreasing intake of these dietary components might 
reduce SAA levels in lean individuals. However, the effects 
of these therapies are not exclusive to SAA. Therapies that 
specifically target SAA, such as inhibiting its proteoglycan 
binding domain (as has been done for apoB) [74], have 
not been tested.

Conclusions  
Acute-phase proteins, in particular CRP and SAA, appear 
to be good predictors of cardiovascular disease in large 

Figure 1. Sources of C-reactive protein (CRP) and serum amyloid 
A (SAA). Under the influence of dietary cholesterol and/or insulin 
resistance, adipose tissue accumulates macrophages, which 
in turn secrete cytokines that induce the liver to express both 
CRP and SAA. However, adipose tissue adipocytes may also 
themselves secrete SAA, possibly under the influence of locally 
secreted cytokines.
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epidemiologic studies, though SAA has been less well 
studied than CRP. The roles of these molecules as media-
tors of atherogenesis are less clear, particularly for CRP, 
as three recent transgenic animal studies of CRP have 
failed to demonstrate any proatherogenic effect. SAA, 
through its effects on HDL metabolism and regulation by 
dietary cholesterol, obesity, and insulin resistance, lies 
at the intersection of inflammation, dyslipidemia, and 
metabolic syndrome. As a consequence, the potential 
role of SAA as an atherosclerosis mediator is provocative, 
though it still needs to be rigorously tested in animal 
models. If SAA is shown definitively to increase athero-
sclerosis risk, specific targeting of this inflammatory 
molecule may offer therapeutic approaches beyond 
classical risk reduction. 
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