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Introduction
Myocardial ischemia occurs when the oxygen requirement
of the heart exceeds the oxygen supplied to the heart by the
coronary circulation. Common manifestations of ischemia
are angina pectoris and acute myocardial infarction (AMI),
most often caused by decreased blood flow to the heart
due to obstruction of large coronary vessels by athero-
sclerotic plaques and/or clot formation, or due to a dimin-
ished ability to increase coronary flow in response to an
increase in metabolic demand. The result of ischemia is
modifications to the metabolism, structure, and function
of the ischemic zone.

The classic treatment of ischemic heart disease consists
of strategies that correct the oxygen supply-demand

imbalance either by increasing oxygen delivery or decreas-
ing oxygen demand. Therapeutic strategies to increase
oxygen delivery include invasive procedures such as
coronary bypass grafting and balloon angioplasty, as
well as pharmacologic agents including vasodilators,
thrombolytics, and antiplatelet drugs. Decreasing oxygen
demand can be achieved noninvasively by the use of
pharmacologic agents including organic nitrates, calcium
channel blockers, or β-adrenoceptor antagonists. Despite
these treatment options, ischemic heart disease remains
a major cause of morbidity and mortality in Western
society, emphasizing the need to develop novel thera-
peutic strategies, such as improving the efficiency of
oxygen utilization in the ischemic and reperfused heart.
One such approach is the use of metabolic modulation
to optimize myocardial energy metabolism to both
decrease the symptoms of ischemia and also reduce
the damage resulting from an acute coronary event. This
review discusses how ischemia alters myocardial metabo-
lism, how these changes in metabolism depress cardiac
efficiency, and how strategies that modify metabolism can
improve efficiency and be used as a therapeutic approach
to treating ischemic heart disease.

Aerobic Myocardial Energy Metabolism
In order to meet the high energy demands of contraction
and ionic homeostasis, the heart must produce an abun-
dant supply of ATP (between 3.5 and 5 kg/d) [1]. To meet
this high demand, the heart acts as a metabolic omnivore,
metabolizing a variety of carbon substrates, including
carbohydrates (glucose, lactate, and pyruvate), fatty acids,
and ketone bodies [2,3,4•]. Under normal aerobic condi-
tions, the heart preferentially metabolizes fatty acids,
which contribute between 60% and 80% of the required
ATP [5,6], with carbohydrates contributing the residual
20% to 40%. This ratio is influenced by a number of
conditions, which include alterations in hormonal control,
workload, energy substrate supply, and oxygen supply
to the heart. Despite producing more ATP than carbo-
hydrates, fatty acids are not as oxygen efficient, requiring
approximately 10% more oxygen to produce an equivalent

Ischemic heart disease is characterized by a modification of 
the normal energy balance of the heart. During and follow-
ing an ischemic event, circulating fatty acids are elevated, 
resulting in the acceleration of fatty acid oxidation at the 
expense of glucose oxidation. Despite the reduction in 
glucose oxidation, the rate of glycolysis increases, leading 
to an uncoupling of glucose metabolism. This results in the 
accumulation of metabolic byproducts, which leads to a 
decrease in cardiac efficiency. A novel therapeutic strategy 
involves improving the efficiency of oxygen utilization by 
the ischemic heart by the modulation of energy metabo-
lism. This can be achieved by a reduction in the levels of 
circulating fatty acids using β-blockers, glucose-insulin-
potassium infusions, and nicotinic acid. Alternatively, fatty 
acid oxidation can be directly inhibited using trimetazidine, 
ranolazine, or glucose oxidation directly activated using 
dichloroacetate, which significantly improves the efficiency 
of the heart.
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amount of ATP [6]. This observation is of particular impor-
tance during times of ischemic stress, when oxygen is the
limiting factor for oxidative metabolism.

Fatty acid metabolism
Long-chain fatty acids are supplied to the heart as either
triglycerides in chylomicrons (CM) and very low-density
lipoproteins (VLDL) or as fatty acids bound to albumin [5].
Lipoprotein lipase, bound to the capillary endothelium
through a herparin sulphate proteoglycan bond, removes
fatty acids from CMs and VLDL, which allows them access to
the cardiomyocytes. These fatty acids are then taken up
either by way of simple diffusion across the sarcolemmal
membrane or by way of a carrier-mediated process utilizing
transport proteins such as CD36/FAT, and FABPpm [6,7].
Alternatively, fatty acids may also be taken up by way of the
VLDL receptor, which is highly expressed in the heart [8].
Following uptake, the fatty acids are activated by way of acyl
coenzyme A (acyl-CoA) synthetase to acyl-CoAs, which may
be taken up by the mitochondria (Fig. 1).

Fatty acid oxidation is tightly controlled at a number
of steps, but the uptake of fatty acyl-CoAs into the mito-
chondria is arguably one of the most important. The key
regulatory enzyme in this process is carnitine palmitoyl-
CoA transferase 1 (CPT-1), which catalyzes the conversion
of fatty acyl-CoAs (which cannot cross the mitochondrial
membrane) to fatty acyl-carnitines, which can then cross
the inner mitochondrial membrane by way of the carnitine
shuttle (Fig. 1). Malonyl-CoA is a potent endogenous
inhibitor of CPT-1 and is a major determinant of long-
chain fatty acyl-CoAs’ flux into the mitochondria [5,6].
Malonyl-CoA concentrations are under the control of two
enzymes: acetyl-CoA carboxylase (ACC), which synthesizes
malonyl-CoA, and malonyl-CoA decarboxylase (MCD),
which degrades malonyl-CoA. Alterations in malonyl-CoA
levels are an important determinant of ischemic-induced
alterations in fatty acid oxidation.

Fatty acyl-carnitines transported across the inner mito-
chondrial membrane by way of an acyl-carnitine trans-
locase are subsequently converted back to fatty acyl-CoAs
by CPT-2 and are metabolized in the β-oxidation spiral
(Fig. 1). Within the tricaboxylic acid (TCA) cycle, acetyl-
CoA produced from β-oxidation undergoes further metab-
olism, resulting in the production of reduced electron
donors for the electron transport chain. The electron trans-
port chain is a series of sequentially acting electron carriers
with increasing reduction potentials, linked to proton
extrusion from the mitochondria. The final electron accep-
tor is molecular oxygen; thus it is essential for oxidative
metabolism. The proton-motive force produced by
the pumping of protons is used to produce the energy for
the synthesis of ATP.

Carbohydrate metabolism
Glucose is the principal carbohydrate metabolized by the
heart. The majority of glucose is derived from the blood,

and its uptake is facilitated by glucose transporters (GLUT)
such as GLUT1, which sustains basal glucose uptake, and
GLUT4, which translocates from an intracellular pool in
response to insulin and AMP-activated protein kinase
(AMPK) (Fig. 1) [9]. Alternatively, glucose-6-phosphate
can be obtained by mobilizing endogenous glycogen
stores. Subsequent glucose metabolism can be separated
into two major components: glycolysis and glucose oxida-
tion. Glycolysis consists of the initial sequence of events
that activate glucose-6-phosphate to fructose-1,6-bisphos-
phate, followed by its breakdown to pyruvate. This
sequence of reactions yields less than 10% of the total
ATP produced by the aerobically perfused heart [2].

The majority of ATP from carbohydrate sources is
produced in the second part of this pathway, termed
glucose oxidation, wherein pyruvate from glycolysis and
exogenous lactate are converted to acetyl-CoA, which is
oxidized in the TCA cycle. The pyruvate dehydrogenase
(PDH) complex catalyzes the rate-limiting step of glucose
oxidation, which is decarboxylation of pyruvate to acetyl-
CoA. The PDH complex is tightly regulated by an upstream
kinase (PDH kinase), which phosphorylates and inacti-
vates the complex, and an upstream phosphatase (PDH
phosphatase), which dephosphorylates and activates
the complex [2]. PDH kinase and phosphatase are also
under allosteric regulation. The kinase is positively regu-
lated by acetyl-CoA and NADH and negatively regulated
by pyruvate, CoA, and NAD+, whereas PDH phosphatase
is positively regulated by calcium and magnesium ions.
The negative feedback inhibition of PDH is important, as
acetyl-CoA derived from both carbohydrates and fatty
acids may activate the PDH kinase and inactivate glucose
oxidation. This phenomenon, which was originally
described by Randle et al. [10], is of particular importance
when hearts are exposed to elevated levels of fatty acids,
which stimulate fatty acid oxidation that in turn suppresses
glucose oxidation.

Myocardial energy metabolism 
during ischemia and reperfusion
Inadequate supply of oxygen during ischemia results in
a striking reduction in the oxidative metabolism of both
carbohydrates and fatty acids and an impairment of ATP
production, the degree of which is dependent on the severity
of ischemia [1,2]. During severe ischemia, coronary blood
flow (and the oxygen and nutrients carried in it) is signifi-
cantly reduced or even halted; thus all oxidative metabolism
effectively ceases and the primary source of ATP is glycolysis
of glycogen-derived glucose [1,2]. As glucose oxidation
is inhibited, pyruvate normally metabolized in the
mitochondria is converted to lactate to preserve sufficient
NAD+ to sustain flux through glycolysis. This uncoupling of
glycolysis from glucose oxidation is associated with an
increase in cytosolic protons, resulting in an intracellular
acidosis because of the inability to remove these protons
due to the reduction in coronary blood flow [3,11,12].
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When reperfusion of reversibly injured myocardium
occurs, a rapid recovery of oxygen consumption and TCA
cycle activity leads to a replenishment of the supply of ATP
[11,13,14]. This is associated with a recovery of mechanical
function once Ca2+ levels have normalized. During this
reperfusion period, fatty acids can provide over 90% of the
myocardium’s energy requirement [14,15]. This excessive
use of fatty acids is due, in part, to increased levels of
circulating fatty acids as a result of a hormonal stimulation
of lipolysis in adipose tissue [16,17]. A decrease in the
myocardial malonyl-CoA levels also contributes to these
high fatty acid oxidation rates, due to less inhibition of
CPT-1 and an associated increase in mitochondrial fatty
acid uptake and oxidation [13–16,18]. The reduction in
malonyl-CoA is due to the ischemia-induced activation
of AMPK, a so-called “fuel gauge” of the cell [19]. AMPK
can phosphorylate the heart isoform of ACC on Ser227,
resulting in an inactivation of the enzyme [20]. As MCD
activity is preserved during reperfusion, there is a reduction
in malonyl-CoA levels, a stimulation of fatty acid oxidation,
and consequent impairment in the recovery of glucose
oxidation. AMPK activation by ischemia also exacerbates
the uncoupling of glucose metabolism, as it can stimulate
the translocation of GLUT4 to the plasma membrane and
increase glucose uptake [21]. AMPK can also stimulate

glycolysis by the phosphorylation (Ser466) and activation
of phosphofructokinase-2 (PFK-2) which increases the
concentration of fructose-2,6-bisphosphate, a potent
stimulator of PFK-1 [22]. A combination of high glycolytic
rates and low glucose oxidation rates, secondary to high
fatty acid oxidation rates, puts an excessive proton burden
on the heart.

Intracellular acidosis is reduced by a number of
pathways, including two Na+-dependent mechanisms: the
Na+-H+ exchanger 1 (NHE1) [23] and the Na+-HCO3

-

cotransporter (NBC1, 3, or 4) [24]. Both these mechanisms
lead to an intracellular Na+ overload and activation of
the reverse mode of the Na+-Ca2+exchanger (NCX) [25].
Activation of NCX results in the ischemia-induced Ca2+

overload that is associated with reversible injury such as
arrhythmias and stunning, and irreversible injury such
as apoptosis and necrosis. During both ischemia and
reperfusion, there is an increased need for ATP to correct
these ionic imbalances, which shunts ATP away from
contractile function and results in a decrease in contractile
efficiency. The use of metabolic modulation to inhibit
fatty acid oxidation and stimulate glucose oxidation is a
novel therapeutic approach that can be utilized to improve
cardiac efficiency. This approach is discussed in the
following section.

Figure 1. The major pathways of fatty acid 
and glucose metabolism in the heart. Down-
stream of acetyl-CoA (acyl-CoA), the path-
ways for both glucose and fatty acid oxidative 
metabolism are the same. However, under 
aerobic conditions, glucose can still pass 
through glycolysis without further oxidation 
in the mitochondria. (CPT—carnitine palmi-
toyl transferase; FABPpm—plasma membrane 
fatty acid–binding protein; GLUT—glucose 
transporter; LCAS—long-chain fatty acyl-CoA 
synthetase; LDH—lactate dehydrogenase; 
PDHa—active form of pyruvate dehydroge-
nase; PDHb—inactive form of pyruvate dehy-
drogenase; PDHK—pyruvate dehydrogenase 
kinase; TCA cycle— tricarboxylic acid cycle; 
VLDL—very low-density lipoprotein.)
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Metabolic Modulation: 
Inhibition of Fatty Acid Oxidation
Modification of myocardial metabolism is one of the key
consequences of ischemia and reperfusion that can con-
tribute to reversible or irreversible ischemia-reperfusion
injury. It is now becoming clear that agents that can
reduce fatty acid oxidation and improve the coupling
of glucose metabolism can alleviate the dysregulation
of ion homeostasis and the associated impairment of
contractile function that occur during and following
ischemia. These agents can be divided into two classes:
those that lower circulating free fatty acids (and indi-
rectly modify fatty acid oxidation) (Table 1) and those
that directly modify fatty acid oxidation or glucose
oxidation (Table 2).

Reduction of circulating free fatty acids
This class of agents includes compounds such as β-adreno-
ceptor antagonists (β-blockers), glucose-insulin-potassium
(GIK) infusions, and nicotinic acid. One of the hypothesized
modes of action of these compounds is the reduction in
circulating free fatty acids, which reduce fatty acid supply
to the mitochondria and would, therefore, be expected to
decrease fatty acid oxidation rates.

The use of β-blockers has long been associated with
improved survival of patients following AMI, which has
primarily been attributed to a direct effect on contractility
as well as an antiarrhythmic effect [26]. β-Blockers are also
effective at reducing the adverse effects of the catechola-
mine surge that is associated with ischemia, including
the reduction of catecholamine-induced mobilization of
fatty acids from adipocytes. As a result, in addition to
reducing myocardial oxygen demand, an additional meta-

bolic component of β-blockers may be associated with the
lowering of plasma free fatty acid levels.

The concept of infusing GIK solutions during ischemia
was originally introduced by Sodi-Pallares et al. [27] in 1969
to reduce electrocardiogram abnormalities associated with
AMI. Recently GIK therapy has seen renewed interest in its
use as a metabolic treatment for AMI, and a meta-analysis
of previous trials reported a 28% reduction of proportional
in-hospital mortality [28]. Data from the Estudios Cardio-
logicos Lantinoamerica Collaborative Group [29] reported
a significant reduction of in-hospital mortality from AMI.
A large-scale trial is presently addressing whether GIK
therapy can reduce mortality following AMI.

The effectiveness of GIK therapy may be explained by
several metabolic mechanisms. Typically, the beneficial
effects are ascribed to its ability to increase glucose uptake
(by way of insulin-induced translocation of GLUT4 to the
plasma membrane) and an acceleration of glycolytic ATP
production. However, GIK therapy also has the potential
to increase the production of deleterious metabolic
byproducts of glycolysis, namely lactate and protons. An
alternative mechanism for the benefits of GIK therapy may
be due to insulin-mediated inhibition of fatty acid release
from adipocytes, thereby reducing plasma free fatty acid
levels. This possibility is presently being investigated.

Nicotinic acid has also been shown to reduce fatty acid
release from adipocytes, as well as inhibit the release of
VLDL from the liver [30]. It has been also been shown
to be efficacious in lowering serum lipid levels, resulting in
a decrease in mortality from cardiovascular causes [31].
Nicotinic acid also has direct effects on myocardial metab-
olism and causes a two- to threefold increase in glucose
oxidation rates that is associated with a reduction in fatty

Table 1. Metabolic modulators that reduce levels of circulating fatty acids

Metabolic agent Metabolic action Clinical use

Glucose-insulin-potassium solution Increase glucose uptake and glycolysis Reduction in post-reperfusion mortality
Reduce circulating fatty acids

β-Blockers Decrease myocardial oxygen consumption
Blunt catecholamine release
Reduce circulating fatty acids

Long-established benefit in acute 
coronary syndromes      

Improved short- and long-term survival
Nicotinic acid Antilipolytic

Reduce circulating fatty acids
Precursor for NAD+ synthesis

Decreased mortality in hyperlipidemic 
patients

No clinical studies for reperfusion

Table 2. Metabolic modulators that specifically inhibit fatty acid oxidation or stimulate glucose oxidation

Metabolic agent Metabolic action Clinical use

Trimetazidine Inhibition of fatty acid oxidation by inhibiting 
3-ketoacylcoenzyme A thiolase

Approved for use as antianginal agent in 
80 countries

Ranolazine Partial fatty acid oxidation inhibitor Potential application as antianginal agent
Approval for clinical use pending

Dichloroacetate Inhibits pyruvate dehydrogenase kinase Experimental only, has short half-life
Stimulates glucose oxidation
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acid oxidation and a protective effect on contractility [32].
A protective effect of nicotinic acid has also been seen
in isolated rat hearts, but these data must be interpreted
cautiously because the hearts were perfused in the absence
of fatty acids (Fig. 2).

Inhibition of β-oxidation
One approach to treat ischemic heart disease is the inhibition
of fatty acid oxidation, because high rates of fatty acid oxida-
tion markedly reduce glucose oxidation rates and uncouple
glucose metabolism. This strategy has been proven as an effi-
cacious treatment for both acute ischemia and heart failure.
Clinically, this approach has been shown with a class of piper-
azine derivatives, including trimetazidine and ranolazine.

Trimetazidine is an inhibitor of long-chain 3-ketoacyl-
coenzyme A thiolase (the final enzyme in the β-oxidation
spiral) that reduces fatty acid oxidation and increases
glucose oxidation via the Randle cycle both during and
following ischemia [34•,35•]. It is the first widely used
antianginal drug with a mechanism of action that can
be attributed to the optimization of energy metabolism.
In vivo studies have shown that trimetazidine reduces

infarct size in dog and rabbit models of cardiac ischemia,
and reduces ST-segment elevation in regionally ischemic
rabbit hearts [36]. This compound has also been shown
to be cardioprotective in in vitro models of ischemia by
reducing acidosis and the accumulation of intracellular
Na+ [37–39]. These experimental observations have also
been confirmed in a number of clinical studies, with the
antianginal efficacy of trimetazidine being equivalent to
that of nifedipine and propranolol, but occurring without
hemodynamic alterations such as changes in coronary
blood flow or rate-pressure product [40,41]. Additionally,
these antianginal effects are additive with the effects of
diltiazem [42]. Beneficial effects have been seen in various
clinical endpoints, such as improved ergometric exercise
duration and time to 1-mm ST-segment depression in
effort angina [43,44], a 50% reduction in anginal attack
frequency, and a reduction in nitroglycerin requirement in
patients with chronic stable angina. Trimetazidine has also
proven beneficial by reducing the acute ischemic changes
that occur during coronary angioplasty [45]. To date, this
pharmaceutical has been approved for clinical use
throughout Europe and in over 80 countries worldwide.

Figure 2. A, Relative contribution of various substrates to total 
ATP production in the isolated working rat heart. Isolated working 
rat hearts were perfused with 11 mmol/L of glucose and either 0.4 
or 1.2 mmol/L of palmitate. Under these conditions, fatty acid contrib-
utes almost 85% of the total ATP production. B, The effect of increas-
ing fatty acids on glucose and fatty acid metabolism. Isolated working 
rat hearts were perfused with 5 mmol/L of glucose and increasing 
concentrations of palmitate bound to 3% albumin.
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The second compound of this class, ranolazine,
also appears to exert its anti-ischemic effect through the
direct inhibition of fatty acid oxidation [46]. At clinically
relevant concentrations, ranolazine partially inhibits fatty
acid oxidation in both isolated rat hearts and skeletal
muscle, and thus has been termed a partial fatty acid oxi-
dation inhibitor [47,48]. Decreased fatty acid oxidation is
associated with a reciprocal increase in glucose oxidation
that is accompanied by an increase in PDH activity [46].
Several experimental models have shown that these meta-
bolic changes are associated with improved contractile
function during and following ischemia [47–49].
Although ranolazine is not currently clinically approved
for the treatment of angina, clinical trials show that it is
an effective antianginal agent, which exerts its metabolic
effects independent of changes in hemodynamics [50].
Further phase III clinical trials have shown beneficial
effects in angina-limited exercise as both a monotherapy
and combination therapy [51•,52•].

Direct stimulation of glucose oxidation
Experimental studies have shown that direct stimulation
of glucose oxidation both during and following an
ischemic insult can benefit the heart. The prototype of this
class, dichloroacetate (DCA), acts by way of the inhibition
of PDH kinase, thus ultimately activating PDH [53]. This
improves the coupling of glycolysis to glucose oxidation,
resulting in a reduction in the buildup of glycolytic
byproducts and an improvement of cardiac efficiency [54].
The anti-ischemic effects of DCA are associated with
improved functional recovery during reperfusion in the
isolated working rat heart [11,12,55] and a reduction in
epicardial ST-segment elevation during in vivo coronary
artery occlusion in dogs [56]. In a small clinical study
of only nine patients with coronary artery disease, DCA
was shown to augment stroke volume and enhance
myocardial efficiency, possibly due to a stimulation of
myocardial lactate utilization [57]. Although these results
are encouraging, the clinical use of DCA is complicated
by its short half-life and the necessity of high-dose intra-
venous administration.

Conclusions
During and following acute ischemic events, accelerated
rates of fatty acid oxidation and the subsequent reduction
in glucose oxidation are associated with a worsening of
contractile function. Despite the reduction of oxidative
glucose metabolism, glycolysis is accelerated, resulting in a
mismatch in the coupling of glycolysis to glucose metabo-
lism. This mismatch produces an increase in the accumula-
tion of metabolic byproducts, particularly protons that can
directly contribute to a reduction in mechanical function
and cardiac efficiency. A number of pharmacologic agents
are now available that modulate myocardial metabolism,
including those that reduce circulating free fatty acids

(that causes a secondary decrease in fatty acid oxidation)
and those that direct inhibit fatty acid oxidation or stimulate
glucose oxidation. Importantly, unlike β-blockers and
the Ca2+ entry blocker, metabolic modulators can elicit
their beneficial effects without causing concomitant hemo-
dynamic alterations. Evidence based on both basic and
clinical studies has shown that these agents provide a
very important and novel approach to treat ischemic
heart disease, both as a monotherapy and as an adjunct
to existing therapies.
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