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Introduction
Since the first angioplasty was performed nearly three
decades ago, tremendous effort has been invested in
understanding the biologic response to vascular injury [1].
As endovascular technique has evolved to embrace a nearly
universal use of coronary stents, our paradigm for the
understanding of the vascular biology has changed as well.
We now appreciate that the original models that identified
neointimal proliferation, thrombosis, and arterial constric-
tion (or negative remodeling) as the key mediators of
restenosis post-angioplasty omit the important role of
inflammation in vascular wound healing [2,3]. With the
chronic injury and foreign body response engendered by
the endovascular implantation of a stainless-steel stent,
inflammation plays an even more important role. By exam-
ining the mechanisms by which inflammation influences
vascular wound-healing, we may improve our understand-
ing of the pitfalls and successes of our current interven-
tional techniques and develop insight into future strategies
that could offer significant clinical advantages.

Atherogenesis
The greatest understanding of inflammation in vascular
biology has been established through the study of athero-
genesis [4,5]. Although the study of atherogenesis may
serve as a scaffold upon which we may build our under-
standing of the mechanisms of restenosis, these two modes
of vascular injury and wound-healing are clearly distinct.
In our discussions of the respective pathophysiology, one
major point of distinction is that atheroma develops in the
context of dysfunctional endothelial cells, whereas resteno-
sis most often occurs following endothelial denudation at
the time of balloon-induced or stent-induced coronary
injury. As such, the repertoire of cellular and subcellular
components in these processes may diverge. Nevertheless,
by applying the mechanistic insights derived from one
model to the other, we may develop a more complete
understanding of the vascular response to injury.

The first phases of atherogenesis are characterized by
endothelial dysfunction, which is the result of chronic
inflammatory stimuli. Many of the traditional cardiac risk
factors promote metabolic, environmental, or physical
stress, which disrupts the integrity of the natural barrier-
like properties of the endothelium [4]. As a result, circulat-
ing inflammatory cells, which typically function in the
capacity of immunologic defense, are recruited to the
endothelial surface by way of a complex cascade of signal-
ing events [6]. Initial adhesion and rolling of leukocytes on
the endoluminal surface is mediated by the production of
glycoproteins, such as P-selectin and vascular cellular adhe-
sion molecule-1 (VCAM-1), which are expressed by dys-
functional endothelial cells [7,8]. Leukocyte activation,
firm adhesion, and transplatelet and transendothelial
migration are governed by interactions with chemoattrac-
tant factors such as monocyte chemoattractant protein-1
(MCP-1). As a result, leukocytes accumulate in the arterial
wall. The production of oxidized low-density lipoprotein,
angiotensin II, interleukin-1 (IL-1), and tumor necrosis
factor-α (TNF-α) induce the production of VCAM-1 and
MCP-1 by endothelial cells, which leads to further leuko-
cyte recruitment, compounding the degree of inflamma-
tion and vascular injury [9].

Following the initial inflammatory burst, the develop-
ing atheromatous lesion typically enters a long period of

Restenosis following coronary stenting has long been 
attributed to neointimal proliferation, thrombosis, and 
negative remodeling. More recently, the important role of 
inflammation in vascular healing has also been increasingly 
well understood. From animal models and from clinical 
experience, we know that endothelial injury, platelet and 
leukocyte interactions, and subcellular chemoattractant and 
inflammatory mediators are pivotal in the development of 
the inflammatory response following stent implantation. 
By examining the specific mechanisms governing the inflam-
matory response to percutaneous coronary intervention, 
we may gain insight into potential therapeutic targets and 
strategies to prevent restenosis in clinical practice.
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apparent clinical inactivity. During this time, the lesion
grows and develops due to the apoptosis of recruited mac-
rophages and T cells, creating the “necrotic core” [10].
Smooth muscle cell recruitment and proliferation leads to
the development of a fibrous cap, which overlies the lesion
and protects the contents from the potentially thrombotic
circulating milieu.

Over time, however, lesion progression leads to the
development of more pronounced inflammation and
clinical nstability. Production of macrophage colony-
stimulating factor, IL-1, and cytokines, as well as T-cell
release of interferon-α and macrophage production of
matrix metalloproteinases, may lead to the degradation of
the fibrous cap by slowing the production of new collagen
within the tissue layer and accelerating breakdown of
the existing collagen [11,12]. In addition, some elements
of the inflammatory process themselves may enhance
local thrombogenicity (eg, the CD40 ligand may stimulate
macrophage production of tissue factor, which itself
catalyzes factor VIIa and leads to thrombin production and
activation with consequent thrombosis) [13,14].

Percutaneous Coronary 
Intervention and Inflammation
Although early models of restenosis post-angioplasty
established the importance of neointimal proliferation,
thrombosis, and negative remodeling, only recently has
the importance of inflammation been recognized. Follow-
ing coronary intervention, there is disruption and denuda-
tion of the endothelial surface, which initiates a cascade of
events, as originally proposed by Libby et al. [15] in 1992,
that promote leukocyte recruitment, adhesion, and partici-
pation in the vascular healing response to injury (Fig. 1).
Endothelial denudation promotes platelet adhesion to
the injured surface of the arterial wall, and subsequently
fibrin is deposited. The interaction between platelets and
leukocytes is mediated by way of the platelet expression
of P-selectin; leukocytes attach loosely and roll along
the carpet of platelets lining the denuded abluminal
surface. Leukocytes then adhere more firmly and migrate
across the platelets by way of a Mac-1–mediated sequence
of events, promoting progressive inflammation of the
arterial wall [16].

The interactions between platelets and leukocytes
trigger a cascade of events that promote inflammation:
neutrophil activation is stimulated; expression of cellular
adhesion molecules is upregulated; chemical signals are
released that increase integrin activation; and chemokine
synthesis is increased. From a more mechanistic stand-
point, the early stages of inflammation are characterized by
the production of intracellular adhesion molecule-1
(ICAM-1), VCAM-1, and TNF-α; in later stages, class II
major histocompatibility complex (MHC) elevation may
indicate a more chronic, immunologically mediated
response to vascular injury [15]. In this regard, the inter-

action of platelets and leukocytes may be viewed as a senti-
nel event in the inflammatory response to percutaneous
endovascular intervention. Therapies targeted to disrupt
this interaction show promise in the prevention of resteno-
sis and are discussed later.

Evidence from Animal Models Linking 
Inflammation with Restenosis
Following vascular injury, there is a cascade of events
that promote inflammation and subsequent restenosis.
The study in animal models of this sequence of events—
and of therapeutic efforts to disrupt this sequence—has
yielded significant insight into the pathophysiology of
restenosis and into potential strategies for treatment.
Although no single animal model completely replicates
human physiology, each model may provide relative
or analogous mechanistic insights that may shape our
technique in clinical practice.

As described previously, the β2-integrin Mac-1 plays
a critical role in the adhesion of leukocytes to platelets
following endothelial denudation, as seen following
percutaneous coronary intervention (PCI). This interaction
is known to play a key role in the subsequent cascade of
events that lead to restenosis, and thus may serve as a
potential target for therapeutic intervention. In a murine
model, mechanical dilation and endothelial denudation
of the carotid artery lead to leukocyte adhesion and accu-
mulation in the arterial wall, with consequent intimal pro-
liferation and experimental restenosis. In the absence of
Mac-1, however, as examined in a Mac-1 knockout mouse
model, the same arterial injury results in significantly less
leukocyte recruitment and neointimal thickening [17]. In a
rabbit model, antibody blockade of Mac-1 function signifi-
cantly reduced intimal thickening after stent implantation
in the iliac artery. Collectively, this experimental evidence
establishes the importance of leukocyte recruitment by
way of a Mac-1-mediated interaction with platelets in the
inflammatory cascade leading to restenosis [18]. Moreover,
these experiments suggest a role for blockade of Mac-1
function in the prevention of restenosis.

In the inflammatory cascade following PCI, the
leukocyte glycoprotein ligand P-selectin also plays an
important role in leukocyte adhesion and restenosis. In
pre-injured pig coronary arteries, bolus administration of
an antibody directed against P-selectin reduces experi-
mental restenosis after stenting by 35% when compared
with control animals. In addition, platelet and neutrophil
adhesion were also dramatically reduced following
administration of the antibody to P-selectin. In this
preclinical model, evidence is presented that identifies
the role of P-selectin in adhesion of leukocytes following
vascular injury and implicates this step as vital to the
inflammatory cascade that results in restenosis. Blocking
P-selectin activity may hold promise for clinical reduction
of restenosis following PCI [19].
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In animal models characterized by systemic inflam-
matory stress—exposure to atherogenic diet, induction of
diabetes mellitus, and simulation of arterial wall shear
stress—an overexpression of cellular adhesion molecules
may be detected systemically [16]. The increased presence
of adhesion molecules supports the notion that the recruit-
ment of inflammatory cells is important in wound-
healing. After balloon injury in the rabbit iliac artery,
ICAM-1, VCAM-1, and class II MHC are elevated [20]. In
the same model, after iliac stenting, inflammatory cells are
seen at the site of endothelial injury immediately after
intervention. The concentration of monocytes in the media
after stenting is proportional to the subsequent neointimal
thickening, corroborating the theory that the monocyte/
macrophage lineage may play a causal role in restenosis.
In addition, in vitro assays demonstrate that co-culture of
neutrophils with smooth muscle cells—or merely the
exposure to neutrophil medium—may increase smooth
muscle cell proliferation, a major component of neo-
intimal thickening in vivo [16,21,22].

Using anti-inflammatory medications to block the
recruitment of monocytes early after balloon injury
reduces neointimal thickening. As with any anti-restenotic
therapy, though, the timing of administration must be
coordinated to assure that the therapeutic agent is present
and active at the appropriate site at the same time as
its intended target. For example, following balloon injury
of the rabbit iliac artery, brief (ie, hours) administration
of heparin is sufficient to inhibit neointimal proliferation.
In the same model, however, when a stent is implanted,
brief administration of heparin does not inhibit neo-
intimal proliferation; however, sustained (ie, days) admin-
istration of heparin does prevent proliferation. From
this experience, we appreciate that the inflammatory and
proliferative healing response to transient endovascular
injury (ie, balloon angioplasty) may be combated with
transient administration of therapy; however, the chronic
endovascular injury engendered by stent implantation
requires sustained therapy in order to inhibit the corre-
sponding sustained inflammatory and proliferative
wound-healing response [23,24].

As suggested by the different responses to balloon
angioplasty and stenting in the rabbit iliac artery, the
cellular physiology of healing after these two types of
vascular injury are quite different. Following balloon
injury alone, macrophage infiltration of the media is not
dramatically increased. Following stenting, however, there
is a substantial increase in macrophage presence in the
media. In a primate model of vascular injury, the levels of
MCP-1 (a monocyte chemokine) and IL-8 (a neutrophil
chemokine) were examined. After angioplasty, both MCP-
1 and IL-8 were overexpressed for a matter of hours after
the intervention. Following stenting, however, IL-8 and
(to a lesser extent) MCP-1 were sustained for up to 14 days
after the intervention. Of interest, blockade of monocyte
recruitment in this model—achieved through antibody-
mediated blocking of the CCR2 receptor and, therefore
MCP-1 production—did not reduce neointimal thickening
after angioplasty alone, but did reduce neointimal thick-
ening after stenting [25••]. This finding suggests that
monocyte/macrophage lineage cells may play an impor-
tant role after stenting, but not after balloon angioplasty
alone. Inhibition of CD18 (a neutrophil chemokine) did
reduce neointimal thickening after angioplasty alone,
however, suggesting that neutrophil lineage cells may play
an important role in the inflammatory and proliferative
response following balloon injury.

Clinical Evidence Linking 
Inflammation with Restenosis
In many instances, the physiologic mechanisms elucidated
in animal models have helped us to identify equivalent
processes in humans, where inflammation has been found to
play an important role in restenosis. Several clinical trials have
shown that restenosis rates are higher in patients who have
elevated systemic markers of inflammation. High levels of
CRP predict greater rates of restenosis [26,27]. Following PCI,
systemic elevation of ICAM, VCAM, L-selectin, and P-selectin
predicts a greater incidence of restenosis [28–31]. High levels
of IL-1 prior to percutaneous transluminal coronary angio-
graphy (PTCA) predict late lumen loss [32]. Elevation of

Figure 1. Diagram of the inflammatory 
cascade following vascular injury, which 
leads to the development of restenosis. 
(FGF—fibroblast growth factor; HB-EGF—
heparin-binding epidermal growth factor; 
IL-1—interleukin-1; PDGF—platelet-derived 
growth factor; TGF-α—transforming growth 
factor-α; TNF—tumor necrosis factor.) 
(Adapted from Libby et al. [15].)



Inflammation As a Mechanism and Therapeutic Target for In-stent Restenosis  •  Drachman and Simon 47
MCP-1 levels following PTCA is proportionally related to the
rate of restenosis [33]. These findings support the hypothesis
that inflammatory mechanisms contribute to restenosis in
clinical practice.

In an angioplasty study where coronary blood was
collected just proximal to and just distal to the site of inter-
vention, L-selectin and CD11b (a Mac-1 subunit) levels
were higher downstream from the lesion than they were
upstream from the lesion [34]. This finding suggests that
these two leukocyte adhesion factors may be produced at
the site of injury and that they likely precede the recruit-
ment of leukocytes post-angioplasty. In another study,
the amount of CD11b was measured on circulating
neutrophils and monocytes; higher levels of CD11b were
proportional to more frequent adverse events following
angioplasty, suggesting the potential impact of inflam-
mation on clinical outcomes [16,35]. In a clinical study
of over 1200 patients, individuals with a polymorphism of
the gene coding for CD18 (a subunit of Mac-1) were found
to have lower rates of restenosis following coronary stent-
ing than those without the genetic polymorphism. The
findings of this large clinical trial suggests that, as demon-
strated in animal models, Mac-1 plays a critical role in the
development of restenosis after coronary stenting, and that
inflammation is a major determinant of both experimental
and clinical restenosis [36•].

In a study by Moreno et al. [37], where coronary tissue
was extracted at the time of PCI using directional coronary
atherectomy, analysis of the tissue revealed abundant
macrophages at the site of the lesion. Moreover, measuring
the concentration of macrophages present in the tissue
revealed that greater macrophage presence at the time
of intervention was proportional to a higher subsequent
risk of restenosis [37].

Clinical evidence suggests that the actual technique of
stent deployment and expansion may contribute to the
degree of inflammation and, perhaps, propensity to resteno-
sis after intervention. Farb et al. [38] examined pathology
specimens, including 55 stents implanted in 35 human
coronary arteries. They found that increasing depth of stent-
strut penetration, with increasing medial injury and
increasing penetration of the lipid core with stent struts,
resulted in a greater degree of inflammation. In addition,
the neointimal area increased with a greater ratio of stent
area to reference lumen area (ie, stent oversizing, with
excessive post-dilatation, led to increased in-stent restenosis
in the specimens examined). This study provides a link
between the degree of mechanical injury at the time of
stenting and subsequent inflammation and restenosis [38].

Therapeutic Targets and Future Directions
As reviewed in detail previously in this article, the
role of inflammation in the development of restenosis
after vascular injury encompasses a complex cascade of
events. With numerous cellular and subcellular mediators,

there are many opportunities for therapeutic intervention
using anti-inflammatory treatments. For years, however, all
attempts to translate strategies that had been successful in
animal models into clinical practice had met with frustra-
tion. In some cases, the failure was due to the use of the
wrong drug, because some targets identified in animal
models do not play as critical a role in human physiology.
In other cases, treatments failed because the dosing or
the pharmacokinetic and pharmacodynamic determinants
did not permit appropriate drug delivery to the intended
site of action at the time when the therapeutic target is
present and active. Also, other therapies did not succeed
in humans because the preclinical success was achieved
following balloon angioplasty alone, and in humans the
overwhelming majority of PCI procedures involve implan-
tation of a stent.

Recent studies, however, have identified a number of
anti-inflammatory agents with therapeutic potential in the
prevention of restenosis. Many drugs in our current anti-
thrombotic armamentarium also possess anti-inflammatory
characteristics. Aspirin, currently used for its antiplatelet
effects and for prevention of thrombosis post-stenting, has
well-known anti-inflamatory properties. Heparin possesses
antiproliferative and anti-inflammatory attributes [21,39,40].
In addition to targeting platelets, the glycoprotein IIb/IIIa
blockers such as abciximab may also interact with other
integrin molecules such as Mac-1, which are important in the
association of the inflammatory response and restenosis
[41–43]. Some studies have demonstrated potential benefit
with probucol and tranilast, although these therapies have
not been embraced in wide-scale practice [44,45]. In patients
with systemic evidence for inflammation, as measured by an
elevated C-reactive protein (CRP) at baseline, the administra-
tion of oral steroid anti-inflammatory therapy post-stenting
dramatically reduces the rate of restenosis, as reported by
Versaci et al. [27].

One of the most important recent developments in
coronary intervention is the widespread use of drug-
eluting stents. The stent platforms currently approved by
the US Food and Drug Administration use sirolimus or
paclitaxel, both of which have protean effects on the blood
vessel wall. Sirolimus was originally used as an immuno-
suppressive agent. Its profound impact on restenosis
prevention is felt to reflect both its properties as an anti-
proliferative as well as an anti-inflammatory agent. In
porcine coronary arteries, sirolimus has been found to
reduce the arterial wall expression of MCP-1 and IL-6 [46].
Paclitaxel, a microtubule-stabilizing agent, interferes with
the cytoskeletal interactions with integrin cellular adhesion
molecules. In addition, paclitaxel may have direct impact
on impairment of leukocyte function and consequent
inflammation [47,48].

Case reports have shown a rare but profound paradoxic
proinflammatory response from drug-eluting stents,
however. In a case reported by Virmani et al. [49], a 58-
year-old patient developed stent thrombosis 18 months
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after PCI using two overlapping sirolimus-eluting stents.
The event was fatal, and at autopsy the stented segment
showed evidence of vessel enlargement with severe local-
ized hypersensitivity comprised primarily of eosinophils
and T cells [49]. Such cases of hypersensitivity are felt
to represent a patient-specific reaction to the drug or the
polymer in the stent platform, and underscore the impor-
tant role of inflammation in vascular wound-healing and
the attendant risks of restenosis or thrombosis.

Conclusions
Inflammation is now recognized as playing an important
role in the vascular response to injury, particularly follow-
ing PCI. Although our current treatment paradigm empha-
sizes “spot treatment” of obstructive lesions with coronary
stents, perhaps the future may hold a strategy combining
mechanical technologies with systemic anti-inflammatory
therapy. With continued study of such combined therapy,
both in clinical practice and in preclinical models, we may
gain insight into the role of inflammation on restenosis and
expose potential targets for therapeutic intervention.
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