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Introduction
Coronary heart disease (CHD) is the leading cause of
death in industrialized countries and is of rising concern
worldwide. The relationship between CHD and diet has
been studied for nearly 100 years, essentially since the
first observation of high-fat and high-cholesterol diets
producing atherosclerosis in rabbits [1••,2•]. Epidemio-
logic studies have demonstrated that diets high in
saturated fatty acids and/or cholesterol increase serum
cholesterol and risk of developing CHD. Correlations
between diet and incidence of CHD across geographic
boundaries and among emigrants have also been noted.
These discoveries have lead to the diet-heart hypothesis,
which suggests that dietary saturated fat and cholesterol
are the major cause of CHD and atherosclerosis in humans
[2•]. Although dietary fat has dominated the diet-heart
hypothesis, there are many other foodstuffs and nutrients
that may be involved in the etiology of this disease.

Fiber, antioxidants, folic acid, calcium, and carbohydrate
content of food have an impact on heart disease and
atherosclerosis as well [1••].

Not All Fats Created Equal
The type of fat in the diet, in particular the saturation of
the fatty acid component, dramatically impacts CHD. For
example, all three major classes of fatty acids (saturated,
monounsaturated, and polyunsaturated) increase high-
density lipoprotein (HDL) cholesterol in humans; however,
saturated fatty acids increase and polyunsaturated fatty
acids (PUFAs) decrease low-density lipoprotein (LDL)
cholesterol. The increased ratio of LDL to HDL in the case
of saturated fats is associated with increased risk of develop-
ing CHD. Saturated fatty acids are generally considered
atherogenic and increase thrombosis [1••]. Trans fatty
acids, found in vegetable shortenings and deep-fried food,
raise LDL to HDL ratios to a much greater degree than
saturated fat [1••]. One potential mechanism by which
trans fats adversely affect insulin resistance, diabetes, and
CHD is by inhibiting essential fatty acid metabolism.

Two PUFAs that cannot be made in the body (and both
of which are essential fatty acids) are linoleic acid (LA, an
n-3 fatty acid) and alpha-linolenic acid (ALA, an n-6 fatty
acid). In conditions of LA deficiency, arachidonic acid (AA)
may also be considered essential. Once in the body, LA and
ALA may be converted to others PUFAs such as AA, eicosa-
pentaenoic acid (EPA), and docosahexaenoic acid (DHA)
(Fig. 1). Although many fats have been associated with
increasing the risk of CHD (eg, saturated and trans fatty
acids), EPA and DHA have been associated with a variety
of beneficial health effects. For this reason, diets that are
high in ALA, EPA, and DHA have been sought, and these
diets include fish oils, flaxseed, mustard seeds, soy beans,
walnut oil, and green leafy vegetables.

Polyunsaturated fatty acids are important for maintain-
ing membrane integrity and as precursors to bioactive
prostaglandins, which regulate inflammation, blood
clotting, and lipid metabolism. Thus, it is necessary to
have diets sufficient in PUFAs (n-3 and n-6) to maintain a
variety of biologic processes. Positive effects of diets high
in n-3 fatty acids include reducing abdominal fat, prevent-
ing cardiac arrhythmia, lowering serum triacylglycerol
levels, decreasing thrombosis, and improving endothelial
function. As noted by Hu and Willett [2•], several studies

Diets rich in omega-3 polyunsaturated fatty acids (n-3 
PUFAs), such as alpha-linoleic acid, eicosapentaenoic acid, 
and docosahexaenoic acid, are associated with decreased 
incidence and severity of coronary heart disease. Similarly, 
conjugated linoleic acids (CLAs), which are found in meat 
and dairy products, have beneficial effects against athero-
sclerosis, diabetes, and obesity. The effects of n3-PUFAs 
and CLAs are in contrast to fatty acids with virtually identi-
cal structures, such as linoleic acid and arachidonic acid 
(ie, n-6 PUFAs). This article discusses the possibility that 
cognate receptors exist for fatty acids or their metabolites 
that are able to regulate gene expression and coordinately 
affect metabolic or signaling pathways associated with coro-
nary heart disease. Three nuclear receptors are empha-
sized as fatty acid receptors that respond to dietary and 
endogenous ligands: peroxisome proliferator activated 
receptors, retinoid X receptors, and liver X receptors.
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have shown association of fish intake and/or flaxseed
oil (high in ALA) with decreased fatalities from CHD.
Importantly, blood levels of EPA and DHA are strongly
associated with decreased risk of death, myocardial infarc-
tion, and stroke.

Conjugated linoleic acid (CLA) collectively refers to a
group of LA derivatives with several positional (double
bonds in carbon 9 and 11 or 10 and 12) and geometric
(cis, Z and trans, E) isomers. CLAs are relatively abundant
in ruminant meat and heat-processed dairy products.
They are also formed from LA in the intestine of livestock
by bacterial flora and are deposited in tissues and milk.
CLA has received widespread attention due to its anti-
cancer [3-5], antiatherosclerotic [6], and antidiabetic
effects [7] in laboratory animals. Whether CLA is metabo-
lized to bioactive molecules such as those noted for ALA
and LA has not been determined. However, it is evident
from animal studies that CLA has effects on CHD that
resemble those of n-3 PUFAs.

The question that remains is why some PUFAs, in
particular n-3 PUFAs (ALA, EPA, and DHA) and CLAs, are

associated with reduced risk of CHD whereas closely related
n-6 PUFAs (LA and AA), and monosaturated (oleic acid)
and saturated (palmitic acid) fatty acids are either not as
effective or are detrimental to heart health. One explanation
may be inhibition of n-6 metabolism by these other
structurally similar compounds. This would increase the
production of metabolites associated with platelet aggrega-
tion, inflammation, and vasoconstriction (leukotriene B4,
prostaglandin [PG] I2), and thromboxane [TX] A2) at the
expense of those metabolites that have antiaggregation, anti-
inflammation, and antivasoconstriction properties (leuko-
triene B5, PGI3, and TXA3). Another explanation, and
the option explored herein, is that cognate receptors exist
that preferentially respond to a particular structure of fatty
acid. These specific “lipid sensors” would affect gene expres-
sion in a tissue-specific, sex-specific, and developmentally
specific manner and thereby affect the development of
CHD, perhaps by altering enzymes and proteins involved in
the transport or metabolism of cholesterol and fatty acids.
Also, in order for these receptors to be involved in the
beneficial effects of dietary fatty acids, they must be able to

Figure 1. Metabolism of linoleic acid (omega-6 polyunsaturated fatty acid) and alpha-linolenic acid (omega-3 polyunsaturated fatty acid). These 
fatty acids are thought to be important regulators of coronary heart disease. The fatty acids or their metabolites may be ligands for nuclear 
receptors such as peroxisome proliferator activated receptor, liver X receptor, and retinoid X receptor, and they may control gene expression. 
(HODE—hydroxyoctadecadienoic acid; HPETE—hydroperoxyeicosatetraenoic acid; HPODE— hydroxyperoxyoctadecadienoic acid; 
LT—leukotriene; PG—prostaglandin; TX—thromboxane.)
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distinguish subtle changes in physical structure of the “good
lipids” from “bad lipids,” such as n-3 versus n-6 PUFAs,
CLA versus LA, and PGI3 versus PGI2.

Nuclear Receptors As Sensors of Dietary Lipids
A likely family of proteins that may act as lipid sensors that
meet the criteria stated here are the nuclear receptors (NR).
Members of the NR superfamily act as intracellular tran-
scription factors that directly regulate gene expression in
response to lipophilic molecules [8–13,14•]. They affect a
wide variety of functions, including fatty acid metabolism,
reproductive development, and detoxification of foreign
substances. To date, over 300 NRs have been cloned, many
with unknown endogenous ligands (orphan receptors).
Phylogenic analysis has shown six subfamilies (NR1
to NR6) with various groups and individual genes [15].
Several NRs have evolved to respond to dietary lipids
(Fig. 2) and include the fatty acid receptors peroxisome
proliferator activated receptor (PPAR), retinoid X receptor
(RXR), liver X receptor (LXR), and hepatocyte nuclear
factor-4α (HNF4α)  [14•,16]. The receptors shown in
Figure 2 may be considered constituents of a large group of
NRs known as the “metabolic nuclear receptors,” which act
as overall sensors of metabolic intermediates, xenobiotics,
and compounds in the diet and allow cells to respond
to environmental changes by inducing the appropriate
metabolic genes and pathways [17••].

Most NRs regulate gene expression in predominantly the
same fashion (Fig. 2B). Prior to activation, NRs often exist in
multiprotein complexes that vary depending on the family
of receptor under question. When a ligand binds to its
cognate receptor, a conformational change occurs (“activa-
tion”) that changes the protein-protein interfaces of the
molecule. As a result, the activated receptor interacts with a
NR response element (NRE) within the regulatory region of
a target gene; upon recruitment of various transcriptional
coactivators and subsequently RNA polymerase II (polII),
initiation of transcription of the target gene occurs.

In the following sections, the three likely candidates for
NRs that respond to dietary fatty acids (ie, PPAR, RXR and
LXR) are described. The dietary and metabolic intermediates
that activate these receptors (Table 1) as well as the genes
regulated by these NRs that contribute to prevention of
CHD (Fig. 2) are emphasized.

Peroxisome proliferator activated receptors
Of the several identified fatty acid receptors, perhaps the
family that can best explain the effects of n-3 PUFAs and the
CLAs are the PPARs. The PPAR receptors were originally
named based on their ability to respond to xenobiotics
(peroxisome proliferators); however, they were also the first
to be examined as a fatty acid receptor. It has now been well
established that PPAR is a ligand-activated transcription
factor involved in gene expression in a tissue-, sex-, and
species-dependent manner [14•,17••,18,19•]. The PPARs

exist as three subtypes (α, β, and γ ) that vary in expression,
ligand recognition, and biologic function.

Peroxisome proliferator activated receptor α  was the
first transcription factor identified as a prospective fatty
acid receptor [20–22]. Based on numerous studies from
the PPARα knockout (PPARα-/-), this receptor plays a role
in the regulation of an extensive network of genes involved
in glucose and lipid metabolism. In particular, PPARα
regulates fatty acid transport; fatty acid binding proteins;
fatty acyl-coenzyme A (CoA) synthesis; microsomal, perox-
isomal, and mitochondrial fatty acid oxidation; ketogene-
sis; and fatty acid desaturation.

Several  groups have implicated saturated and
unsaturated fatty acids as natural ligands for PPARα [23].
Natural PPARα ligands in human serum include palmitic
acid, oleic acid, LA, and AA. Notably, PPARα is the only
PPAR subtype that binds to a wide range of saturated fatty
acids. The 9z 11e CLA isomer is a potent PPARα ligand with
a dissociation constant (Kd) in the low nanomolar range
[24], and it affects PPAR-responsive enzymes including
acyl-CoA oxidase (ACO), liver fatty acid binding protein
(L-FABP), and cytochrome P450 4A1 (CYP4A1) [25].
Similar to other PUFAs, the effects of CLA on body compo-
sition are seen in the PPARα-null mouse [26], suggesting
that this NR is not the key target for this response.

Triglyceride-rich lipoproteins, including very low-
density lipoproteins (VLDL) and LDL, contain PPARα ligands
[27,28]. Activation of PPARα is seen when lipoprotein
lipase (LPL) is added to VLDL, showing that the endogenous
ligands are probably fatty acids or their metabolites esterified
into triacylglycerols. Metabolism of AA by CYP4A results in a
variety of PPARα ligands, including 5,6, epoxyeicosatrienoic
acids (EET); 8,9 EET; 11,12 EET; 14,14 EET; 20-hydroperoxy-
eicosatetraenoic acid (20-HETE); and 20-, 14-, and 15-
hydroxyepoxyeicosatrienoic acids (HEET) [29]. Leukotriene
B4 has also been reported to be a selective PPARα ligand [30].
PGD2 and PGD1 activate PPARα in transient transfection
reporter assay systems [31]. The lipoxygenase metabolite 8(S)-
HETE is a high-affinity PPARα ligand, although it is not
found at sufficient concentrations in the correct tissues to
be characterized as a natural ligand. Because no single high-
affinity natural ligand has been identified, Willson et al. [23]
have proposed that one physiologic role of PPARα
may be to sense the total flux of fatty acids in metabolically
active tissues.

Peroxisome proliferator activated receptor γ  is expressed
in many tissues, including adipose, muscle, vascular cells,
macrophages, and epithelial cells of the mammary gland,
prostate, and colon [32]. Activated PPARγ  induces LPL and
fatty acid transporters (CD36) and enhances adipocyte
differentiation, as well as inhibiting cytokine and cyclo-
oxygenase-2 (COX-2) expression, perhaps by modulating
nuclear factor-κB (NFκB) function. The PPARγ -null mouse
is nonviable, implicating an important role for this protein
in ontogeny [33] and also making the examination of a role
for this receptor in gene expression difficult.
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Clinically relevant antidiabetic agents such as pio-
glitazone and rosiglitazone are potent PPARγ  agonists
(Kd in low nanomolar range). A number of fatty acids and
eicosanoid derivatives bind and activate PPARγ  in the
micromolar range [30]. Unlike the PPARα subtype, PPARγ
has a clear preference for PUFAs. The fatty acids LA, AA,
and EPA bind PPARγ  within the range of concentrations of

free fatty acids found in human serum [34]. Although
fatty acids are not particularly efficacious activators of
PPARγ , intracellular conversion of fatty acids to eicosanoids
through enhanced expression of 15-lipoxygenase greatly
increased PPARγ -mediated transactivation [34]. CLA
isomers, in particular 9Z11Z and 10E12Z CLA, are ligands
for PPARγ  [35]. In macrophages, CLA decreased expression

Figure 2. Dietary control of gene expression by nuclear receptors. 
A, Nuclear receptors involved in responding to dietary components 
and intermediary metabolism. The genes and coordinated biologic 
responses regulated by the fatty acid receptors PPAR, LX, and RXR 
are shown. B, Mechanism of action of nuclear receptors in regulation 
of gene transcription. (ABC—ATP binding cassette transporter; ACO—
acyl-coenzyme A oxidase; AR—androgen receptor; CAR—constitutive 
androstane receptor; COX-2—cyclooxygenase 2; CPB—CREB-binding 
protein; CYP—cytochrome P450; EFA—essential fatty acid; ER—estrogen 
receptor; FA—fatty acid; FXR—farnesoid X receptor; GR—glucocorticoid 
receptor; LPL—lipoprotein lipase; LXR—liver X receptor; MR—mineralo-
corticoid receptor; NR—nuclear receptor; NRE—NR response element; 
Pol—RNA polymerase; PPAR—peroxisome proliferator activated recep-
tor; PR—progesterone receptor; PUFA—polyunsaturated fatty acid; 
PXR—pregnane X receptor; RAR—retinoic acid receptor; RXR—retinoid 
X receptor; SRC1—steroid receptor coactivator-1; SREBP—sterol regula-
tory element binding protein; TG—triacylglycerol; TNF—tumor necrosis 
factor; VDR—vitamin D receptor.)
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of proinflammatory signals including COX-2, tumor
necrosis factor-α (TNF-α), and inducible nitric oxide
synthase (iNOS) in a PPARγ -dependent manner [36].

Similar to PPARα, incubation of triglyceride-rich lipo-
proteins with LPL results in the production of PPARγ
ligands [27,28]. In particular, oxidized LDL (oxLDL) prod-
ucts such as 9-S-hydroxyoctadecadienoic acid (9-S-HODE)
and 13-S-HODE are good PPARγ  activators. Phospholipids
are also potent PPARγ  ligands, including lysophosphatidic
acid (LPA) [37] and hexadecyl azelaic phosphatidylcholine
(AzPC) [38].

Peroxisome proliferator activated receptor β (FAAR,
NUC1, or PPARδ) is the least understood of the three
subtypes in many respects, including the identification
of target genes as well as endogenous and dietary ligands.
This receptor is ubiquitously expressed and is often found

in higher abundance than PPARα or γ . Examination of
the PPARβ-null mice has shown a role for PPARβ in
development, myelination of the corpus callosum, lipid
metabolism, and epidermal cell proliferation [39]. There
has been some indication that PPARβ is involved in
adipogenesis [39], although this has been refuted [40].
Few high-affinity ligands for PPARβ are known, either
xenobiotic or endogenous. However, fatty acids are
weak activators of this receptor, with roughly the
same preference as PPARα [23]. CLA isomers, in particu-
lar a putative furan metabolite of CLA, activate PPARβ
in COS-1 cell transfection experiments [25]. Similar to
PPARα and γ , incubation of triglyceride-rich lipoproteins
with LPL results in the production of PPARβ ligands
[27,28]. PGA1, PGD2, and PGD1 can activate PPARβ in
reporter assays [31].

Table 1. Endogenous and dietary ligands for fatty acid receptors PPAR, LXR, and RXR

Nuclear receptor Ligand

PPAR� Saturated and unsaturated fatty acids
Omega-3 fatty acids
Conjugated linoleic acids
LPL-treated VLDL
VLDL
5,6, EET; 8,9 EET; 11,12 EET; 14,14 EET; 20,14,15-HEET
2-arachidonylglycerol; 15-S-HETE-G
Long chain alkylamines
8-S-HETE
PGD2, PGD1
Leukotriene B4

PPAR� Saturated and unsaturated fatty acids
Mono- and polyunsaturated fatty acids from triglycerides
Conjugated linoleic acids
LPL-treated VLDL
VLDL
PGA1, PGD2, PGD1
OxLDL, 9-S-HODE, 13-HODE
15-S-HETE

PPAR� Polyunsaturated acids including linoleic acid, linolenic acid, arachidonic acid, and eicosapentaenoic acid 
Conjugated linoleic acid
Lysophosphatidic acid 
Hexadecyl azelaic phosphatidylcholine 
13-S-HODE, 15-S-HETE, 5-S-HETE, 12-S-HETE
PGD1, PGD2, PGA1

LXR Unsaturated fatty acids (antagonists)
Polyunsaturated fatty acids have little effect on LXR activity
22(R) hydroxycholesterol, 20(S)-hydroxycholesterol, 24(S), 25-epoxycholesterol
6a-Hydroxy bile acids 
Cholestenoic acid
Oxysterol 5,6-24(S),25-diepoxycholesterol

RXR Saturated and mono-unsaturated fatty acids
Polyunsaturated fatty acids, including docosahexaenoic acid 
Conjugated linoleic acids
9-cis retinoic acid
Phytol metabolites

EET—epoxyeicosatrienoic acids; HEET—hydroxyepoxyeicosatrienoic acid; HETE—hydroperoxyeicosatetraenoic acid; HETE-G—hydroxyeicosatetraenoic-
glycerol ester; HODE—hydroxyoctadecadienoic acid; LPL—lipoprotein lipase; LXR—liver X receptor; OxLDL—oxidized low-density lipoprotein; 
PG—prostaglandin; PPAR—peroxisome proliferator activated receptor; RXR—retinoid X receptor; VLDL—very low-density lipoprotein.
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Role of PPAR in coronary heart disease
The potential of highly potent PPAR activators in the
treatment of atherosclerosis has been noted by other
investigators [17••,18,41,42•,43,44]. Both PPARα and
PPARγ  play key roles in regulating fatty acid metabolism,
albeit in seemingly opposite directions [45,46]. The result
of PPARα activation in rodent hepatocytes and certain
other tissues is a dramatic increase in the peroxisomal
enzymes with a modest increase in mitochondrial oxida-
tion of fatty acids. In addition, lipid transport proteins
such as FABP and acyl-CoA binding protein (ACBP), as
well as genes involved in fatty acid and cholesterol export,
are under the control of PPARα. The targeted disruption of
PPARα results in aberrant lipid metabolism, with fat
droplets accumulating in liver cells. Not only is peroxi-
somal metabolism affected, but also the constitutive levels
of mitochondrial β-oxidation are less in the PPARα-null
mouse, showing the importance of this protein in overall
fatty acid homeostasis.

The array of genes regulated by PPARγ  in adipocytes is
indicative of fatty acid accumulation. This regulation of
gene expression is concomitant with increased differentia-
tion of immature adipocytes into mature fat-storing cells
[47]. These genes include LPL [48], adipocyte fatty acid
binding protein (aP2) [49], and CD36 [50]. Adipocyte-
secreted cytokines and hormones such as TNF-α and leptin
are also PPARγ  target genes [51,52]. The genes regulated
by PPARγ  in macrophages are similar to those in the
adipocyte and include LPL and CD36. Treatment of
macrophages with PPARγ  synthetic agonists inhibits the
production of several cytokines such as interleukin 1-β and
TNF-α and may result in an anti-inflammatory response
[53]. Another link between PPARγ  and inflammation is
the fact that 15-deoxy PGJ2 (a product of the cyclooxygen-
ase pathway) and nonsteroidal anti-inflammatory drugs
are potent activators of PPARγ  [54]. It is unclear what
role PPARβ may play in regulating genes involved in CHD
at this time.

Retinoid X receptors
Retinoid X receptors are involved in the transduction of
retinoid signaling pathway, although their role in
regulation of gene expression induced by n-3 PUFAs has
garnered increasing attention. RXRs (α, β, or γ ) can form
homodimers or they may serve as a dimerization partner
for other NRs, including retinoic acid receptors (RAR),
thyroid hormone receptor, vitamin D3 receptor, and
PPARs. As a heterodimerization partner, RXR is involved
in regulation of multiple cellular pathways. RXRα and β
have ubiquitous distribution, whereas RXRγ  is expressed
in certain organs such as heart, skeletal muscle, and
central nervous system structures.

Although intensely studied for synthetic ligands, little
is known of the natural activators of this receptor [55•].
RXR is activated in vitro by the vitamin A metabolite 9-cis
retinoic acid (9-cis RA), but the levels of this molecule

in vivo are extremely low. Through reporter assays it
was observed that DHA is an RXR ligand [55•]. Docosa-
tetraenoic acid, a structurally related compound, activates
RXR with a much higher concentration [55•]. DHA’s effect
was not observed in other nuclear receptors such as
RAR, thyroid hormone receptor, and vitamin D receptor,
although as stated previously, this fatty acid activates
PPARα. Recently, several fatty acids including unsaturated,
mono-unsaturated, and PUFAs such as AA and DHA have
been identified as ligands of RXR, thus confirming the
activation observed in reporter assays [56]. The 9E11E CLA
isomer was by far the most potent of the CLA isomers at
activating RXRα and was comparable to the efficacy seen
with 9-cis RA [14•]. Phytanic acid, a branched chain fatty
acid derived from chlorophyll, has also been reported
to activate RXR, albeit weakly [57]. Phytanic acid is capable
of adipocyte differentiation and induces aP2 mRNA in
3T3-L1 preadipocytes and may act as a natural rexinoid
in 3T3-L1 cells [57].

Role of RXR in coronary heart disease
Retinoid X receptor α agonists are capable of reducing
atherosclerosis in apolipoprotein E knockout mice, an
established experimental model of atherosclerosis [58].
Retinoids are capable of increasing the expression of
ABCA1, a gene associated with reverse transport of choles-
terol. Cholesterol efflux from peritoneal macrophages was
significantly increased in an RXR-dependent fashion [58].
RXR-selective agonists counteract diabetes by decreasing
hyperglycemia, hypertriglyceridemia, and hyperinsulin-
emia [58]. Null mutation of RXRα gene resulted in devel-
opmental lethality in mice; they died in utero and
demonstrated severe myocardial and ocular malformations
[59]. The malformations resembled severe vitamin A
syndrome, suggesting a physiologic role of RXRα in retinol
responses [59].

Liver X receptors
Liver X receptors (LXRα and LXRβ) are transcription factors
commonly known as cholesterol sensors [17••,60,61•].
Although they are important regulators of transport and
metabolism of sterols and fatty acids, whether they are direct
sensors of n-3 PUFAs has been questioned. Expression of
LXRα is restricted, whereas LXRβ is ubiquitously present.
LXRα is present in certain organs, namely liver, kidney,
intestine, adipose tissue, and adrenals. LXRα and β share
a high degree of amino acid similarity (80%) and are
considered paralogues; as a result there are very few subtype-
specific agonists. Oxysterols, including 24(S), 25-epoxy-
cholesterol, 22R-hydroxycholesterol, and 24(S)-hydroxy-
cholesterol, are natural ligands of LXRs. Unsaturated fatty
acids as well as AA and other PUFAs competitively block
activation of LXR by oxysterols [62]. This offers a potential
mechanism for the ability of dietary PUFAs to decrease
the synthesis and secretion of fatty acids and triglycerides
in liver [62]. This suppressive effect can be eliminated by
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deletion and mutation of LXR responsive elements (LXREs)
that are located in the promoter region of SREBP-1c.
However, others have shown that the unsaturated fatty
acid suppression of SREBP-1 and its targeted lipogenic
genes is independent of LXRα [63]. Perhaps the effects of
fatty acids on LXR-mediated events are being affected by a
direct interaction between PPARα and LXRα [64]. In fact,
several xenobiotic PPARα ligands antagonize LXR’s tran-
scriptional activity [65].

Role of LXR in coronary heart disease
There is increasing interest in LXR agonists, whether dietary
or pharmaceutical, in the prevention of CHD [60,61•,
66,67]. The nonsteroidal LXR agonist GW3965 significantly
reduced atherosclerosis in murine models of hyper-
lipidemia [68]. LXR-mediated genes include those associ-
ated with cholesterol and bile acid metabolism (eg, ABCA1,
ABCG1, APOE, and CYP7A), as well as those with fatty acid
synthesis and regulation (SREBP1c, LPL, FAS). Previous
studies showed that activation of PPARγ  induced the
expression of LXRα and ABCA1 and removed cholesterol
from macrophages [69]. Hence, LXR was considered further
downstream than PPARγ  in reducing atherosclerosis.

Liver X receptor α knockout mice were unable to
respond to dietary cholesterol and failed to induce choles-
terol 7-hydroxylase (Cyp7A), the rate limiting enzyme for
bile acid synthesis [70]. This resulted in excessive choles-
terol accumulation in the liver followed by impairment
of functions. LXRα knockout animals also have altered
expression of genes associated with lipid metabolism.
Interestingly, LXRβ knockout mice were unaffected when
challenged with dietary cholesterol [71]. Selective bone
marrow knockouts of macrophage LXRs increase athero-
sclerotic lesions in ApoE-/- and LDLR-/- mice, suggesting a
role as an endogenous inhibitor of atherosclerosis [68].

Conclusions
Diets high in n-3 fatty acids have long been associated
with decreased risk of CHD. ALA and its metabolites EPA
and DHA are found in high concentrations in flaxseed and
fish oils and are thought to improve heart health through
decreasing thrombosis, inflammation, and plaque formation
in arteries. The mechanism of these effects may be the result
of regulation of gene expression via NRs, several of which are
known to be “fatty acid receptors”. PPARα and PPARβ are
receptors for unsaturated, mono-unsaturated, and poly-
unsaturated fatty acids, as well as for several AA metabolites.
Activation of PPARα is associated with increased fatty acid
catabolism, decreasing inflammation, and stimulating the
reverse cholesterol pathway. PPARγ  has a clear preference
for PUFAs and is also the target of AA metabolites.
This receptor is involved in storage of lipids in adipocytes
as well as in decreasing inflammation and stimulating
the reverse cholesterol pathway. RXR is an important
heterodimerization partner for NRs and can affect numerous

metabolic pathways. DHA and several other PUFAs bind to
and activate this central NR. LXR’s role as a sensor of fatty
acids is somewhat controversial, although it is clearly
an oxysterol receptor. Several studies have shown that fatty
acids (unsaturated and saturated) antagonize LXR activity.
This receptor is involved in fatty acid synthesis, bile acid
synthesis, and reverse cholesterol transport; synthetic
agonists are being touted as antiatherosclerosis agents. Taken
together, these NRs represent potential targets for n-3
PUFAs that can help explain their mechanism of action in
preventing CHD. In particular, the profile of beneficial effects
of ALA, EPA, DHA, and CLA most resemble those seen
for synthetic PPARγ  ligands such as rosiglitazone. This
connection warrants further critical examination and may
ultimately result in modifying diet recommendations to
maximize PPARγ  activation, and hence decrease the
incidence and severity of CHD.
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