
The Metabolic Syndrome: A Crossroad 
for Genotype-Phenotype Associations 

in Atherosclerosis
Dolores Corella, PhD, and Jose M. Ordovas, PhD

Address
Nutrition and Genomics Laboratory, Jean Mayer–US Department 
of Agriculture Human Nutrition Research Center on Aging at 
Tufts University, 711 Washington Street, Boston, MA 02111, USA.
E-mail: jose.ordovas@tufts.edu

Current Atherosclerosis Reports 2004, 6:186–196
Current Science Inc. ISSN 1523-3804
Copyright © 2004 by Current Science Inc.

Introduction
Cardiovascular diseases (CVD) are the result of complex
interactions between both environmental and genetic
factors. Unlike the rare and severe genetic defects that cause
monogenic diseases, the genetic factors that modulate the
individual susceptibility to CVD in the general population
are, most likely, common polymorphisms having modest
effects at the individual level; however, because of their high
allele frequencies, these polymorphisms may have an asso-
ciated significant population-attributable risk. For over two
decades, researchers have been using the candidate gene

approach for identifying genes contributing to CVD. The
goal behind this effort is the identification of genes and
their variants involved in the multiple pathophysiologic
pathways leading to CVD. By doing this, we should be
able to increase our understanding of the mechanisms of
the disease. Moreover, this knowledge should give us the
tools to identify individual susceptibilities and specific
therapeutic interventions targeted to more personalized
prevention and clinical management.

The progress of this endeavor will be facilitated by
sequence data available for the human genome. Moreover,
our increased capacity for sequencing is allowing the
resequencing of hundreds of candidate genes, which will
yield reliable and reproducible data on the nucleotide
sequence diversity in different populations throughout
candidate regions of the human genome. The other key ele-
ment for our progress will be provided by genetic and
molecular epidemiology involving large-scale population
studies requiring close integration of genetics with more
traditional epidemiologic research. This is essential for
a disease in which environmental factors mediate the
phenotypic expression of the susceptibility genes. In fact,
most of the susceptibility genes for common diseases
in general and CVD in particular do not have a primary
etiologic role in the development of the disease, but rather
act as response modifiers to exogenous factors such as
stress, environment, disease, and drug intake. In the words
of Olden and Wilson [1], “The relation between genes and
the environment can be compared to a loaded gun and its
trigger. A loaded gun by itself causes no harm; it is only
when the trigger is pulled that the potential for harm is
released.” Obviously, the loaded gun represents our genes
and the trigger the environment. Therefore, a better charac-
terization of the interactions between environmental and
genetic factors constitutes a key issue in the understanding
of the pathogenesis of CVD and our ability to use the
knowledge on its prevention and therapy.

The Metabolic Syndrome: 
Components, Prevalence, and Therapies
Hypertension, hyperlipidemia, impaired glucose tolerance,
and obesity are well established traditional CVD risk

The metabolic syndrome comprises a set of metabolic and 
physiologic risk factors associated with elevated cardio-
vascular disease risk. The expression of each one of its 
major factors (hypertriglyceridemia, low high-density lipo-
protein cholesterol levels, hypertension, abdominal obesity, 
and insulin resistance) has been found to be the result of 
complex interactions between genetic and environmental 
factors. Moreover, obesity may play a major role in trigger-
ing the metabolic syndrome by interacting with genetic 
variants at candidate genes for dyslipidemia, hypertension, 
and insulin resistance. In support of this hypothesis, several 
studies at multiple candidate genes have already demon-
strated the significance of these interactions; however, the 
data and their reliability are still very limited, and in many 
cases replication studies are still lacking in the literature. 
Therefore, more studies with better epidemiologic design 
and standardized adiposity measures are needed to esti-
mate the contribution of body weight and fat distribution 
to the genetic predisposition to the metabolic syndrome, 
which is the most common cardiovascular disease risk 
factor in industrialized societies.
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factors. When these risk factors cluster in one individual,
CVD risk dramatically increases. This clustering of risk
factors is not a rare event but the most common cause of
CVD in the modern society. This combined phenotype
has been known since the late 1980s as the “metabolic
syndrome” [3], but prior to this (since the 1930s) it had
been described as the syndrome X, the insulin resistance
syndrome, and the deadly quartet. More recently,
some authors have suggested the use of “dysmetabolic
syndrome” to capture better the concept of metabolic
abnormality or dysfunction [3].

The precise definition of the metabolic syndrome has
shifted slightly from time to time, and there have been a
number of attempts to develop standardized criteria for its
diagnosis. One of the most commonly used today is the
definition developed by the World Health Organization
(WHO) in 1998 [4] and revised in 1999, which establishes
that the human metabolic syndrome requires at least one
of the following: type 2 diabetes mellitus or impaired
glucose tolerance or insulin resistance. It also requires
at least two of the following: hypertension (blood pressure
≥ 140/90 mm Hg), obesity (body mass index [BMI] ≥ 30
kg/m2, or waist to hip ratio > 0.90 for male subjects or
> 0.85 for female subjects), dyslipidemia (low high-density
lipoprotein [HDL] cholesterol [< 0.9 mmol/L]) and/or
hypertr ig lyceridemia (≥  1 .7 mmol/L),  or  micro-
albuminuria (urinary albumin excretion rate > 20 µg/min).
In 2001, the Third Report of the National Cholesterol
Education Program (NCEP) of the Adult Treatment Panel
III (ATP III) [5] outlined the importance of the primary
prevention of CVD in persons with multiple risk factors
and provided for the first time a working definition of
the metabolic syndrome. Five diagnostic traits were listed,
and the presence of any three of these factors is considered
sufficient for diagnosis. These traits are hypertension
(blood pressure ≥ 130/85 mm Hg or medication), obesity
(waist circumference > 102 cm in men or > 88 cm in
women), hypertriglyceridemia (≥ 1.7 mmol/L), low HDL
cholesterol (< 1.04 mmol/L in men or < 1.29 mmol/L in
women), or high fasting glucose (≥ 6.1 mmol/L). Although
estimates of prevalence in different populations are highly
dependent on the definition of the metabolic syndrome,
the reality is that the current estimates are appalling and
the future perspective is even more alarming. Thus, age-
adjusted estimates from the National Health and Nutrition
Examination Survey III (NHANES III) [6] from 1988 to
1994 revealed that 24% of adult Americans (aged 20 years
or older) had this syndrome. Prevalence of this syndrome
clearly increases with age (from 6.7% among NHANES III
participants aged 20 to 29 years to 43.0% for participants
aged 60 years or older). Although gender has been
considered another important trait that modulates
gene expression and genetic susceptibil ity to this
syndrome [3], the global prevalence of the metabolic
syndrome among adult Americans differed little in
men (24.0%) and women (23.4%). However, substantial

differences of gender prevalence depending on the ethnic
group were observed. Moreover, the overall prevalence of
this syndrome was highest among Mexican-Americans
(31.9%) and lowest in blacks (21.6%) [6]. It has been
pointed out that differences in prevalence by gender or by
ethnic group may be largely attributed to the definition
used to diagnose the syndrome and that central obesity is
the key factor. Nowadays, this remains controversial and
different results have been reported. For example, Bonora
et al. [7] in the Bruneck study in Italy reported a prevalence
of 34.1% of the metabolic syndrome according to the
WHO criteria, and 17.8% according to the NECP-ATPIII
criteria. Conversely, Meigs et al. [8] did not find differences
in prevalence depending on the definition used. Thus,
among Framingham subjects who were white, the age-
adjusted prevalence of the metabolic syndrome was 24%
by both ATP III and WHO criteria; among San Antonio
Heart Study (SAHS) non-Hispanic white subjects, the age-
adjusted prevalence of the metabolic syndrome was
23% and 21%, respectively; and among SAHS Mexican-
American subjects, the age-adjusted prevalence of the
metabolic syndrome was 31% and 30%, respectively.
By any criteria, subjects with the metabolic syndrome in
this study were at higher risk of CVD [8]. Limited data exist
on the syndrome’s association with CVD morbidity and
mortality. Recently, it has been estimated that in the
NHANES III [9], the metabolic syndrome was associated
with a higher risk of nonfatal myocardial infarction (odds
ratio of 2.01; 95% CI, 1.53 to 2.64) and stroke (odds ratio
of 2.16; 95% CI, 1.48 to 3.16). Prospectively, Lakka et al.
[10] reported a higher risk of coronary mortality associated
with the metabolic syndrome (hazard ratio of 4.16; 95%
CI, 1.60 to 10.8). Therefore, a major effort should
be placed on its detection, prevention, and therapy. In
terms of the treatment, we have the therapeutic tools to
successfully deal with some of the individual components.
Thus, we have efficient drugs to lower blood pressure;
likewise, several drugs are being used to improve insulin
sensitivity, and the dyslipidemia can be treated with
fibrates and even with statins. However, such therapeutic
success has not been shared by the other major component
of the metabolic syndrome (ie, obesity, and more specifi-
cally central obesity), which may be a key etiologic factor
in the development of the underlying insulin resistance.
It may be the “trigger for the loaded gun” of its genetic
predisposition. Therefore, obesity may be at the root of the
metabolic syndrome, with the aggravated situation of
being an unresolved and fast growing problem all over
the world. This review focuses on the current evidence
supporting the idea that many of the common genetic
variants found in candidate genes for each of the
individual components of the metabolic syndrome (hyper-
tension, insulin resistance/diabetes, and dyslipidemia) are
associated with higher-risk phenotypes and thus with
increased disease risk, primarily when overweight and/or
obesity is concurrently present.
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Multiple Candidate Genes and Environmental 
Factors Driving the Metabolic Syndrome
The metabolic syndrome is a complex disease characterized
by clustering of several of the components described previ-
ously. Twin and familial aggregation studies have shown a
high heritability for each of the individual components [3];
however, its genetic basis as a composite phenotype has not
been systematically investigated.

The “thrifty genotype” hypothesis has been postulated
to justify the sudden and dramatic rise of the metabolic
syndrome. The concept is simple and logical. In order to
ensure survival during the frequent periods of famine that
characterized the lives of our ancestors, certain genes
evolved to regulate efficient intake and utilization of fuel
stores. Nowadays, in those societies characterized by food
abundance and physical inactivity, some forms of these
genes confer a greater risk of obesity and related metabolic
disorders. Such genes were termed "thrifty genes" in 1962
by Neel [11]. An alternative explanation of the metabolic
syndrome uses the concept of “thrifty phenotype” [12].
According to this hypothesis, factors in the intra-uterine
environment (mainly malnutrition) would lead to intra-
uterine growth retardation and low birth weight, with
subsequent increased risk of the metabolic syndrome
later in life. Results from animal studies add evidence to
this hypothesis, and there are already several epidemio-
logic studies showing a significant association between
low birth weight and impaired insulin sensitivity, type 2
diabetes mellitus, hypertension, and CVD risk [13]. In
relation to this, we know about the classic association
between short stature and higher CVD risk [14]. However,
stature also reflects the postnatal nurture as well as the
genetic background of the individual, adding complexity
to a phenotype that deserves more investigation as a
modulating variable in the metabolic syndrome. In this
regard, Turner et al. [15], in a study that examined
the context-dependent associations of the angiotensin-
converting enzyme (ACE) insertion/deletion (I/D) poly-
morphism with blood pressure, found that height
modified the effect of this polymorphism. Therefore,
stature, in addition to obesity, acts as a modulating factor,
and simultaneously supports a role for both the “thrifty
phenotype” and the “thrifty genotype” in the etiology of
the metabolic syndrome and atherosclerosis. In a recent
work, Hypponen et al. [16] evaluated how the risk of
diabetes associated with low birth weight was affected by
accumulation of body mass from childhood to adulthood.
Their data indicate that excessive postnatal weight gain
was required for the manifestation of diabetes among
those with small weight at birth. Phenotype and genotype
are also examined in the work from Eriksson et al. [17],
which showed that the associations of the peroxisome
proliferator activated receptor (PPAR) γ2 Pro12Ala poly-
morphism with glucose and insulin metabolism in adult
life depend on body size at birth.

In the past 10 years, hundred of genetic variants have
been examined in epidemiologic studies as candidate
genes for the development of the different features of
the metabolic syndrome; however, the modulating role of
obesity in such associations has not been given the
proper protagonism. The best characterized genes and
common genetic variants associated with each of the
individual components of the metabolic syndrome are
summarized below.

Hypertension
Despite the large body of research about the genetics of
hypertension, no common genetic variants with large
effects have been identified for human hypertension. It is
conceivable that blood pressure depends on a mosaic of
multiple loci, each one with small influence that may
be increased by certain conditions such as age, gender,
obesity, salt intake, and so forth. Despite the lack of a
major genetic influence, a number of polymorphisms in
candidate genes, including those involving the renin-
angiotensin-aldosterone system (RAAS), sodium epithelial
channel, catecholaminergic/adrenergic function, renal
kallikrein system, and alpha-adducin, and others involving
lipoprotein metabolism, hormone receptors, and growth
factors, have significantly been associated with differences
in blood pressure [18]. The most intensely examined have
been the polymorphisms in the RAAS, with most studies
focusing on the ACE I/D polymorphism. Initial studies
reported an association between the D allele and increased
plasma ACE activity as well as with diastolic blood
pressure. However, subsequent studies reported either no
association or associations that were highly context depen-
dent, primarily from age and gender [15]. Angiotensin II is
the principal effector of the RAAS and most of its effects are
mediated by the angiotensin II type 1 receptor (AGTR1R).
A modulation by gender of the A1166C polymorphism in
the AGTR1R gene has also been reported, with the C allele
related to higher blood pressure in men but not in women
[19]. The M235T polymorphism in the angiotensinogen
(AGT) gene has also been the subject of extensive research,
and a recent meta-analysis including 127 publications
concluded that the T allele was associated with a statisti-
cally significant but weak risk of hypertension, with some
differences in magnitude among ethnic groups [20].

Within the growing numbers of candidate genes for
hypertension, we should also cite endothelin-1 (ET-1), a
vasoconstrictor peptide [21•]. This gene has a common
polymorphism, K198N(G/T), which has been found by
some to be a promising hypertension marker. This is also
the case for the β2-adrenergic receptor gene (ADRβ2),
traditionally associated with lipolysis and obesity, but also
emerging as a potentially important mediator of vasodila-
tation. Two variants (Arg16Gly and Gln27Glu) have been
found by some to be associated with hypertension and/or
obesity; however, the results have been contradictory [22].
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Dyslipidemia
The dyslipidemia associated with the metabolic syndrome is
characterized by elevated triglycerides and low HDL choles-
terol concentrations. Plasma low-density lipoprotein (LDL)
cholesterol concentrations are often normal, but there is
a relative increase of small, dense, atherogenic particles.
One of the new potential candidate genes is the scavenger
receptor class B type I (SR-BI or SCARB1) gene. SCARB1, a
cell-surface glycoprotein, was the first HDL receptor to be
defined and characterized in vitro and in animal studies.
Osgood et al. [24] described three common variants (at exon
1 [G→ A], exon 8 [C→ T], and intron 5 [C→ T]), which
were associated with HDL cholesterol, triglycerides, and
BMI, suggesting that SCARB1 might be involved in deter-
mining some features of the metabolic syndrome [23].
Moreover, Osgood et al. [24] have demonstrated that type 2
diabetes interacts with the exon 1 polymorphism in the
SCARB1 gene in determining HDL cholesterol concentra-
tions and LDL particle size in the Framingham Heart Study
participants. Another promising locus is the ATP-binding
cassette A1 (ABCA1) transporter, which is involved in the
cholesterol efflux from macrophages to HDL. In addition to
Tangier disease, a defective ABCA1 gene has been associated
with lower HDL cholesterol and higher CVD risk. Recent
evidence suggests additional associations with insulin
resistance, as demonstrated by the relation between ABCA1
gene expression and fasting glucose concentration in vivo
[25]. Moreover, a differential effect of the R219K poly-
morphism between blacks and whites has been reported
[26], suggesting that adiposity may be a crucial determinant
of the effects of this polymorphism. PPARs have become the
subject of intense interest for both pharmacologic and
genetic studies. These transcription factors enhance ABCA1
expression by inducing the liver X receptor (LXR). PPARs
have four isoforms (alpha, beta, gamma, and delta) that
play key roles in the regulation of lipid and glucose metabo-
lism. PPARγ , a regulator of lipogenic genes, has a common
Pro12Ala polymorphism that has been associated with HDL
cholesterol, triglycerides, glucose, and obesity in some
studies but not in others [27].

The cholesteryl ester transfer protein (CETP) is a key
protein that facilitates the transfer of esterified choles-
terol from HDL to very low-density lipoprotein (VLDL)
cholesterol. The TaqIB polymorphism in this locus has
shown remarkably consistent results in its association
with plasma HDL cholesterol concentrations. In terms
of the relations between HDL and triglyceride-rich lipo-
proteins, the lipase gene family (hepatic lipase [LIPC],
lipoprotein lipase [LPL], endothelial lipase [LIPG],
and pancreatic lipase [PL]) represents a growing and
promising superfamily in which common variations
had repeatedly been related with HDL cholesterol and
triglycerides, but also sporadically with blood pressure,
obesity, and insulin resistance.  The LPL gene has
been studied the most. LPL is a multifunctional protein
that hydrolyses core triglycerides from circulating chylo-

microns and VLDL that are then either degraded by the
liver or converted to LDL particles by hepatic lipase.
Numerous sequence variants within the LPL gene have
been identified (ie, HindIII, S447X, D9N, and N291S),
and they have been widely associated with HDL choles-
terol and triglycerides concentrations; however, some
differences among studies and populations suggest the
presence of interactions with additional factors [28].
Numerous polymorphisms have also been analyzed
in the LIPC gene coding for hepatic lipase. Four single
nucleotide polymorphisms (SNPs) in the promoter
region (-250G/A, -514C/T, -710T/C, and -763A/G) are in
strong linkage disequilibrium, and they have been associ-
ated with HDL cholesterol and triglyceride levels, with
important differences among studies depending on the
ethnic, anthropometric, and dietary characteristics of
the populations [29]. Finally, several variants of the
APOA1/C3/A4/A5 and APOE/C1/C2 gene clusters have
been consistently associated with the characteristic
dyslipemia of the metabolic syndrome [30].

Obesity
The genetic architecture of obesity is still a matter of
debate. In addition to the important influence of environ-
mental factors, two main hypotheses are being considered:
1) obesity is the result of a small number of common
variants, and 2) the genetic predisposition to obesity may
instead result from multiple rare variants in a large number
of genes. Several studies have indicated that some of the
genes involved in pathways regulating energy expenditure
and food intake may play a prominent role in the pre-
disposition to obesity. Among them, variations in the
adrenergic receptors (ADR), uncoupling proteins (UCPs),
PPARs, leptin (LEP), and the leptin receptor (LEPR) genes
are of particular interest. ADRs are genes involved in the
regulation of catecholamine-stimulated lipolysis. A mis-
sense mutation in the ADRB3 (Trp64Arg) has been consid-
ered a prime candidate for obesity. However, although it
has been associated with obesity-related phenotypes in
various initial studies, subsequent investigations have
reported conflicting results. Additional gene-gender inter-
actions, as well as a modulation by the HindIII-LPL poly-
morphism, have been reported to explain these results
[31]. The UCPs are proton channel proteins on the inner
mitochondrial membrane that play a pivotal role in
adaptive thermogenic responses. Five UCPs genes (UCP-1,
UCP-2, UCP-3, UCP-4, and UCP-5) have been described in
humans. Experimental studies have linked the UCPs with
basal metabolic rate, proton transport activity, energy
homeostasis, and, therefore, with obesity [32]. In humans,
a promoter variant, -3826 A/G, of the UCP-1 has been
associated with BMI and weight gain with inconsistent
results [33]. UCP-2 and UCP-3 actions can be modulated
by transcriptional upregulation mediated by fatty acids
via PPARs, cytokines, leptin signaling via hypothalamic
pathway, and by thyroid and β2 adrenergic stimulation,
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suggesting very complex interaction in the genetics of
obesity [32]. LEP, the obese gene product discovered in
1995, may play a key role in the feedback system between
adipose tissue and the ventromedial nucleus of the hypo-
thalamus. A few common polymorphisms have been
found in the LEP gene that have controversial associations
with obesity. However, a defective LEP signaling to the
brain may be due to receptor and postreceptor defects, and
promising investigations are in progress on this topic.

Insulin resistance
Insulin resistance is a fundamental dysregulation that pre-
cedes the development of type 2 diabetes. Tumor necrosis
factor α (TNF-α), a cytokine highly expressed in the
adipose tissue, is implicated in its induction. The most
studied polymorphism has been the -308G/A [33].
However, the results are inconsistent. TNF-α can induce
insulin resistance by inhibition of tyrosine phosphoryla-
tion of the insulin receptor β chain and insulin receptor
substrate-1 (IRS-1). Insulin resistance is characterized by
a decrease in the insulin effect on glucose transport in
muscle and adipose tissue. Tyrosine phosphorylation of
IRS-1 and its binding to phosphoinositide 3-kinase are
critical events in the insulin signaling cascade, leading to
insulin-stimulated glucose transport. A Gly972Arg poly-
morphism in the IRS-1 gene has been associated with
metabolic risk markers with inconsistent results [34].
Several other insulin receptor substrates (IRS-2, IRS-3, and
IRS-4) have been found with promising results [35].
In addition, adipocytes secrete a number of factors that
might modulate insulin sensitivity. One of these factors is
adiponectin. Some polymorphisms in the adiponectin
gene have been associated with blood glucose, obesity,
and plasma lipids [36]. Another recently discovered adipo-
cyte-specific secretory factor is resistin. Three common
polymorphisms in the human resist in gene have
been associated with insulin resistance and type 2 diabetes
in whites [37].

In the past 2 years, some authors have pointed out the
finding of genetic variants associated with the so-called
multiple risk factor syndromes as a new area of research.
Iwai et al. [38] have described a common polymorphism
(A/G in intron 12) of the SAH gene, an acyl coenzyme A
synthetase gene that was related to the multiple features
of the metabolic syndrome. Thus, the G allele was associ-
ated with obesity, hypertriglyceridemia, hypertension, and
hypercholesterolemia. Moreover, the recent ATP III defini-
tion of the metabolic syndrome [5] has facilitated the
genetic investigation of the clustering of risk factors
by classifying patients as having or not having the
metabolic syndrome. This is the case of the recent work of
Dallongeville et al. [39], in which they studied 276 patients
with metabolic syndrome (ATP III criteria) and 872 control
subjects. They found that the Arg16Gly polymorphism
in the ADRB2 gene was statistically associated with the
metabolic syndrome in men, with carriers of the 16Gly

allele having a higher risk. Nowadays, in addition to
this combined investigation, a more prominent role of
obesity in the research of the metabolic syndrome is
needed. The goals of this research should reach beyond
the intrinsic role of obesity as a major determinant of the
metabolic syndrome and investigate the modulation
by obesity of the genetic susceptibility for other traits of the
metabolic syndrome.

Obesity As a Modulating Phenotype of 
the Effect of the Genetic Variants
Considering the central role of obesity as well as the lack of
consistency usually observed in association studies, we
propose that obesity significantly affects the association
between candidate genes and metabolic syndrome-related
phenotypes. According to this notion, association studies
should stratify their analyses by obesity-related pheno-
types. This hypothesis and suggestion is largely based on
the growing body of emerging evidence. In an exhaustive
search of the bibliography, we have found more than
30 reports supporting the modulating effect of obesity
on the different features of this syndrome (hypertension,
dyslipidemia, and glucose intolerance), and they are
summarized in Table 1. One of the limitations in
comparing the results is the lack of standardization in the
definition of obesity. The majority of studies focus on BMI;
however, BMI is only an incomplete surrogate of body fat
mass. In addition, this heterogeneity persists in the criteria
for defining obesity between the WHO and the ATP III.
In the ATP III criteria [5], obesity has been considered in
terms of sex-specific waist circumference, whereas in the
WHO definition [4], an individual is classified as obese
if their BMI is 30 kg/m2 or higher. The rationale for the use
of waist criteria arises from data showing that measures of
BMI are relatively insensitive indicators for CVD risk as
compared with measures of abdominal obesity. However,
more investigation is needed and the incorporation of
the novel anthropometric and biochemical measures
of adipose mass and function into large epidemiologic
studies is required. Another subject of debate is the differ-
ent cut-off point to define obesity depending on ethnicity.
Such is the case of Asian populations, for which the
WHO universal cut-off point of 30 kg/m2 for obesity and
25 kg/m2 for overweight have been considered very high
(a reduction of 2 points has been proposed) [40]. Finally,
a methodologic issue appears as another difficulty for
replication, which is the treatment of the obesity variable
in the statistical analysis: should it be a continuous
variable, a categoric one based on international criteria, or
based on the characteristics of the population.

In conclusion, a higher standardization for defining
and analyzing obesity in the metabolic syndrome is
needed in order to obtain results that are more consistent.
Most of the studies reported so far fall short of using
experimental designs that provide the best scientific
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evidence about the modulating effect of obesity on the
features of the metabolic syndrome. Nevertheless, they are
enticing, and some of the reports in Table 1 merit specific
comment. This is the case of the endothelin-1 Lys198Asn
polymorphism and blood pressure. There are three studies
in different populations (whites and Japanese) showing
that obesity increases the effect of the 198Asn allele on
blood pressure and hypertension [21•,41,42•], supporting
additional research to elucidate the molecular basis for
this interaction. Likewise, highly consistent results have
also been obtained for the LPL locus. Thus, Mailly et al.
[43] have reported that carriers of the D9N polymorphism
have a predisposition to developing an atherogenic lipid
profile if they are obese. Ko et al. [44] and Ma et al. [45]
have described that in Chinese subjects, the H+ allele
of the HindIII polymorphism was associated with higher
triglycerides and lower HDL cholesterol only in obese
patients. Some other studies [46–49] analyzing different
polymorphisms or studying other anthropometric
measures to define obesity have found additional evidence
supporting that the effect of LPL variants on plasma lipids
is strongly modulated by adiposity. Several other candidate
genes among those listed in the previous section are
beginning to show similar interactions with anthropo-
metric measures [50–52,53•,54–67]; however, in most
cases, there has not been yet replication of the findings,
and given the experimental design they should be
considered as hypothesis-generating studies that need to
be confirmed by subsequent investigations.

Conclusions
In the metabolic syndrome, obesity seems to play a
major role in “triggering the loaded gun.” Several studies
support the presence of significant interactions between
obesity and genetic variants at multiple candidate genes
for the metabolic syndrome. However, the information
and its reliability are still very limited, and more studies
with better epidemiologic design and standardized
adiposity measures are needed to estimate the contribu-
tion of body weight and fat distribution on this highly
prevalent syndrome.
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