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Introduction
Obesity has been implicated as the second leading prevent-
able cause of death in the United States, and studies support
that intentional weight loss leads to a reduction in overall
mortality [1,2]. In response to the emerging epidemic of obe-
sity, there has been a renewal of interest in alternative diets.
Given the current unfavorable trends with conventional
approaches, a reconsideration of previously unevaluated
alternative diet therapies is not unreasonable.

Based on lay-press book sales, the most popular alterna-
tive weight-loss diet is the very low-carbohydrate diet. Diets
that limit carbohydrate intake have been called “low-carbo-
hydrate,” “very-low-carbohydrate,” “high-protein,” “high-fat,”
and “ketogenic.” Presently, there is no consensus on a precise
quantitative definition for a low-carbohydrate diet. A low-
carbohydrate diet may or may not be a “high-protein diet”
depending upon the food choice and caloric intake. For the
purpose of this review, we define a “low-carbohydrate keto-
genic diet” (LCKD) as daily consumption of fewer than 50 g
of carbohydrate, regardless of fat, protein, or caloric intake.

Low-carbohydrate Ketogenic Diet Physiology
From glucocentric to adipocentric
A typical human cell may contain nearly one billion mole-
cules of adenosine triphosphate (ATP) in solution at any

given instant. Remarkably, this amount of ATP can be
utilized and resynthesized every 3 minutes [3]. Given such a
great demand for ATP, the existence of complementary path-
ways for its synthesis is not surprising, as such pathways
confer survival advantages during extreme perturbations in
macronutrient consumption. Under conditions of extreme
carbohydrate limitation, cellular metabolism can still be
supported if essential nutrients are provided, as demon-
strated by the cultural precedent of the traditional Inuit
(Eskimo) people. Cells that can employ fatty acids will derive
energy from fatty acids, glucose, and ketones, but will shift to
preferentially use more fatty acids. Cells that cannot use fatty
acids must be supported by glucose and ketones, and will
shift to preferentially use more ketones (eg, nervous tissue).
Cells with few or no mitochondria are entirely glucose
dependent and must still be sustained by glucose (cells with
no mitochondria include erythrocytes, cornea, lens, and
retina; cells with few mitochondria include renal medulla,
testis, and leukocytes). So, under conditions of extreme
carbohydrate limitation, the same energy sources are used,
but a greater amount of energy must be derived from fatty
acids and ketones (“adipocentric”) and less energy from
glucose (“glucocentric”) (Table 1).

Similar to prolonged fasting
Although molecular-based research directly examining an
LCKD is limited, the current models of whole-body metabo-
lism can be used as a framework for understanding LCKD
physiology. The classic model of whole-body metabolism is the
human starve-feed cycle, which is composed of four global
nutritional states: 1) well fed, 2) early fasting, 3) prolonged
fasting (or starvation), 4) early re-fed. Despite biochemical
differences associated with each state, all four states are guided
by two general principles. Firstly, the human body must
contain adequate levels of energy to sustain obligate and
facultative glucose metabolizing tissues. This is particularly
important for the central nervous system (CNS) because
protein-bound fatty acids are unable to cross the blood-brain
barrier, and the CNS requires between 20% to 50% of resting
metabolic energy [4]. Secondly, the human body must retain
endogenous protein in order to sustain healthy structural and
functional physiologic capacity. Of these four global nutritional
states, the most relevant model for LCKD whole-body metabo-
lism is the metabolism of prolonged fasting.

In response to the emerging epidemic of obesity in the 
United States, a renewal of interest in alternative diets has 
occurred, especially in diets that limit carbohydrate intake. 
Recent research has demonstrated that low-carbohydrate 
ketogenic diets can lead to weight loss and favorable 
changes in serum triglycerides and high-density lipoprotein 
cholesterol. This review summarizes the physiology and 
recent clinical studies regarding this type of diet.
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During fasting in humans, blood glucose levels are
sustained by the breakdown of glycogen in liver and
muscle and de novo production of endogenous glucose
(“gluconeogenesis”), primarily from muscle amino acids.
[5]. Concurrent hepatic generation of ketone bodies
supplements glycogenolysis and gluconeogenesis to
produce energy-yielding substrates for glucose-dependent
tissue. Therefore, generation of ketone bodies in fasting
humans is critical to providing an alternative fuel to
glucose [6,7] while also avoiding muscle breakdown [7,8].

Fatty acids and ketogenesis from fat
The main fuel produced by an LCKD would logically be
fatty acids derived from exogenous dietary fat or endo-
genous adipose tissue. The average respiratory quotient
associated with an LCKD is approximately 0.70, indicating
the use of fatty acids primarily [9]. In addition, serum free
fatty acids are higher on an LCKD compared with a
conventional diet [10,11••].

Although most energy is derived from fatty acids, ketone
bodies increase in importance as a substitute for glucose. The
term ketone bodies (KB) refers to three metabolites: acetoace-
tate, β-hydroxybutyrate, and acetone. Whereas acetone is pri-
marily an excretory product, the other KB are dimers of acetyl
coenzyme A (CoA) and, therefore, serve as transportable
forms of energy. During prolonged fasting, fatty acids are gen-
erated from the breakdown of stored triglyceride in adipo-
cytes (lipolysis) [12]. On an LCKD, the fatty acids are derived
from dietary fat, or adipose tissue if the diet does not meet the
daily caloric requirement (Fig. 1). Free fatty acids are delivered
to the liver for conversion to KB. KB then exit the liver to
provide energy to all cells with mitochondria. Within a cell,
KB are converted to acetyl CoA for generation of ATP via the
tricarboxylic acid cycle and oxidative phosphorylation.

Although usually viewed as a response to fasting, the
synthesis of KB can also be stimulated by a marked reduc-
tion of carbohydrate [13]. Reducing carbohydrate and
protein intake leads to a reduced serum insulin level,
which, in turn, increases the serum glucagon level. The
insulin/glucagon (I/G) ratio is a key determinant of lipo-
lysis, glycogenolysis, and gluconeogenesis [14,15]. A high
I/G ratio induces lipid and glycogen production via
insulin-mediated influx of glucose, whereas a low I/G ratio
induces glucagon-mediated lipolysis.

Ketone formation and a shift to using more fatty acids
during an LCKD reduce the body’s overall requirement for

endogenous glucose. Even during high-energy demand
from submaximal exercise, an LCKD has “glucoprotective”
effects [10]. In essence, ketosis arising from an LCKD is
capable of accommodating a wide spectrum of metabolic
demands to sustain function while sparing the use of
protein from lean muscle tissue. KB also mediate glucose-
sparing effects by serving as the preferred energy substrate
for highly active tissues such as heart and muscle [16].
Consequently, more serum glucose is available to the brain
as well as other obligate glucose-dependent tissues.

Gluconeogenesis from protein
Gluconeogenesis refers to the production of glucose from
amino acids (“glucogenic amino acids”), glycerol, and
lactate when glucose is in demand but dietary sources are
limited [5,17]. For example, during prolonged fasting or
during an LCKD there is a reduction in glucose supply,
which initiates compensatory gluconeogenic mechanisms
to sustain glucose-dependent tissue [18]. However, unlike
prolonged fasting, during which endogenous glucogenic
amino acids (muscle) are used for glucose production, the
source of glucogenic amino acids on an LCKD is dietary
protein (Fig. 1). As minimal protein supplementation (1 to
1.5 g of protein/kg/d) is necessary to attain nitrogen
balance during prolonged fasting, protein intake at this
level associated with the LCKD may sustain positive nitro-
gen balance and preserve muscle mass [19•]. Casein and
meat protein can be converted to glucose at about 50%
efficiency, so approximately 100 g of protein can produce
50 g of glucose via gluconeogenesis [20].

Another substrate for gluconeogenesis is glycerol from
dietary fat (Fig. 1). During prolonged fasting, glycerol
released from lipolysis of triglycerides in adipose tissue
may account for nearly 20% of gluconeogenesis [21,22]. As
nearly 10% of triglyceride by weight is glycerol, and two
molecules of glycerol combine to form one molecule of
glucose, 80 g of triglycerides may be converted into 8 g of
glucose (5% efficiency). Lactate is believed to be a negligi-
ble glucosynthetic precursor [23] and likely does not play a
major role in such compensatory mechanisms in pro-
longed fasting or LCKD, but may play a role during high-
intensity exercise when lactate levels increase several-fold.

The need for gluconeogenic substrate may explain how
lipolysis can continue when caloric intake exceeds caloric
expenditure. If only fat is consumed, for example, 1000 g of
fat per day would be needed to provide enough gluconeo-
genic substrate (glycerol) for conversion to 50 g of
glucose—representing a caloric intake of 9000 kcal/d!
(This is the estimated minimal amount of glucose needed
to prevent lipolysis and ketogenesis.) One controlled study
found that a eucaloric intravenous lipid infusion did not
reduce ketogenesis when compared with the ketogenesis
associated with starvation [13]. Under conditions when
the I/G ratio is low and glucose availability from dietary
carbohydrate and protein is also very low, it is theoretically
possible that lipolysis might occur to supply glycerol as

Table 1. Major fuel sources on a low-carbohydrate 
ketogenic diet

I. Dietary fat: triglyceride → fatty acid + glycerol
  A. Fatty acids
    i. Ketone bodies ("ketogenesis")
  B. Glucose ("gluconeogenesis")
II. Dietary protein  
 A. Glucose ("gluconeogenesis")
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gluconeogenic substrate, even when caloric intake far
exceeds caloric expenditure.

Low-carbohydrate Ketogenic Diet and Exercise
Many animal and human studies have consistently dem-
onstrated that low-carbohydrate/high-fat diets consumed
for more than 7 days decrease muscle glycogen content and
carbohydrate oxidation, which is compensated for by
markedly increased rates of fat oxidation [24–27], even in
well-trained endurance athletes who already demonstrate
increased fat oxidation. The source of the enhanced fat
oxidation appears to be circulating fatty acids, ketones,
and triglyceride-derived very low-density lipoproteins
[26,28,29], the latter probably resulting from enhanced
skeletal muscle lipoprotein lipase activity [30]. In the face
of reduced muscle glycogen, the increase in the capacity of
skeletal muscle to oxidize fat after a low-carbohydrate diet
has failed to alter or enhance exercise capacity. However, if
the enhanced fat utilization is combined with increased
carbohydrate availability, this might provide a more
consistent benefit for endurance performance, especially
for ultra-endurance type activities that deplete glycogen
and rely heavily on alternative lipid fuel sources. Impor-
tantly, the enhanced capacity for fat oxidation and muscle
glycogen sparing after a high-fat diet persist even when
carbohydrate is provided before exercise (eg, one study
carbohydrate loaded for 7 days) or when glucose is

ingested during exercise [31]. Thus, chronic low-carbo-
hydrate/high-fat diets induce powerful metabolic adapta-
tions to enhance fat oxidation, and when combined with
short periods of carbohydrate intake, have been shown to
produce superior results compared with other dietary strat-
egies to enhance exercise performance [31–35], especially
for ultra-endurance exercise [27,33]. The specific metabolic
adaptations that occur on a high-fat diet are numerous,
and the ones that underlie the favorable changes in
exercise capacity remain unclear. High-fat diets are associ-
ated with robust metabolic and enzymatic adaptations.
These enzymatic adaptations are to some extent muscle
fiber-type specific and depend on the increase in dietary
fat. The time course of metabolic adaptations also remains
unclear, but at least several weeks are necessary to
completely transition to optimal fat utilization.

Low-carbohydrate Ketogenic Diet 
and Obesity Studies
Several recent reviews of short-term out-patient clinical and
in-patient laboratory studies concluded that there were insuf-
ficient data to dismiss or recommend the LCKD for weight
loss [36–38]. Clinical experience and a few studies regarding
LCKDs suggest that each person has a threshold level of
dietary carbohydrate intake (from 65 to 180 g/d) where keto-
sis and lipolysis are initiated [13]. If a person is consuming
below this threshold, then triglyceride will be broken down

Figure 1. Projected fuel utilization for a low-carbohydrate ketogenic diet. (ATP—adenosine triphosphate.)



A Review of Low-carbohydrate Ketogenic Diets  •  Westman et al. 479
from adipose tissue to generate ketones to supply the CNS.
Most of the small feasibility studies showed that LCKD com-
pliance in a clinical outpatient setting showed promise for
weight loss, so more formal randomized, controlled trials
(RCTs) were justified [39–44].

Since the publication of these reviews, there have been
five RCTs comparing an LCKD to a low-fat reduced calorie
diet (Table 2). The first RCT examined the weight loss and
cardiovascular risk factor effects of an LCKD in adolescents
[45••]. Thirty-nine obese (body mass index [BMI] >95th per-
centile for age) adolescents (mean age, 14.7 years) were ran-
domized to either an ad libitum LCKD diet (<20 g/d of
carbohydrate for 2 weeks, then <40 g/d of fat) or an ad
libitum low-fat (LFD) diet (<40 g/d of fat) for 12 weeks total.
The LCKD subjects lost more weight (10 kg) than the LFD
subjects (4 kg; P<0.04 for comparison). In regard to serum
lipid measurements, between-group comparisons (LCKD vs
LFD) of total cholesterol and high-density lipoprotein
(HDL) cholesterol were not significant, whereas comparison
of triglyceride changes was of borderline significance
(decrease of 48 mg/dL vs decrease of 6 mg/dL; P=0.07), and
comparison of LDL cholesterol was significant (increase of
4% mg/dL vs decrease of 25% mg/dL; P=0.006). No serious
adverse effects related to the intervention were reported.

In another study, 53 healthy, obese women were allo-
cated to either an ad libitum LCKD or a calorie-restricted
LFD (55% carbohydrate, 15% protein, 30% fat) [46••].
Twenty-two of 26 (85%) subjects from the LCKD and 20 of
27 (74%) subjects from the LFD completed the 6-month
study, with both groups reducing their energy intake from
baseline by approximately 450 kcal. LCKD subjects lost 8.5
kg over 6 months compared with 4.2 kg in the LFD group
(P<0.001 for comparison). In both groups, 50% to 60% of
the weight lost was fat mass as measured by dual X-ray
absorptiometry. There were no significant differences
between groups in the effects on serum lipids, glucose,
insulin, and leptin except triglycerides, which decreased
significantly more in the LCKD group.

Another study was performed at the Philadelphia Veter-
ans Affairs Medical Center and randomized 132 severely
obese (mean BMI, 43 kg/m2) medical out-patients to
either an ad libitum LCKD or a calorie-restricted LFD
[47••]. Subjects received weekly group counseling sessions
for 4 weeks, then monthly sessions, with 67% of LCKD
subjects and 53% of LFD subjects completing the study. At
6 months, there was greater weight loss (5.8 kg vs 1.9 kg;
P=0.002) and triglyceride reduction (20% vs 4%; P=0.001)
in the LCKD group compared with the LFD group. In addi-
tion, the diabetic subjects in the LCKD group demon-
strated improved serum glucose (decrease of 25 mg/dL vs a
decrease of 5 mg/dL; P=0.01) compared with their LFD
group counterparts, whereas the nondiabetic subjects in
the LCKD had improved insulin sensitivity by the quantita-
tive insulin-sensitivity check index (6% vs -3%; P=0.01)
compared with their LFD group counterparts. Seven LCKD
subjects had a reduction of diabetic medication dosage
compared with only one from the LFD group.

In a three-center study, 63 obese, healthy subjects were
randomized to either the ad libitum LCKD or a reduced-
energy LFD to examine the effectiveness of the LCKD from a
consumer’s point of view [48••]. Therefore, each subject
received a popular diet book pertaining to his/her assigned
diet and met with a dietician at baseline and for three brief
visits thereafter over the 1-year trial. Of the original 63 sub-
jects, 37 completed the 12 months. The LCKD subjects lost
more weight than the LFD subjects (7.0% reduction vs 3.2%
reduction; P=0.02) at 6 months, but the difference between
groups was no longer statistically significant (-4.4% vs. -2.5%;
P=0.26) at 12 months. The lower weight loss compared with
other studies is likely a result of the low intensity of the inter-
vention. In regard to serum fasting lipid profiles, the LCKD
group experienced greater improvements in HDL cholesterol
(increase of 11.0% vs decrease of 1.6%; P=0.04) and triglycer-
ides (decrease of 17.0% vs increase of 0.7%; P=0.04) com-
pared with the LFD group. Serum glucose and insulin
measurements were not different between groups.

Table 2. Summary of randomized, controlled trials of low-carbohydrate ketogenic diets for obesity: study 
design and baseline characteristics

Study
Patients, 

n
Duration, 

mo Visits
Age, 

y BMI
Weight, 

kg Gender

Sondike et al. [45••] 30 3 Every 2 wk 15 36 96 NA
Brehm et al. [46••] 42 6 Every 2 wk for 6 wk, 

then at 6 mo
43 34 92 100% F

Samaha et al. [47••] 132 6 Weekly for 4 wk, 
then monthly

53 43 130 80% M

Foster et al. [48••] 63 12 Every 2 wk for 2 wk, 
then monthly for 
4 wk, then wk 26, 

34, 42, and 52

44 34 98 73% F

Yancy et al. [49••] 120 6 Every 2 wk for 6 wk, 
then monthly

46 34 96 77% F

BMI—body mass index; F—female; M—male.
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In the fifth study, the ad libitum LCKD combined with
nutritional supplements was compared with a low-fat, low-
cholesterol, reduced-calorie diet in healthy, hyperlipidemic
individuals [49••]. Eligible subjects were overweight, had
total cholesterol, LDL, or triglycerides above recommended
levels, and had no chronic medical conditions. LCKD partici-
pants were instructed to restrict carbohydrate intake to less
than 20 g initially and methodically add carbohydrates back
into their diet as goal body weight was approached. Similar
to the previously reviewed studies, energy intake was not
restricted in the LCKD group. A higher percentage of LCKD
than reduced-calorie subjects (75% vs 53%; P=0.03)
completed the study. Weight loss was greater in the LCKD
subjects who completed the study compared with their LFD
counterparts (14% reduction vs 9% reduction; P<0.001). In
addition, the LCKD group had beneficial serum lipid effects:
triglycerides decreased by 42% and HDL cholesterol
increased by 13%, whereas total cholesterol and LDL choles-
terol did not change significantly. The improvements in
triglycerides and HDL cholesterol were significantly greater
than changes that occurred in the reduced-calorie group.

An unexpected finding of the LCKD studies for obesity
was the favorable effect on fasting serum lipids. The LCKD
was predicted to lead to a significant increase in blood choles-
terol [50]; however, there was a consistent reduction in fasting
serum triglycerides and an increase in HDL cholesterol, with
little change in LDL cholesterol or total cholesterol.

Other metabolic effects
As predicted by the physiologic model, there was an
increase in ketones and free fatty acids on an LCKD.
[10,11••]. Serum insulin and glucose levels either
improved or remained the same. Insulin sensitivity was
measured in two of the RCTs. One study showed improve-
ments in insulin sensitivity on an LCKD at 3 and 6 months
(5.9% and 8.7%), but the 5.4% improvement at 12
months was no longer statistically significantly different
from baseline [48••]. In the other study, subjects on the
LCKD had a greater increase in insulin sensitivity than
those on the low-fat diet (6% vs 3%) [47••]. A possible
mechanism for this improvement in insulin resistance may
be that a low-carbohydrate, high-fat diet leads to a reduc-
tion in cellular glucose uptake of 50% and an enhance-
ment of fat oxidation [9,10,51,52].

Very little information is available regarding the LCKD
physiology after several months, but ketonuria decreases
almost to baseline after 6 months [46••]. One of the
remaining questions about the LCKD is what will happen
to the serum lipids when the dieter has reached a mainte-
nance weight? This question was partially addressed in a
study of the LCKD on 12 normal-weight, normolipidemic,
healthy men compared with eight men who maintained
their usual diet [53]. Subjects following the LCKD experi-
enced significant increases in mean fasting serum β-
hydroxybutyrate (250%) and total cholesterol (4.7%), and
decreases in triglycerides (33%), very low-density lipopro-

tein (29%), insulin (34%), and postprandial lipemia after
a fat-rich meal (peak, 24%; area under the curve, 29%).
LDL cholesterol did not change significantly at 6 weeks
(increase of 4.2%), but was increased at 3 weeks, and HDL
cholesterol tended to increase (12%). Weight loss was
noted to be solely from fat mass (3.4 kg), whereas fat-free
mass increased (1.1 kg) [19•].

In another crossover study examining the effects of an
LCKD in normal-weight, normolipidemic women, subjects
consumed both a low-fat and an LCKD diet for 4 weeks [55].
Compared with the low-fat diet, the LCKD resulted in signifi-
cant increases in total cholesterol (16%), LDL cholesterol
(15%), and HDL cholesterol (33%), and significant
decreases in serum triglycerides (30%), total cholesterol to
HDL ratio (13%), and the area under the 8-hour postpran-
dial triglyceride curve (31%). There were no significant
changes in LDL size or markers of inflammation (C-reactive
protein, interleukin-6, tumor necrosis factor α) after the
LCKD. Thus, in normal-weight, normolipidemic women, a
short-term LCKD modestly increases LDL cholesterol, yet
there are favorable effects on cardiovascular disease risk
status by virtue of a relatively larger increase in HDL choles-
terol and a decrease in fasting and postprandial triglycerides.

In the clinical trials for obesity, one death occurred in an
LCKD group, but the investigators judged that it was proba-
bly not related to the diet [47••]. Minor adverse effects
observed included constipation, headache, and halitosis.

Related Diets
The traditional Inuit (Eskimo) diet meets the definition of
an LCKD, and is very similar in regard to percentages of
macronutrient intake to the LCKD obesity studies [55]. The
traditional diet was comprised of seal, whale, salmon, and
a very limited amount of berries. On this diet, the average
fasting lipid profiles showed high total cholesterol, low
triglycerides, and very high free fatty acids [56,57]. It is
interesting to note that the Inuit were of research interest to
epidemiologists because of their low rates of ischemic
heart disease and diabetes mellitus [58,59]. Although their
good health has been attributed to the high levels of
omega-3 fatty acids in their blood and diet, it is possible
that a component of their good health was due to their low
carbohydrate consumption.

The ketogenic diet used as a treatment for refractory pedi-
atric epilepsy meets the definition of an LCKD, but is higher
in fat content than the diet consumed in the LCKD obesity
studies [60]. The ketogenic diet has been associated with
adverse effects including calcium oxalate and urate kidney
stones, acidosis, persistent vomiting, amenorrhea, hypercho-
lesterolemia, and water-soluble vitamin deficiencies [61–63].

Potential Adverse Effects
Adverse effects that may occur, but have not yet been
observed in monitored clinical trials, include kidney stones,
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electrolyte deficiencies (hypokalemia and hypomagnesemia)
if a large water loss occurs, elevated fatty acids, and gout (if
too much protein is consumed) [10,64,65]. One case report
describes an individual who ate cheese, meat, and eggs (no
vegetables) and then developed thiamine-deficient optic
neuropathy [66]. Another dieter may have developed a
relapse of acute variegate porphyria [67]. One case report
described the death of an unmonitored adolescent dieter
from a probable hypokalemia-associated arrhythmia [65].

The use of this diet, or any strong weight-loss diet, in
patients taking medications for diabetes mellitus or hyper-
tension should be done with caution, as the patients will
probably require medication reduction to avoid hypoglyce-
mia and hypotension. Until further research is conducted,
patients with medical conditions should not use this diet
without supervision by medical personnel experienced
with the use of weight-loss diets.

Therapeutic Potential
Because of the importance of triglycerides and HDL choles-
terol to cardiovascular disease, the LCKD should be examined
further for the prevention or treatment of cardiovascular
disease [68]. The reduction in triglycerides occurs before
significant weight loss [40]. As insulin has been shown to be a
promoter of 3-hydroxy-3-methylglutaryl coenzyme A reduc-

tase activity, a possible mechanism for the lowering of choles-
terol on an LCKD is a shunting of metabolic substrate from
cholesterol synthesis to ketone synthesis because of the lower
insulin levels associated with the diet (Fig. 2) [69]. Current
scientific models permit the possibility that the LCKD would
have an effect similar to an HMG CoA reductase inhibitor in
hyperinsulinemic individuals.

Based on the metabolic changes of an LCKD, which
include a reduction in insulin resistance, there is potential
for therapeutic use of this diet for many conditions, includ-
ing type 2 diabetes, atherosclerosis, and cancer. Anecdotal
reports of the use of an LCKD involve conditions potentially
improved by enhanced ketone utilization or decreased
glucose utilization [8,9,70–73]. The elimination of sugar
and carbohydrate on an LCKD may also ameliorate carbo-
hydrate-related problems such as dental caries, periodontal
disease, and gluten-related disorders.

Conclusions
In controlled trials, the LCKD has been demonstrated to
lead to weight loss and improvements in fasting triglycer-
ides, HDL cholesterol, and cholesterol/HDL ratio over a 6-
month period. Clinical trials assessing the long-term safety
and effectiveness of the LCKD are needed. The LCKD needs
to be evaluated not only for obesity, but also for conditions

Figure 2. Potential biochemical mechanism of cholesterol reduction of a low-carbohydrate ketogenic diet (LCKD). 
(ATP—adenosine triphosphate; HMG CoA—3-hydroxy-3-methylglutaryl coenzyme A.)
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that have a theoretical basis for improvement by a reduc-
tion in dietary carbohydrate and a shift from a glucocentric
to adipocentric metabolism.

Although the basic physiology of an LCKD resembles
the state of prolonged fasting, there are key differences
such that basic studies regarding LCKD physiology are
urgently needed. Fundamental questions regarding fuel
utilization and the regulation of gluconeogenesis and keto-
genesis in the presence of protein and fat intake need to be
addressed. The cultural example of the Inuit demonstrates
the remarkable adaptability of the human organism to
withstand extremes of macronutrient intake, necessitating
the questioning of whether dietary carbohydrate is
required for human function [74]. Because these findings
from clinical trials have been counterintuitive, clinical
research strongly suggests that studying the LCKD may lead
to unexpected advances in molecular cell biology and
clinical therapeutics.
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