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Introduction
The treatment of acute stroke has registered limited success
as investigators learn about the crucial requirements of
appropriately timed intervention and increase the under-
standing of brain-hemodynamic relationships. Established
stroke prevention strategies that control blood pressure,
treat atrial fibrillation, and that encourage the cessation of
smoking, attention to weight control, and modest exercise
regimens have been effective. Although lipid levels are not a
surrogate marker for stroke, emerging evidence suggests that
statin therapy is associated with a reduced incidence of
stroke (another of the possible benefits statins may have for
the cerebrovasculature) [1,2]. Time will tell whether the
addition of this new potential protection will alter the cur-
rent trend upward in the incidence of stroke [3]. The com-

bined effects of increasing life expectancy, the "Baby Boom"
generation growing older, and improved medical treatment
of the complications caused by acute stroke are likely to
swell the ranks of the over 4 million survivors of stroke alive
today. Because over 90% of the survivors of stroke have sig-
nificant physical, cognitive, and psychologic impairments,
the combination of which results in disability, there is an
established need for new therapeutic approaches.

The Rationale for Refocusing Treatments on 
Impairment Reduction
The modernization of post-stroke treatment programs for
motor recovery is based on new information from clinical
and basic studies that favor task-specific repetitive exercise
that is reproducibly administered. Robotic devices are
obvious tools to deliver this enhanced sensorimotor expe-
rience, although the therapist must continue to attend to
both impairment and disability reduction. Relearning
ordinary activities of daily life (disability reduction) makes
common sense and coincides with the patient's main con-
cern. Healthcare economies have shortened the length of
stay in treatment facilities, and the rush to discharge the
patient from the rehabilitation hospital more quickly has
prompted a shift toward encouraging functional improve-
ment by learning compensatory techniques. However,
unbalanced attention to disability reduction may occur at
the expense of impairment reduction. For example, clinical
results suggest that the hasty compensation for a disability
engenders a pattern of disuse in the impaired limbs that
extinguishes temporarily that aspect of recovery and mutes
the potential for future impairment change, if not recovery,
measured in terms of disability reduction [4–6].

Candidate Mechanisms for Recovery Depend 
on Environmental Experience: The Return of 
"Use It or Lose It"
The fundamental molecular and cellular events that underlie
recovery after stroke are unknown. Potential candidate mech-
anisms include recovery of undamaged brain from func-
tional inactivation caused by the damage, activation of
undamaged regions of brain in the hemisphere opposite the
damaged brain, and reorganization of the synaptic connec-

Stroke is the leading cause of permanent disability despite 
continued advances in prevention and novel interventional 
treatments. Post-stroke neuro-rehabilitation programs 
teach compensatory strategies that alter the degree of per-
manent disability. Robotic devices are new tools for thera-
pists to deliver enhanced sensorimotor training and 
concentrate on impairment reduction. Results from several 
groups have registered success in reducing impairment and 
increasing motor power with task-specific exercise deliv-
ered by the robotic devices. Enhancing the rehabilitation 
experience with task-specific repetitive exercise marks a 
different approach to the patient with stroke. The clinical 
challenge will be to streamline, adapt, and expand the robot 
protocols to accommodate healthcare economies, to 
determine which patients sustain the greatest benefit, and 
to explore the relationship between impairment reduction 
and disability level. With these new tools, therapists will 
measure aspects of outcome objectively and contribute to 
the emerging scientific basis of neuro-rehabilitation.



Robotics in the Rehabilitation Treatment of Patients with Stroke  •  Volpe et al. 271
tions upstream and downstream from the injury. Recent
information from the clinic and the laboratory suggest that
some recovery of function depends on the post-injury experi-
ence, the notion that plasticity or reorganization potential is
enhanced by activity in the environment. For example, sev-
eral groups have described results from functional imaging of
the brain in patients recovered from stroke [7–9]. There was
increased blood flow in areas around the lesion in supple-
mental and premotor cortex, and in ipsilateral motor cortex
(ipsilesional). In patients recovering from stroke, other work
has tested the effect of enhanced treatment for the paralyzed
arm using sequential positron emission tomography images
performed while the patients had their effected limb pas-
sively moved [10•]. Increased regional activation was also
observed in a functional magnetic resonance imaging task in
patients recovering from stroke [11•].

Work from animal recovery models also supports the
idea that training enhances recovery after damage to the
central nervous system. Animals with focal cortical injury
exposed to enriched or challenging sensorimotor environ-
ments registered greater anatomic responses. Other experi-
ments in animals in which highly practiced motor tasks
were interrupted by specific focal brain injury demon-
strated that the motor-impaired animals exposed to the
early enhanced sensorimotor training had improved func-
tional output, sometimes nearly to levels of prelesion per-
formance, depending on the task and lesion size [12–14].

Clinical studies using enhanced therapy sessions and
measured outcome or neuroimaging information, and
animal recovery studies, demonstrate that task-specific
repetitive exercise abets recovery of the motor impair-
ment after brain injury.

Rigorous Outcome Studies with 
Appropriate Controls Trigger the 
Need for New Approaches
Enhancing the sensorimotor experience reproducibly in the
clinic can be daunting. Several groups have taken the chal-
lenge and demonstrated, for example, that the addition of 30
minutes of a pushing exercise of the paretic upper limb over
30 sessions to a program of post-stroke rehabilitation facili-
tated motor recovery of that paretic limb [15]. More general
attempts to enhance rehabilitation with an "eclectic… selec-
tion of treatment techniques" also led to improved motor
outcome at 6 months post-stroke, but the control group had
caught up with the treatment group by 1 year [16]. Other
work clearly demonstrated that specific training for the upper
or lower limb led to improved outcome for the treated limbs,
but not for the "untreated" limbs [17].

Present State of Therapy: An Opportunity for 
Technologic Experiment
Current standard interdisciplinary stroke rehabilitation
treatment is labor intensive, usually relying on one-on-one,

manual interactions with therapists. The studies using
enhanced training are no exception. The treatment proto-
cols rely on daily interaction over periods of weeks. For
stroke, because the therapy that promotes the best recovery
is unknown, most therapists use a combination of tradi-
tional techniques. Patient evaluation is usually done sub-
jectively, making it difficult to monitor treatment effects.
This situation presents an opportunity to create new tech-
nologic solutions to the problems of neuro-recovery.
Robotic devices that provide safe, quantifiable, and repro-
ducible physical activity would clearly assist healthcare
delivery experts.

Whether experiments with these devices produce
added value are challenges that loom large. The primary
challenge is whether the robotic training has efficacy.
When compared with control subjects, does enhanced sen-
sorimotor training with robotic devices produce not only
decreased impairment, but also decreased disability, and
are the motor improvements long lasting? Second, and for
the present beyond the scope of this debate, if these effi-
cacy tests demonstrate effectiveness, then are there cost
efficiencies that obtain as a result?

Recent data gathered by several groups concentrate on
the use of upper limb robotics in patients with stroke.
These studies have proposed initial design standards and
have demonstrated preliminary results in over 100 patients
who have had robotic sensorimotor therapy added to stan-
dard rehabilitation programs. We consider these data as an
example of the potential of technology-based methods,
and intentionally leave to another discussion the comple-
mentary approaches of other devices meant to enhance
recovery of gait (eg, body weight-supported treadmill train-
ers [18–21], functional neuromuscular stimulation for gait
training [22,23], and other functional electrical stimula-
tion strategies for the upper limb recovery [24,25]).

Robot Training: Tools for Therapists to 
Increase Productivity and Quality of Care
The idea we are testing is not whether robotic devices can
assist the brain-injured patient at activities of daily living,
but rather whether we can improve motor outcome by
equipping therapists with robotic devices to enhance the
sensorimotor aspect of rehabilitation. Clinical and scien-
tific rationales exist for added sensorimotor training dur-
ing the recovery period after stroke. It is important to note
that there are several different approaches to applying
robotic technology. One approach is exemplified by indus-
trial robots and emphasizes controlling robot motion so
that applications that do not require controlled contact (eg,
automobile spray-painting) are most successful and wide-
spread. We have taken an alternative approach of control-
ling the dynamic relation between motion and the forces
of interaction between the robot and the object it manipu-
lates [26,27]. This strategy permits the robot manipulan-
dum to respond rapidly and smoothly to forces exerted on
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it, so that it is compliant and easy to move, emphasizing a
"biologically friendly" quality [26,28]. These "back-drive-
able" machines also tolerate rapid or uncontrolled move-
ment, as in tremor or myoclonus [29•], with a safety factor
that exceeds the industrial designed position-controlled
machines. Whether one strategy is more clinically effective
than another is an empirical issue. It may be that all
approaches find particular groups of patients for whom
their strategy is most successful.

Experimental Results on Robotic-enhanced 
Rehabilitation for Stroke Recovery: Burke 
Institute–MIT
The Burke–MIT group subjected the upper limb robotic
device to a test of clinical effectiveness for the first time
some 8 years ago. The detailed results from three studies
on 76 patients demonstrated that robot-trained patients
had improved motor function of the paralyzed upper limb
as measured by converging clinical scales compared with
control subjects, and that these gains were maintained in a
follow-up period of 3 years [30,31••,32••,33].

Over 100 patients have experienced robot training, and
the motor improvements in the paralyzed upper limb con-
ferred by robot training compared with control subjects
have continued [34••,35••]. Figure 1 depicts a patient in
front of the robotic device for treatment. For these studies,
consecutive patients have been randomly assigned to a
robot-treatment group or control group. Candidates were
admitted to the rehabilitation hospital within 3 weeks of a
first stroke, had sustained some upper limb weakness, were
able to follow a few simple instructions, and gave
informed consent to participate in the trial. A "measuring"
therapist who was unaware of the patient's group assign-
ment made all clinical measurements of impairment and
disability. All patients underwent a standard interdiscipli-

nary rehabilitation program; the robot treatment and con-
trol was added to the standard care program.

Robot training took place in a standard therapy suite. It
was supervised by a research therapist, lasted 45 minutes
(without set-up, which took about 10 minutes), and
required that a patient perform 1024 flexion and extension
movements of the arm with gravity eliminated in eight
directions represented by the points of a compass. The
training program occurred 5 days per week for 4 weeks.
Control subjects had less time on the robot (1 hour per
week), the motors were never turned on, and the patient
moved the affected limb with the unaffected limb.

Table 1 depicts the interval change from rehabilita-
tion admission to discharge in 96 patients. Essentially,
the robot training doubles the motor recovery sustained
by control subjects. Specifically, on the reliable measure
of upper limb movement disability, the Fugl-Meyer (FM)
score for shoulder and elbow measure (maximum=42),
the robot-trained group demonstrated an advantage over
the control group, but the difference was not significant.
The robot-trained group demonstrated significant advan-
tages on the Motor Status Score (MSS) for shoulder and
elbow (maximum=40), which is an expanded measure of
upper limb movement, a combined impairment and dis-
ability scale, and also on the Motor Power (MP) standard
muscle testing (maximum=20), which is a standard
assessment of individual muscle testing. In data not
shown but published elsewhere [31••,32••], the motor
improvement was confined to the exercised proximal
limb (movements around the shoulder and elbow).
There was no advantage conferred by robotic training on
sensorimotor activity of the wrist and fingers. Motor per-
formance of lower limb activity, especially gait, was com-
parable between groups.

The focused motor improvement for the movements
that were trained is consistent with clinical results from
other studies [17] and current notions about motor learn-
ing. If the motor recovery prompted by robot training
reflects motor learning, then, not surprisingly, there should
be limited ability to generalize performance gains beyond
the conditions of training. Our data reflect that lack of
change in the wrist and hand movements and gait are con-
sistent with this point, but we have been expanding some of
the measurement scales in order to test this point more spe-
cifically. The expanded MP scale is derived from the stan-
dardized testing of individual muscles. It is a 6-point scale
(where 0 indicates no movement and 5 indicates normal
power) and is reproducible among our therapists. For the
proximal arm, there are 14 individual muscles that are
tested, and kinematic analysis suggested that 10 of these
muscles were directly trained and four muscles were not
trained during the robot protocols. We studied our initial
nine out-patients, seven of whom had less than 65% of the
maximal motor power in the shoulder and elbow. These
seven patients (mean 8 months after stroke) returned to
receive robot training comparable with the protocol

Figure 1. Patient seated in front of the MIT-Manus with her shoulders 
strapped to the chair and moving the manipulandum. The patient's 
hand is strapped to a wrist carrier attached to the manipulandum. The 
video screen is above the training table.
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described previously (ie, 3 days per week for 8 weeks). Table
2 depicts the preliminary information about the change in
motor power in the trained muscles compared with the
untrained muscles. There is a significant improvement for
the trained muscles (P<0.05). These results suggest that
even after time intervals longer than the generally accepted
3 months, specific training can alter the motor outcome.

These preliminary results in out-patients also point to
the need for more specific outcome scales, a need gener-
ally reflected by the several investigators who have tested
the effect of increased task-specific activity in post-stroke
rehabilitation. Examining our composite findings with
in-patients (Table 1), we were not able to discriminate an
effect of robot training with the long-used and reliable
FM scale for the upper extremity, but there were statisti-
cally significant improvements for the robot-trained
group on the MSS and on the MP assessment. We have
demonstrated that these scales are linearly related (with
significant correlation, r2 values were greater than 0.92
and P was always <0.001 [36,37]), but the FM scale lacks
resolution compared with the MSS [36]. Although the
MSS for the shoulder and elbow and for the wrist and fin-
gers has been used in the past (complete evaluation forms
with instructions are available upon request from the
author), we needed to test directly its reliability and valid-
ity. To that end, we assembled co-investigators and thera-
pists to learn and evaluate the MSS. Over a dozen raters
from five different institutions concurrently evaluated the
same patients (over 15 patients). After training on the
MSS, these raters generated significant intraclass correla-
tion coefficients and Pearson Correlation coefficients.
Furthermore, the internal item consistency for the overall
MSS was also significant. These results attest to the useful-
ness of the MSS as a sensitive, reliable, and valid scale for

recording change in upper motor movements. This scale
is a bridge between a measure like the MP score, which
assesses individual muscle power and grades impairment,
and the FM score, which measures functional movements
and is closer to grading disability.

One goal is to continue to build on the clinical bench-
mark scores by developing objective measures. The robot
can measure speed, position, and force. In preliminary
observations, we have tested whether robot-measured force
(in Newtons) correlates with the scores of the composite
testing of muscle strength for shoulder flexion, extension,
abduction, and adduction. Eighteen patients with different
stroke severity and impairment level attempted to elevate
and depress their arms while holding the end of the robot
arm with their elbow extended. The robot was pro-
grammed to hold the position in the center of the work-
space and registered the force exerted in the intended
direction. For 18 patients, the mean peak force across five
attempted elevation and depression movements was
summed and correlated with the composite muscle
strength testing with the MP score. Different therapists
assessed the MP scores before and after robot testing. Fig-
ure 2 demonstrates the correlation of these measures
(Y=1.1 + 1.5X, r2=0.84; P<0.0001).

These preliminary results demonstrate the validity of
the robot measures. Moreover, the potential that the
robot provides for measuring precisely, repetitively, and
objectively will contribute to the growing body of
detailed information about change after intervention.
Extracting meaningful information from the wealth of
kinematic information presents formidable challenges,
but at the very least some of this measurement capabil-
ity represents a promise for a level of objectivity long
desired in the field of neuro-rehabilitation.

Table 1. Interval changes* from admission to discharge

Group
Fugl Meyer S/E score 

(max=42)
Motor status S/E score 

(max=40)
Motor power score 

(max=20)

Robot-trained (n=56) 6.6 ± 1 8.6 ± 0.9 4.1 ± 0.4
Control (n=40) 4.9 ± 0.8 3.4 ± 0.5 2.2 ± 0.3

Not significant P<0.0001 P<0.005

*Indicates mean ± standard error.
max—maximum; S/E—shoulder/elbow.

Table 2. Initial and final score on the expanded Motor Power (MP) scale

Out-patient robot-trained 
(n=7)

Robot-trained MP 
(max=50)

Not robot-trained MP 
(max=20)

Admission (mean ± sem) 15.1 ± 3.6 4.6 ± 1
Discharge (mean ± sem) 23.9 ± 3.8 5.9 ± 1.5
Interval change, % 17.6 6.5

P<0.05 Not significant

max—maximum; sem—standard error of mean.
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Improved Motor Outcome for Patients with 
Stroke Treated with Robot Training Replicated 
by the Palo Alto VA–Stanford and the RIC–UC 
Irvine Groups
Using an industrial robotic device, the Palo Alto–Stanford
VA group has treated over two dozen patients 6 months to
2 years after stroke [38,39,40••,41••]. The results demon-
strated that the robot-treated patients had significantly
greater interval change in the FM score for the shoulder
and the elbow activity and not for wrist and hand activity.
The robot-trained patients also demonstrated signifi-
cantly improved percent change in mean strength of
shoulder and elbow movements compared with control
subjects. Consistent with the Burke–MIT results in
patients treated within weeks of stroke, these experiments
suggest that recovery may be induced, because it almost
certainly continues in small increments months to years
after the acute stroke.

Using a different device, the RIC–UC Irvine group has
trained over a dozen patients with chronic stroke (some
over 5 years after stroke) on an upper extremity-reaching
paradigm. Trained subjects had improved kinematics of
reach, velocity, and better control of tone, and patients pro-
duced smoother movements [42]. If smoothness or the
quality of movement acquired in recovery matters to out-
come, and if normal movement smoothness matters, then
it appears that detailed measurements obtained only by
technologic instrumentation could add another clinically
important dimension. A randomized study demonstrated
that control patients treated with equal number of move-
ments directed by a therapist improved to a level compara-
ble with those trained with the assisted robotic-movement
device [43••,44••].

Conclusions
A variety of robotic approaches have favorably influenced
the motor outcome for the paralyzed arm in patients with
stroke. Most of the current studies were prospective and ran-
domized, with masked therapists acting to assess outcome.
The improved outcome appears concentrated in the exer-
cised limb. In addition to the modest and focal gains in
impairment reduction, some groups are finding gains in dis-
ability reduction. In the follow-up studies to date, the
advantage conferred by robotic training continues for at
least 3 years [31••,33]. These promising results prompt fur-
ther questions. The data from several groups suggest that
devices will not replace therapists, but serve as potent new
tools for them to treat patients more effectively. Soon after
stroke, teaching the compensatory skills contributes in large
part to improved function (lowered disability). With longer
survival after stroke, recent data suggest that increased sen-
sorimotor experience may still affect the motor outcome.
Whether the mechanism is central nervous system plasticity
or conditioning the joints, tendons, and muscles is not clear.
But a therapist armed with a device to deliver specific exer-
cise safely and reproducibly might treat chronic impairment
more effectively. These results herald a variety of robotic
approaches used to enhance the sensorimotor experience of
patients after stroke and other chronic conditions. It would
appear that more sensorimotor training leads to better
motor outcome.
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Figure 2. Relationship between a clinical 
benchmark measure of muscle power (Motor 
Power score) and the force registered by the 
robotic device (in Newtons). The correlation is 
significant (P<0.0001), supporting the validity 
of the robotic measure.
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