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Abstract
Purpose of Review Asthma pathophysiology has shown that remodeling of the bronchial airways mainly affects the small 
rather than large airways. The severity of asthma is conventionally measured by forced expiratory volume 1 (FEV1) but this 
maneuver is insensitive to changes in distal airways with smaller diameter. The aim of this review is to evaluate the current 
evidence supporting LCI as a clinical tool for assessing small airways disease in asthma patients, as well as whether it is 
useful as a treatment response parameter in severe therapy‐resistant asthma (STRA) patients.
Recent Findings There is an increasing need for novel tests that can assess distal airway disease in asthma. Lung Clearance 
Index (LCI) may be a useful test for assessing more severe airway obstruction and the persistence of small airway disease. 
LCI measurement has been shown to be more sensitive than spirometry in cystic fibrosis (CF), but its clinical utility in asthma 
has not been thoroughly investigated. LCI abnormalities may be a sensitive marker for the persistence of small distal airway 
disease and may be associated with a more severe asthma endotype unresponsive to inhaled glucocorticoids.
Summary There is a need to identify other lung function tests for asthma that can identify early airway remodeling while 
simultaneously measuring the rate of lung function impairment. When compared to other conventional methods, multiple-
breath washout (MBW) measures the lung clearance index (LCI), a more sensitive predictor of early airway disease that is 
feasible to perform in children. The goal of this review is to evaluate the current evidence of LCI as a clinical tool in asthma 
patients.

Keywords Lung Clearance Index · Multiple breath washout · Ventilation inhomogeneity · Asthma

Abbreviations
LCI  Lung Clearance Index
MBW  Multiple breath washout
FEV1  Forced expiratory volume 1
CF  Cystic fibrosis
VI  Ventilation inhomogeneity
FeNO  Fractional exhaled nitric oxide
RW  Recurrent wheezers

ACQ5  5-item Asthma Control Questionnaire
DA  Difficult asthma
PCD  Primary ciliary dyskinesia
CACh  Cold dry air challenge
HC  Healthy controls
VDP  Ventilation defect percent
N2-MBW  Multiple breath nitrogen washout
STRA   Severe therapy‐resistant asthma
ICS  Inhaled corticosteroids
LABA  Long acting beta agonist
BDP/F  Beclometasone dipropionate/formoterol
pMDI  Pressurized metered dose inhaler

Introduction

Current asthma pathophysiology evidence from biopsy sam-
ples of preschool children with wheeze suggests that remod-
eling of the bronchial airways is more common throughout 
the small conductive airways rather than the larger airways 
[1, 2]. Since airway remodeling begins at an early stage, 
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improvements in the treatment of children of preschool age 
may result in better preserved lung function into adulthood 
[2].

The severity of asthma is conventionally diagnosed by 
clinical history of symptoms confirmed by objective meas-
urements using spirometry or pulmonary function testing 
to assess the forced expiratory volume in the 1st second of 
exhalation (FEV1). In clinical practice, an obstructive defect 
is confirmed by a variation in airflow limitation and/or rapid 
improvements in FEV1 after bronchodilation [3]. However, 
FEV1 is an insensitive marker for monitoring changes in 
distal airways of smaller diameter [4, 5] since most asthma 
children have a normal or near-normal FEV1 since lung 
function deterioration is slow [6].

There is a need to identify other lung function tests for 
asthma that can identify early airway remodeling while 
simultaneously measuring the rate of lung function impair-
ment. Multiple-breath washout (MBW) measures the lung 
clearance index (LCI), a more sensitive predictor of early 
airway disease that is feasible to perform in children com-
pared to other conventional methods [7]. Measurement of 
LCI has been shown to be more sensitive than spirometry in 
cystic fibrosis (CF); however, the clinical utility in asthma 
has not been adequately explored. The purpose of this 
review is to assess the current evidence of LCI as a clinical 
tool in asthma patients and whether it is useful as a treat-
ment response parameter in severe therapy‐resistant asthma 
(STRA) patients.

Lung Clearance Index: Background

The MBW test assesses the efficiency of gas distribution 
and mixing within the lungs. MBW provides a measure of 
lung volume (functional residual capacity) and ventilation 
inhomogeneity (VI) due to the heterogeneous distribution of 
pulmonary disease [8, 9]. To perform the MBW technique, 
the patient tidally breathes an inert gas (tracer gas) through 
a modified face mask or mouthpiece. This gas (helium, 
nitrogen, or sulfur hexafluoride) is first “washed in,” then 
“washed out” wearing a nose-clip during the washout cycle 
[10].

A built-in animation is used to assist the patient achieve a 
steady breathing pattern. Alternatively, 100% oxygen can be 
inhaled to wash out the residual gas from the lungs. A range 
of VI parameters can be calculated, including measurement 
of the overall VI, the LCI, and the indices Scond, which 
represents the VI on conductive airways, and Sacin, which 
represents the VI on acinar airways [9, 11].

In 1952, Becklake described for the first time measure-
ment of LCI in patients with emphysema by estimating the 
liters of ventilation necessary to eliminate nitrogen from 
the airways while the subject inspires 100% oxygen [8]. 
Higher LCI values reflect a greater VI which correlates with 

worsening lung disease. LCI has been proven to be useful 
as a predictor of early airway disease in CF [9]; however, in 
asthma, there is still discordance regarding its clinical util-
ity [12]. Studies suggest that LCI is elevated in school-age 
children and adults with asthma even when spirometry is in 
the normal range [13].

The Current Evidence Supporting LCI 
in Asthma

There are several factors that can affect LCI including 
age (a preschool asthma group had a significantly higher 
LCI z‐score than a school-age group) [13], body size (LCI 
decreased in a nonlinear pattern as height increases) [14], 
and exercise-induced bronchoconstriction [12]. Otherwise, 
clinical factors, past hospitalizations, use of oral glucocor-
ticoids or emergency visits, type of controller therapy, treat-
ment dosage, or spirometric parameters were not signifi-
cantly associated with an elevated LCI [13].

There is no consensus for establishing the ideal LCI 
cut-off point in healthy subjects, CF patients, or children 
with asthma. However, some studies have determined LCI 
means±SD or median range values (Table 1). In the clinical 
setting, different factors should be considered in order to 
discriminate between healthy vs asthmatic patients including 
the closed circuit wash-in method, the different gas tracers 
used as sulfur hexafluoride  (SF6) or nitrogen  (N2) [15], and 
the type of flow sensor [16].

LCI showed advantages over spirometry as a way to 
monitor “silent” airway remodeling whereas MBW may be 
a useful tool to track the progression of early airway struc-
tural disease that is not currently detected by spirometry [2, 
11]. Macleod et al. [11] reported that post-bronchodilator 
LCI was increased in presumably well-controlled asthma 
children with normal FEV1, indicating residual disease and 
abnormal gas mixing.

Bronchoconstriction in asthma results in patchy venti-
lation defects causing obstructive symptoms and impaired 
gas exchange and distribution of inhaled medications [17]. 
Svenningsen et al. [18] demonstrated that magnetic reso-
nance imaging ventilation defect percent (VDP) and LCI 
were strongly correlated, although only VDP was an excel-
lent predictor of asthma control. Farrow et al. [19] described 
that changes in lowest ventilation regions were predicted by 
LCI before and after a methacholine provocation test using 
single photon emission computed tomography.

Inflammation is linked to asthma severity and con-
trol, FeNO, or sputum eosinophil count are used to titrate 
inhaled glucocorticoid doses in adults with asthma [20]. 
LCI detects residual airways disease independently of 
inflammation, as a normal FeNO does not correlate 
with a higher LCI [11]. In contrast, Kouký et  al. [21] 
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demonstrated a high LCI in patients with eosinophilic 
chronic airway inflammation (allergic bronchial asthma). 
Lu et al. [22] reported that FeNO was significantly higher 
in recurrent wheezer (RW) infants with abnormal LCI, 
suggesting a more severe endotype of RW.

Further evidence suggests that LCI may be able to 
assess more severe airway obstruction and persistence of 
small airway disease [23, 24]. LCI is elevated in children 
with recurrent asthma exacerbations requiring treatment 
with oral glucocorticoids, in recurrent wheezers, in severe 
therapy‐resistant asthma (STRA), and in patients refrac-
tory to inhalant therapies [13, 22, 24, 25•, 26, 27•]. It 
is well known that clinical and lung function outcomes 
improve after a multidisciplinary intervention in children 
with severe asthma; however, LCI remained abnormal 
[24]. In contrast, some studies did not find LCI to be a 
reliable predictor of asthma control [7, 12, 28, 29].

LCI can predict a positive response to up-titration to a 
high-dose combination inhaled glucocorticoid (ICS)/long 
acting beta agonist (LABA) treatment in uncontrolled 
asthma patients [27•], leading to the hypothesis that the 
existence of a more refractory to inhalant therapy endotype 
is associated with the severity of lung ventilation inhomo-
geneities measured by LCI.

Subsegmental narrowing of small distal airways and 
poorly controlled inflammation diminishes penetration of 
inhalant anti-inflammatory and bronchodilator medications 
and accelerates the deterioration in lung function [24, 30]. 
Inhaled drug-based therapy for asthma is largely based 
on particle sizes between 3 and 5 μm and their deposition 
occurs three to four times higher in central lung tissue 
than peripheral tissue [31]. This explains why many inhal-
ers are inefficient in minimizing airway inflammation in 
severe asthmatics [30]. Two ways in which to target distal 
airways are to use inhaled medications such as ICS alone 
or in combination with long-acting β-agonists extra-fine 
particles (smaller than 2 μm) versus systemic therapy [32].

Even though larger particles may be more efficacious 
and achieve greater bronchodilation, smaller aerosol par-
ticles less than 1.5 μm achieve greater total deposition and 
farther distal airways penetration [33]. Extra-fine particles 
improve long-term asthma control, quality of life in real-
life studies, treatment stability, and the reduction in the 
daily ICS dose [32, 34–36].

However, studies have found no change in spirometry, 
indicating that these values may not reflect the effects of 
small-particle aerosols on peripheral airways [34]. Beclo-
metasone dipropionate/formoterol (BDP/F) pressurized 
metered dose inhaler (pMDI) which delivers 1.4–1.5-μm 
particle sizes showed improvement in Sacin indicating that 
inflammation was suppressed in peripheral airways [37], 
especially in patients with abnormal baseline Sacin [38].

Systemic therapy is the other way to target distal airway 
disease. Intramuscular triamcinolone was used in STRA 
patients. LCI, FEV1, Sacin, and FeNO were evaluated but 
only LCI and FeNO significantly improved [25, 39]. LCI 
showed the most potential utility of the MBW indices [40]. 
Irving et al. [25] proposed that LCI normalization is due 
to a reduction in glucocorticoid‐refractory distal airway 
inflammation by high‐dose intramuscular glucocorticoids, 
leading to improvement in distal gas mixing.

Concluding Remarks

These findings suggest that spirometry is not sufficient 
to follow the progression of severe asthma suggesting a 
growing need for implementing new tests as a multidomain 
assessment that includes evaluation of distal airways dis-
ease. LCI may be the tool that addresses physiological 
changes in lung function that warrant other treatment 
approaches.

Current evidence suggests that LCI abnormalities may 
be a sensitive marker for the persistence of small distal 
airway disease and could relate to a more severe asthma 
endotype unresponsive to inhaled glucocorticoids although 
it is possible alternative anti-inflammatory therapies have 
yet to be identified. This review provides evidence about 
appropriate use of LCI for assessment of asthma which has 
previously been validated as a useful test for CF.

There remain many gaps in knowledge regarding LCI 
to establish its clinical utility which include no standard-
ized cut-off point for LCI in asthma patients, the lack of 
real-life clinical interventions evaluating the effect of extra 
fine particle aerosols on LCI, and the paucity of follow-up 
studies that determine whether early abnormalities in LCI 
persist and predict a diagnosis of chronic asthma and/or a 
more severe form of infant asthma.
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