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Abstract
Purpose of Review This review will cover what is known regarding exosomes and allergy, and furthermore discuss novel
mechanism of exosome-mediated immune modulation and metabolic regulation via the transfer of mitochondria.
Recent Findings Exosomes are nano-sized extracellular vesicles (EVs) derived from the endosome that play a direct role in
governing physiological and pathological conditions by transferring bioactive cargo such as proteins, enzymes, nucleic acids
(miRNA, mRNA, DNA), and metabolites. Recent evidence suggest that exosomes may signal in autocrine but, most importantly,
in paracrine and endocrine manner, being taken up by neighboring cells or carried to distant sites. Exosomes also mediate
immunogenic responses, such as antigen presentation and inflammation. In asthma and allergy, exosomes facilitate cross-talk
between immune and epithelial cells, and drive site-specific inflammation through the generation of pro-inflammatory mediators
like leukotrienes. Recent studies suggest that myeloid cell-generated exosomes transfer mitochondria to lymphocytes.
Summary Exosomes are nano-sized mediators of the immune system which can modulate responses through antigen presenta-
tion, and the transfer of pro- and anti-inflammatory mediators. In addition to conventional mechanisms of immune modulation,
exosomes may act as a novel courier of functional mitochondria that is capable of modulating the recipient cells bioenergetics,
resulting in altered cellular responses. The transfer of mitochondria and modulation of bioenergetics may result in immune
activation or dampening depending on the context.
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Introduction

Allergy is a multifaceted immunologic disease where our
innate and adaptive defense mechanisms become activat-
ed by what should be a benign signal, resulting in rampant
and deregulated immune responses and chronic inflamma-
tion [1]. Many different cell types are involved and they
each secrete unique soluble mediators of inflammation
that drive disease pathology [1, 2]. Some well described
cell types include, but are not limited to, CD4+ T cells
(Th2, Th17 and hybrid Th2/Th17 subsets) [3, 4], dendritic
cells (DCs) [5, 6], macrophages, myeloid-derived regula-
tory cells (MDRCs) [6–12], natural killer (NK) cells
[13–15], and epithelial cells [5, 16, 17]. For an effective

immune system, various signaling mechanisms must come
to play. The same is true in the case of allergy, where a
coordinated, albeit inappropriate, immune signaling cas-
cade results in persistent inflammation that is harmful
for the host. Generally, these signaling cascades are me-
diated by soluble factors, such as cytokines and
chemokines, as well as membrane-bound receptors, such
as class-II molecules, the CD1 family of receptors, and
Fcε receptor [1, 2]. Class-II molecules, such as HLA-
DR, are antigen presentation molecules usually found on
antigen presenting cells which play an important role in
activating CD4+ T cells through the engagement of the T
cell receptor (TCR) [18–20]. The CD1 family of receptors
is a type of scavenger molecule found on macrophages
and dendritic cells that can activate T cells [21–23].
These scavenger receptors recognize foreign lipids, such
as of bacterial and fungal origin [23, 24]. Fcε receptor is
an important player in allergy and is found on mast cells
and basophils [25]. This receptor binds free IgE and acti-
vates degranulation of mast cells and basophils. All three
of these molecules play an important role in activating the
immune system, and have been found on exosomes.
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Extracellular vesicles (EVs), such as exosomes, are essen-
tially couriers of bioactive material, such as nucleotides, pro-
teins, lipids, and metabolites, which have a substantial impact
on the phenotype of the recipient cell [26]. In recent years,
exosomes, which are secreted by many types of cells, have
emerged as key-signaling mediators in various immunologic
diseases [27]. The roles of exosomes pertaining to lung pa-
thology are being increasingly described. In particular,
exosomes are being appreciated as immunogenic potentiators
especially in the context of allergy [28, 29•, 30, 31, 32•].
Many studies have reported a pro-inflammatory role of
exosomes in allergy as well as in asthma [29•, 30, 31, 32•].
Exosomes have been described to transfer pro-inflammatory
mediators, such as leukotrienes, and process antigens on sur-
face class-II receptors [29•, 30, 32•, 33]. Similarly in allergic
skin diseases, exosomes have been shown to transfer antigens
that activate immune responses [30, 34]. In addition to host
cell-generated exosomes, microbial EVs have also been im-
plicated in immune activation and hypersensitivity [35–37].

In addition to transfer of bioactive materials, recent studies
have also described the packaging and transfer of mitochon-
dria via EVs and exosomes [38•, 39••, 40••]. The transfer of
mitochondria results in alterations in the host cell bioenerget-
ics and may have lasting consequences on cellular function
and tissue homeostasis. For example, our laboratory has ob-
served the transfer of exosomes containing mitochondria by
myeloid-derived regulatory cells (MDRCs) and subsequent
internalization of these exosomes by CD4+ T lymphocytes
[40••]. Together, the discovery of novel exosome-mediated
mechanisms in modulating cellular and tissue homeostasis,
and the host immune system will help us understand the intri-
cate and complex mechanism of allergic disease pathology,
which will indubitably aid in fruitful advances in the research
and development of improved therapies. This review intends
to explore in detail each of the unique mechanisms by which
exosomes modulate immune responses in the context of asth-
ma and other allergic diseases.

Exosome Biogenesis

Exosomes were first described in the calcification of collagen
in the extracellular matrix [41]. Since then, various
“blebbings” from cells have been described as extracellular
vesicles. The classification and nomenclature to describe
EVs have been based on mode of biogenesis and biochemical
properties [42, 43]. Currently, exosomes are described as ves-
icles derived from the endosome and released to the extracel-
lular space [44–47, 48••]. Tetraspanins are highly enriched in
exosomes and are used as reliable markers of exosomes [49].
Tetraspanins are transmembrane proteins which interact with
one another and with other transmembrane proteins, such as
integrins and receptors, acting as a scaffold to organize surface
proteins and support cellular signaling [50]. When studying

exosomes, reliable markers used in the field include CD63,
CD81, CD9, tumor susceptibility 101 (TSG101), and ALG-2
interacting protein X (ALIX). Specifically, endosomal
markers or markers that are part of the endosomal sorting
complexes required for transport (ESCRT) complex (such as
TSG101, CD81, and ALIX) are preferred as they indicate an
endosomal origin of the extracellular vesicle, which is part of
the definition of an exosome [49, 51]. The biogenesis of
exosomes starts with the outward invagination of the endo-
some, resulting in the formation of vesicles within the
endosomal body, referred to as a multi-vesicular body
(MVB) [44]. Although the biogenesis of exosomes results
from the invagination of the endosome, the process is de-
scribed as an “outward invagination” to clarify that the lipid
bilayer topology is maintained throughout the biogenesis and
secretion process. The MVB can either merge with a lyso-
some, resulting in the degradation of its cargo, or it can fuse
with the cytoplasmic membrane, causing the release of
exosomes into the extracellular space. Exosomes are released
from various different cell types, and can be isolated from
several sources of biological fluids, such as bronchoalveolar
lavage (BAL) fluid, synovial fluid, serum, urine, breast milk,
and semen [27, 33, 52–55]. Although the biological functions
of these vesicles are still being characterized, and their asso-
ciation with disease being elucidated, exosomes have been
thought to be part of a complex intercellular and systemic
messaging system, that also play a role in cellular homeostasis
via the autophagy pathways [26, 56]. Exosomes impart their
effects on recipient cells through receptor interactions or by
transfer of bioactive cargo [29•, 30, 57–60]. Studies have
shown that in addition to antigen-specific activation, immune
cells can use adhesion molecules to “capture” exosomes [61,
62]. We explore the various mechanisms by which exosomes
can modulate the immune system in the following sections.

Exosomes and Inflammation

Exosomes have been described as efficient cell-to-cell mes-
sengers that can cross biological barriers and modulate the
immune system [26, 27, 63–65]. Inflammation can be trig-
gered by many mechanisms, such as antigen presentation,
cytokines, chemokines, leukotrienes, and other lipid media-
tors of inflammation. Exosomes have been characterized with
several membrane-associated immunogenic markers found on
the surface, such as class-I and class-II major histocompatibil-
ity complex (MHC) molecules, co-stimulatory molecules
(CD86, CD80, and CD54), and even functional enzymes that
produce lipid mediators of inflammation [30, 31, 55, 66–68].

Antigen loaded exosomes have been demonstrated to in-
duce strong antigen-specific immune responses. Specifically,
dendritic cells pulsed with antigens produce exosomes that
can activate CD8+ T cells in an antigen-specific manner likely
through antigen presentation by MHCI-peptide complexes
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[69••]. Antigen-loaded exosomes, as well as peptide class-II
complexes associated with exosomes, have been found to be
attached to the surface of follicular dendritic cells (FDCs).
This exosome-mediated transfer of antigens is suggested as a
mechanism by which exosomes can promote antigen-specific
activation of Tand B cells in primary and secondary lymphoid
nodes [70]. Furthermore, adhesion of exosomes to the surface
of FDCs is through the oligomerization and binding of
tetraspanins between the exosomes and FDCs. We speculate
that the adhesion of exosomes may be facilitated by adhesion
molecules such as CD54 [71]. CD54 (ICAM-1) has been re-
ported by others and our lab to be expressed on exosomes
[29•, 33, 72]. Segura et al. have shown that CD8+ dendritic
cells use LFA-1 (the ligand for CD54) to capture MHC-
peptide complexes from exosomes [61]. Furthermore, Hao
et al. have reported that the internalization of exosomes in
immune cells may be mediated by CD54/LFA-1 interactions
on dendritic cells [73]. Nolte-’t Hoen et al. have also shown
that LFA-1 is important for the recruitment of exosomes to T
cells and their subsequent activation [62]. Bone marrow-
derived mesenchymal stromal cells internalized PC12 pheo-
chromocytoma cell-derived exosomes through clathrin-
dependent endocytosis, resulting in delivery of miR-21 [74].
Additionally, endothelial cells have been shown to internalize
exosomes via a dynamin-dependent matter through endocyto-
sis [75]. Together, these observations suggest different modes
of internalization that may be cell-type specific. Furthermore
that the effects imparted by the exosomes are multi-modal
(receptor-ligand interaction, or through transfer of cargo).

Exosomes have been found to transfer or even help gener-
ate pro-inflammatory lipid mediators. For example, exosomes
from humanmacrophages and dendritic cells contain enzymes
for the biosynthesis of leukotrienes and promote migration of
granulocytes [68]. Furthermore, pulmonary epithelial cell-
derived exosomes metabolize myeloid cell-derived leukotri-
ene C4 to leukotriene D4 [76]. In addition to leukotrienes,
ceramides and sphingolipids have been found in exosomes
and potentially implicated in inflammation [67, 77]. Pro-
inflammatory cytokines, such as TNF-α and IFN-γ haven
been shown to drive release of ceramides into exosomes,
which become mediators of cell death signaling [78].
Additionally, hepatocytes have been shown to also release
pro-inflammatory ceramide-enriched extracellular vesicles
under stress [79].

Exosomes can package miRNAwhich have various differ-
ent functional implications to the target cells which internalize
these vesicles, and is often dependent on the context of dis-
ease. In one study, serum exosomes from rats treated with zinc
oxide nanoparticles were identified with 16 different pro-
inflammatory miRNAs [80]. Additionally, miR-155 and
miR-146a, two pro-inflammatory miRNAs, were found
enriched in exosomes purified from dendritic cells following
treatment with endotoxin [60]. From a clinical perspective, a

pro-inflammatory miRNA signature was found from serum
exosomes isolated from septic patients admitted to the ICU
[81]. In asthma, the exosomes from human bronchoalveolar
lavage fluid have been found to contain miRNAs with pro-
inflammatory signatures [31]. Several miRNA involved in
immune modulation, including miR-27 and miR-24, (impor-
tant for Th2 responses [82]), miR-21 (important for metabolic
regulation of pathogenic Th17 [83]), and Let-7c (M2 polari-
zation) were identified in exosomes from asthmatics [84]. This
indicates that exosomal transfer of miRNA can modulate gene
programing and promote inflammation in an antigen-
independent manner.

Novel Mechanisms of Exosome-Mediators

As discussed earlier, exosomes are couriers of various biolog-
ical cargo with functional effects [26]. In recent years,
exosomes and other extracellular vesicles (EVs) have been
shown to alter cellular metabolism by transfer of metabolites
to recipient cells or by altering regulation ofmetabolic enzyme
pathways [39••, 40••, 85–90]. Metabolism has been appreci-
ated beyond fulfilling cellular energy requirements, and is
connected to various cellular processing such as epigenetic
control [91, 92] and gene regulation [93, 94]. The cellular
changes induced by metabolism then may impact at an organ-
ismal level, such as in immune response [95, 96], tissue repair
[97, 98], and disease pathology [99–101]. In particular, the
transfer of mitochondria from one cell to another has garnered
much attention as a novel mechanism of cellular energetic
repair [39••, 85–90].

The transfer of mitochondria from one cell to another has
been previously described through a structural mechanism
called tunneling nanotubes (TNTs) (Fig. 1) [102–106]. TNTs
are membrane nanotube protrusions that extend from the
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Fig. 1 Mechanism for the transfer of mitochondria between cells.
Tunneling nanotubes and extracellular vesicles, such as exosomes, have
been shown to carry mitochondria from donor to recipient cells
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plasma membrane and bridge the cytoplasm of two cells over a
distance [103, 105]. Jackson et al. have shown that TNTs are
important for the transfer of functional mitochondria from mes-
enchymal stem cells (MSCs) to macrophages to promote anti-
microbial functions in in vitro and in vivo models of acute
respiratory distress syndrome (ARDS) [107]. Their study dem-
onstrates that the transfer of mitochondria from MSCs to mac-
rophages increases their bioenergetics and phagocytic activity.
However, inhibition of TNT formation by cytochalasin B did
not completely block intercellular transfer of mitochondria,
suggesting an alternative cell-contact independent mechanism.

Transfer of mitochondria from MSCs to macrophages can
occur in EVs secreted from MSCs [39••]. Morrison et al. dem-
onstrate that the MSC-derived EVs contain mitochondria, and
when transferred tomacrophages, promoteM2 polarization and
enhance oxidative phosphorylation. The authors further dem-
onstrate that functional mitochondria are being transferred by
MSCs to macrophages by showing that EVs from rhodamine-
treated MSCs, which generate dysfunctional mitochondria,
have no effect on macrophages. These results are supported
by other studies that illustrate MSC-derived EVs can recapitu-
late the beneficial effects of cell-based MSC therapies [87–90].

The ability of cells to release EVs containing mitochondria
has been previously described [38•, 86]. Our lab has also
reported that exosomes from bronchoalveolar lavage (BAL)
fluid of asthmatics and exosomes derived from myeloid-
derived regulatory cells from the airways of asthmatics con-
tain mitochondria, which can be internalized by CD4+ T lym-
phocytes [40••]. We observe that functional mitochondria that
are capable of producing ROS are internalized by CD4+ T
cells and merge with the host mitochondrial network. Our
studies align with published reports that implicate the impor-
tance of mitochondria transfer by EVs and their role in altering
cellular function in response to injury and inflammation.

The transfer of healthy mitochondria to cells with damaged
mitochondria is an important mechanism for cellular repair.
Human mesenchymal stem cells (hMSCs) were shown to
package healthy mitochondria inside membrane-bound vesi-
cles that were secreted and subsequently acquired by epithelial
cells that were co-cultured in vitro [85]. The study shows that
when cultured with A549 ρ° (ρ° phenotype lack mitochondri-
al DNA) that have defective mitochondria, the transfer of mi-
tochondria by hMSC-derived EVs rescued metabolic activity
and aerobic respiration in the A549 ρ° cells.

Functional mitochondrial complex proteins have been re-
ported in exosomes, and viable for the generation of ATP
[108•]. Panfoli et al. report that hMSCs from > 37-week old,
newborns generated exosomes that contained functional com-
plex proteins that were capable of generating ATP while,
hMSC from 28 to 30-week old, newborns generated
exosomes that were unable to produce ATP despite having
mitochondria complex proteins [108•]. They implicate this
difference as potential vulnerability factors between newborn

and preterm, such as reduced ability to cope with anoxic en-
vironments and repair damaged tissue in preterm.

In addition to the transfer of healthy mitochondria, cells
may use EVs to package damaged mitochondria as a danger
signal to others as a result of disease pathology, and to main-
tain mitochondrial quality control [109, 110]. Studies have
demonstrated that mitochondria can generate vesicles of var-
ious types that are shuttled to the lysosome [111] or peroxi-
some for degradation [112]. This pathway shares the same
pathway as exosome generation—through the late endosome
and multivesicular body [111]—and thus would not be
alarming if these mitochondrially derived vesicles (MDVs)
were secreted. Cells that have damaged mitochondria are un-
dergoing cellular stress that may overwhelm or even shut-
down mitophagy and autophagy pathways. The unique coin-
cidence that these pathways are shared with exosome genera-
tion may suggest an alternative survival mechanism for cells
to shed damaged cellular components extracellular while
attempting to regain homeostasis. To support this theory,
Davis et al. have shown that damaged mitochondria can be
transported to adjacent cells to aid in degradation, which they
have coined the term transmitophagy [113].

Conclusions

In allergy, exosomes have been shown to activate T cells in an
antigen-specific manner without the need of an APC [30]. The
activation is most likely through the engagement of MHCII-
peptide complexes on the surface of exosomes with the TCR
of CD4+ T cells. The modulation of the immune system by
exosomes is not limited to surface receptor interactions.
Transfer of RNA by exosomes, such as those produced by
mast cells, can alter the transcriptomic landscape of the recip-
ient cell, potentially promoting upregulation of pro-
inflammatory genes [28, 59, 60]. Together, exosomes can ac-
tivate T cells and other immune subsets in a multi-modal man-
ner, such as receptor interaction or fusion and cargo transfer,
without the aid of traditional APCs.

Furthermore, we gather that the transfer of mitochondria
between cells is not an uncommon occurrence and happens
in both healthy and diseases states. Furthermore, new evi-
dence suggests that mitochondria can be packaged into extra-
cellular vesicles, such as exosomes, and transported to recip-
ient cells. Importantly, this transfer has the ability to induce
functional changes to the recipient cell, implicating the poten-
tial for such transfer to be important in cellular homeostasis
and disease pathogenesis. Although the exact pathway by
which exosome package mitochondria is still unknown, we
speculate that two possible mechanisms exist: 1. mitochondri-
al fission; and 2. mitophagy. Proteins such as Drp1 induce
fission of mitochondria that may promote their packaging into
exosomes or other types of EVs. Similarly, the mitophagy
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pathway may shuttle mitochondria through pathways that are
shared with exosome biogenesis. These pathways need to be
studied in the context of exosome biogenesis and mitochon-
drial packaging to better understand how cellular organelles,
such as the mitochondria, can be packaged and delivered.
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