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Abstract
Purpose of Review The sense of smell is today one of the focuses of interest in aging and neurodegenerative disease research. In
several neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease, the olfactory dysfunction is one of the
initial symptoms appearing years before motor symptoms and cognitive decline, being considered a clinical marker of these
diseases’ early stages and a marker of disease progression and cognitive decline. Overall and under the umbrella of precision
medicine, attention to olfactory function may help to improve chances of success for neuroprotective and disease-modifying
therapeutic strategies.
Recent Findings The use of olfaction, as clinical marker for neurodegenerative diseases is helpful in the characterization of
prodromal stages of these diseases, early diagnostic strategies, differential diagnosis, and potentially prediction of treatment
success. Understanding the mechanisms underlying olfactory dysfunction is central to determine its association with neurode-
generative disorders. Several anatomical systems and environmental factors may underlie or contribute to olfactory loss associ-
ated with neurological diseases, although the direct biological link to each disorder remains unclear and, thus, requires further
investigation.
Summary In this review, we describe the neurobiology of olfaction, and the most common olfactory function measurements in
neurodegenerative diseases. We also highlight the evidence for the presence of olfactory dysfunction in several neurodegener-
ative diseases, its value as a clinical marker for early stages of the diseases when combined with other clinical, biological, and
neuroimage markers, and its role as a useful symptom for the differential diagnosis and follow-up of disease. The neuropatho-
logical correlations and the changes in neurotransmitter systems related with olfactory dysfunction in the neurodegenerative
diseases are also described.
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Introduction

The sense of smell is important for functions such as feeding,
ability to detect hazardous odors, and social relationships
[1–3], having been hypothesized to be able to modify sexual
behavior [4], and even determine various personality attri-
butes based on body odor [5]. Olfaction is commonly defined
by several distinct abilities, such as olfactory threshold detec-
tion, identification, discrimination, and odor memory [1, 6, 7].
Quantitative olfactory functioning can be categorized as a
range of normal (normosmic) to diminished (hyposmia) and
absent (anosmia) ability to detect and correctly label odors.
Decreased olfactory function (hyposmia or anosmia) is esti-
mated to afflict 3–20% of the population [6, 8]. Numerous
factors influence the ability to smell, including physical activ-
ity, genetic factors, nutrition, smoking, sex, head trauma,
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medical treatments, and exposure to viruses [9]. Even occu-
pation involving specialized expertise and training can influ-
ence smell function, as shown by increased olfactory test
scores in sommeliers [10, 11] and perfumers [12].

Impaired olfaction negatively affects quality of life, enjoy-
ment of food, reducing challenges with maintaining personal
hygiene, greater depressive symptoms, impacting on physical
and mental well-being, and social relationships [2, 9, 13–15].
Decreased smell function impairs the ability to sense warning
odors, increasing the risk of danger from fire, environmental
toxins, leaking natural gas, and spoiled food [2, 14, 16]. Less
than a quarter of individuals with olfactory dysfunction are
conscious of their problem until tested [9]. Moreover, among
adults 70 years and older, misidentification rates for warning
odors were 20% for smoke, and 31% for natural gas [17],
being a major public health concern [18, 19].

Risk of olfactory dysfunction increases with old age and
may result from acute and chronic sinonasal disease, upper
respiratory infections, toxic chemicals, head trauma, as well
as degenerative diseases [6, 8, 20–22]. Over recent years, the
link between olfactory dysfunction and neurodegenerative
disorders has increasingly been recognized [14, 23–25]. The
high prevalence, early manifestation, persistence throughout
disease, and ease of olfactory testing have stimulated interest
in the research of olfactory dysfunction as an early marker for
neurodegenerative diseases, such as Parkinson’s disease [24,
26–30], Alzheimer’s disease [31–34], or dementia with Lewy
bodies [35, 36]. Olfactory dysfunction has also been assessed
in premotor stages of these diseases, such as in idiopathic
rapid eye movement sleep behavior disorder [9, 37]. The use
of olfaction, as biomarker for neurodegenerative diseases is
helpful in the characterization of prodromal stages of the dis-
eases, early diagnostic strategies, differential diagnosis, and
prediction of clinical outcomes of neurodegenerative diseases.
Overall, attention to olfactory function may help to improve
chances of success for neuroprotective and disease-modifying
therapeutical strategies [26, 28].

Understanding the mechanisms underlying olfactory dys-
function is central to determine its association with neurode-
generative disorders. Several anatomical systems and environ-
mental factors may underlie or contribute to olfactory loss
associated with neurological diseases [9], although the direct
biological link to each disorder remains unclear and, thus,
requires further investigation.

Neurobiology of Olfaction

The first step of odor perception starts at the nose. Olfactory
information is transmitted from the olfactory epithelium
(OE) to the olfactory bulbs (OBs), which in turn, projects
to a variety of secondary olfactory structures including the
anterior olfactory nucleus (AON), piriform cortex olfactory

tubercle, the lateral entorhinal cortex, and para-amygdaloid
complex [38, 39]. These olfactory structures are regarded as
the primary olfactory cortex. Cells in the AON are respon-
sive to odor stimulation [40] and the piriform cortex has a
significant role in modifying the processing of odors based
upon experience and learning [38, 41]. Neurons within
these secondary olfactory structures project to tertiary ol-
factory structures, which include the orbitofrontal cortex,
the insular cortex, and the dorsal hippocampus. In addition,
thalamic regions receive olfactory information from several
of the secondary olfactory structures, including the AON,
piriform cortex, and olfactory tubercle [42].

In the nasal OE, the odorant molecules interact with olfac-
tory receptor neurons (ORNs) via transmembrane G-protein-
coupled olfactory receptors (ORs) [7, 43, 44]. Once the odor-
ant interacts with the ORs, action potentials in the ORN axon
may be generated relaying odorant information into OBs [45,
46]. In mammals, ORNs express only one OR type [47, 48].
ORNs expressing the same OR innervate two glomeruli per
OB [49, 50]. In rodents, there are approximately 1000 genes
involved in odor recognition, with approximately 350 of them
coding for functional receptors in humans [27]. This enables
humans to distinguish thousands to millions of odors [43,
51–53]. The olfactory mucosa, OE, and lamina propria in-
clude supporting or sustentacular cells for stability of the ep-
ithelium and basal cells that provide regenerative capacity.
The supporting cells play an essential role in sustaining neu-
rons for proper transduction of odorant stimuli into olfactory
input [7, 27]. The OE is innervated not only by ORNs but also
by fibers from the trigeminal nerve and autonomic fibers from
the superior and cervical ganglion [2].

At OB level, axons from ORNs synapse with the den-
drites of secondary olfactory projection neurons, the mi-
tral (MCs) and tufted cells (TCs), forming a structure
called glomerulus [14]. MCs and TCs are the primary
efferent projection neurons of the OB. They are excitatory
glutamatergic neurons; their dendrites project to a single
glomerulus and receive inputs form the olfactory sensory
neurons. The incoming axons from the ORNs also synap-
se on local gamma-aminobutyric acid (GABA)ergic inter-
neurons (periglomerular cells) that are activated by gluta-
mate released from MCs and TCs, causing inhibition
within the glomerulus [14]. Glomeruli are the first synap-
tic relay in the olfactory pathway and play a basic role in
smell perception [14]. The cell bodies of MCs are located
in the mitral cell layer of the OB, whereas the cell bodies
of TCs reside in the external plexiform layer. While both
cell types are similar in their reception of monosynaptic
odor information form ORNs and their lateral dendrite
arbors, they have different physiological responses to
odors, including odor intensity coding [54].

The activity of MCs, TCs, and interneurons in the OB is
subject to neuromodulation [55]. The OB receives dense
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noradrenergic projections from the locus coeruleus, cholin-
ergic input from the horizontal limb of diagonal band of
Broca, and serotoninergic afferents from the medial and
dorsal raphe nuclei [56, 57]. Dopamine is synthesized local-
ly in the OB by dopaminergic interneurons of the
periglomerular layer [58, 59]. Interestingly, a minor input
to the OB from dopaminergic neurons from the midbrain
substantia nigra has recently been described [60].

Additional major cell types in the OB are the granule cells
that are found in the most central OB cell layer. The apical
dendrites of granule cells synapse upon and are synapsed upon
by MCs and TCs. Granule cells also receive centrifugal input
from some secondary olfactory structures [7]. Granule cells
(GABAergic and glutamatergic) are constantly renewed by
neurogenesis during adulthood in many mammalian species,
and they derive from neuroblasts originating from the
subventricular zone of the anterior forebrain that migrate to
the OB. There they differentiate and integrate into the granular
and glomerular layers of the OB [61–63].

MC and TC axons project to the secondary olfactory
structures [7, 64]. Neurons within secondary olfactory
structures project into tertiary olfactory structures [42],
and all these areas send projections back to the OB, ter-
minating primarily in the granule cell layer. Hence, the
olfactory system displays a complex system of associated
connections, as well as reciprocal direct and indirect con-
nections with other essential brain areas [24, 64].

Olfactory Testing in Neurodegenerative
Diseases

Measurement of olfactory ability in the clinical setting typi-
cally consists of odor identification, odor discrimination, and
odor detection threshold tasks [28]. Odor identification
methods consist in the presentation of a suprathreshold con-
centration of an odor, and patients must make a choice from
several items. In odor discrimination tasks, patients must dif-
ferentiate between, but not identify, odors. Similarly, an odor
discrimination/memory consists of smelling an odor, identify-
ing that odor from a set of alternatives after various delay
intervals. Odor detection thresholds are measured by present-
ing various concentrations of a given odor, usually in an as-
cending staircase series to determine the lowest concentration
at which a subtle sensation can be perceived. In contrast, the
lowest concentration at which an odor can be recognized is the
recognition threshold and should be distinguished from the
odor detection threshold [65].

Numerous tests have been used to measure olfactory
function in neurodegenerative diseases with odor identifi-
cation tests, such as the University of Pennsylvania Smell
identification Test (UPSIT) [66, 67] and the Sniffin’ Sticks
Test [68–70], being the most common. UPSIT is a scratch

and sniff test with 40 microencapsulated odorants, in which
patients must choose among four descriptors for each odor-
ant [65]. Since a number of odors are not universally recog-
nized, the UPSIT has been adapted and validated for use in
many different languages and cultures, and normative
values for age and gender have been developed. Thus, the
12-item Brief Smell Identification Test (B-SIT) [71, 72],
whose test items are derived from the UPSIT, were designed
to be cross-cultural in familiarity [71]. In addition, cultural-
specific tests have been developed as well. These tests in-
clude the Barcelona Smell Test-24 (BAST-24) for Spain
[73], the Odor Stick Identification test for Japan (OSIT-J)
[74], and the Italian olfactory identification test (IOIT) [75].
BAST-24 evaluates not only forced-choice identification
but also detection and identification of odors [73]. The
Sniffin’ Sticks test includes a forced odor identification task
for 16 odors performed by means of a list of four (multiple
choice), and odor threshold test and an odor discrimination
task [68, 69]. Like the UPSIT, it has been adapted and val-
idated for use in many different languages and cultures, and
normative values exist in relation to age and gender.

The usefulness of a fast and easy-to-use visual analogue
scale (VAS) for the evaluation of the olfactory deficit has
recently been evaluated in allergic rhinitis [76], trauma brain
injury [22], and Parkinson’s disease [77]. In Parkinson’s dis-
ease, the VAS scores showed a significant correlation with the
UPSIT and BAST-24 forced-choice identification scores [77].
According to these studies, the VAS test could be considered a
quick and easy-to-use tool to screen and identify subjects with
various degrees of smell loss.

Olfactory Dysfunction Associated
with Normal Aging

Epidemiological studies show that the prevalence and severity
of olfactory dysfunction increases with age [3, 6, 14, 25, 78,
79]. Thus, 10% of people older than 65 years have some form
of olfactory dysfunction ranging frommild loss to anosmia [2,
9, 80, 81], affecting 62 to 80% of persons older than 80 years
[14, 15, 25, 82]. In general, age-related olfactory dysfunction
is more severe in men than in women [82, 83]. This is in
agreement with the observation that overall women have a
better olfaction function than men [6, 78]. This sex difference
may be related to differences in the number of human OB cells
in individuals. Thus, a study confirmed sex differences in the
total number of OB cells in humans, showing that females had
40–50% more OB cells than males [84], which might explain
the different olfactory function and decline in both sexes.

Olfactory disorders may underlie alterations at different
levels of the nervous system [79]. Olfactory dsyfunction can
result from alterations of the detection threshold due to im-
pairments at the peripheral nervous system level. To some
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degree, alterations in discrimination ability and identification
ability are due to impairment at the central nervous system
level requiring higher levels of cognitive control [25, 79,
85]. The question of how the age-related olfactory decline
relates to degeneration of the peripheral and central olfactory
nervous system is still unknown. In aging, odor threshold has
been described to be impaired [86], suggesting that age-
related changes in olfactory function may be due to damage
of the OE. Odor identification and memory deficits have also
been documented in elderly individuals [87]. Moreover, func-
tional magnetic resonance imaging (fMRI) studies have found
that activation in olfactory-related structures, such as the
piriform cortex, the amygdala, the entorhinal cortex, and in
olfactory-related regions of the cerebellum is decreased in
aged individuals [88–90], suggesting that central olfactory
system is also involved in aging-related olfactory dysfunction.

The mechanisms underlying olfactory dysfunction with ad-
vancing age are still unclear [3, 91]. However, several factors
may contribute to olfactory dysfunction in aging including
increased propensity for nasal disease, nasal engorgement,
reduction in the width of foramina in the cribriform plate, loss
of selectivity of receptor cells to odorants, reduction in muco-
sal metabolizing enzymes, decrease in mucosal blood flow,
changes in neurotransmitter and neuromodulator systems, as
well as structural and functional abnormalities in the olfactory
system [2, 7, 14, 15, 25, 79, 92].

Age-related changes in the OE include a thinning of the
epithelium, and a decline of ORNs that generally starts after
65 years of age [3, 4, 7, 14, 93], with the OE gradually being
replaced by respiratory epithelia [94, 95]. These changes in
the OEmay be partly due to the reduced regenerative capacity
of the ORNs [96]. Thus, it has been suggested that in the
absence of efficient ORN regeneration, damage due to insults
(e.g., exposure to toxins, respiratory tract infections) may ac-
cumulate to form permanent damage [25].

The size of the OB and the number of its laminae decreases
with age, reflecting generalized atrophy and loss of neuronal
elements secondary to OE damage [14]. In line with ORN
damage, in patients with olfactory deficit, a reduction in the
OB volume has been shown [25, 97–100]. However, in our,
and others, previous studies, a lack of correlation of specific
components of the sense of smell, such as odor threshold, odor
discrimination, and odor identification and OB volume has
been shown [101, 102••].

Age-dependent alterations also include a reduction in the
volume of the hippocampus, amygdala, piriform cortex, and
AON [15, 103]. Changes in the number, volume, and local-
ization of islands of Calleja within the olfactory tubercle, a
cortical structure receiving monosynaptic input from the
OB, have been also shown and may be a contributor to
pathological changes in the olfactory cortex function and
olfactory perception [104]. In cognitively normal older in-
dividuals, worse odor identification has been associated

with increased cortical amyloid, and with neurofibrillary
pathology in the entorhinal cortex and hippocampus [32,
105]. Thus, olfactory functioning may be a valid indicator
of the integrity of the aging brain [14].

A relevant observation is that impaired odor identification
is associated with increased mortality risk in aged adults [14,
105–107]. The exact cause of this association is not known,
but olfactory deficits may lead to an increase in accidents in
the home, because of the inability to smell and taste food that
is unsafe or not smelling a gas leak or fire, and this may
increase mortality risk. It has also been suggested that the
association of olfactory dysfunction with increased mortality
in older individuals may be mediated by cognitive impairment
[106, 107]. Lastly, it appears as if olfactory function is a good
indicator of general health [108, 109].

Several studies indicate that odor identification deficits
are associated with future cognitive decline [81, 110,
111]. In addition, olfactory dysfunction in cognitive nor-
mal persons could represent preclinical neurodegenerative
disorders [2, 9, 14, 15, 24], being useful as part of a
preclinical detection strategy and for enrollment in neuro-
protective therapeutic strategies.

Olfactory Dysfunction in Neurodegenerative
Diseases

An impaired sense of smell is associated with many neurode-
generative diseases [72, 79, 112–114]. Olfactory dysfunction
is regarded as a clinical correlate of incidental Lewy body
disease (iLBD), Parkinson’s disease (PD), dementia with
Lewy bodies (DLB), idiopathic rapid eye movement (REM)
sleep behavior (iRBD), mild cognitive impairment (MCI), and
Alzheimer’s disease (AD) [9, 115–119].

Olfactory dysfunction can appear early, frequently preced-
ing the motor and cognitive symptoms, being considered a
prodromal symptom of some neurodegenerative diseases such
as PD and AD [24, 120, 121]. Furthermore, pathological pro-
tein aggregates seem to affect olfactory regions prior to other
regions, suggesting that the olfactory system might be partic-
ularly vulnerable to neurodegenerative diseases [7, 9]. Indeed,
OB pathology is prevalent in the early stages of some neuro-
logical disorders [122, 123]. The reason why these disorders
affect the olfactory system early is still unknown. It has been
suggested that given the ubiquitous but varying degrees of
olfactory dysfunction among such diseases, a differential dis-
ruption of a common primordial neuropathological substrate
might cause these differences in olfactory function [9].

Several anatomical systems and environmental factors
may underlie olfactory loss associated with neurodegener-
ative diseases, although the biological link to each disorder
remains unclear [9]. One hypothesis claims that pathogenic
agents enter in the OE. This so-called vector hypothesis
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suggests that the OE and OB allow pathogen and toxin pen-
etration into the brain [7, 124, 125]. Identifying the mecha-
nisms whereby neurodegenerative disorders progress
throughout the brain is of critical importance both for the
development of early diagnostic methods and for possible
modulation of disease progression [7].

The high prevalence, the early presence, persistence
throughout disease, and ease of olfactory testing have in-
creased the interest in the use of olfaction dysfunction as
biomarker for early diagnostic strategies, differential diag-
nostic, and prediction of clinical outcomes of neurodegen-
erative diseases.

Incidental Lewy Body Disease

iLBD describes autopsied individuals who have abnormal
alpha-synuclein (α-synuclein) aggregates in the central ner-
vous system, the so-called Lewy bodies and Lewy neuritis,
without clinical findings of parkinsonism or cognitive decline
[117, 126, 127]. Up to 30% of autopsied individuals over age
65 have iLBD in some neuropathological series [128, 129].
Lewy type-α-synucleopathy has been found in OBs and ol-
factory tracts in iLBD patients, and it has been hypothesized
that iLBD may represent preclinical PD or DLB [117, 126,
127]. A marked decrease in the UPSIT scores in the iLBD
patients has been described, although the number of cases in
these studies was very low [117, 126, 130].

REM Sleep Behavior Disorder

REM sleep behavior disorder (RBD) is a parasomnia charac-
terized by a dream-enacting behavior and the loss of atonia
during the phase REM of sleep [131, 132]. iRBD is increas-
ingly recognized as a prodromal stage of neurodegenerative
diseases, most frequently PD and DLB [131]. Odor identifi-
cation deficits in iRBD patients have been repeatedly shown
[37, 119, 133]. Moreover, the baseline of olfactory perfor-
mance of those iRBD patients who convert to a synucleopathy
in less than 5 years is in the range of performance of patients
with PD, whereas non-converters have significantly better
smell function [37].

Parkinson’s Disease

PD is the second most common neurodegenerative disorder
affecting about 1% of the population over 60 years of age
[134]. The diagnosis of PD is based on the presence of
motor symptoms such as bradykinesia, rigidity, tremor,
and postural instability, usually manifesting unilaterally or
asymmetrically [135]. Motor features in PD are predomi-
nantly a consequence of the loss of dopamineergic neurons
in the substantia nigra pars compacta, and the symptomatic
therapy used currently focuses on dopamine replacement

strategies [135]. The main pathologic hallmark of PD is
the presence of abnormal intraneuronal aggregates of the
proteinα-synuclein, termed Lewy bodies and Lewy neuritis
in several structures of the central nervous system [123,
136]. In addition to parkinsonism, several non-motor symp-
toms are also part of the clinical spectrum of PD, including
hyposmia, sleep disturbances, autonomic abnormalities, ap-
athy, pain, and cognitive impairment [135, 137, 138]. These
non-motor symptoms reflect the involvement of other brain
regions beyond the substantia nigra [123].

Olfactory Dysfunction in PD

Among the most salient non-motor symptoms of PD is ol-
factory dysfunction [2, 24, 28, 139], present both in familial
[140–142], and sporadic PD [24, 28, 143], with a prevalence
ranging between 50 and 96% [24, 139, 144–146]. Anosmia
occurs only in a minority of PD patients while hyposmia is
more common [7, 66]. PD-associated olfactory dysfunction
involves several domains of odor perception [147].
Detection threshold that requires a lower level of perceptual
processing is impaired in PD patients. In addition, odor de-
tection, discrimination, and identification that are consid-
ered be dependent on central processing, are severely affect-
ed in PD [24, 47, 65, 148]. Up to 72% of PD patients with
olfactory dysfunction have been found to be unaware of
their olfactory deficit [66], being frequently difficult to
quantify the loss of smell since subjective symptoms do
not always correspond to the real degree of olfactory dys-
function [134].

It has been suggested that detection of certain odors might
be selectively compromised in PD [149]. However, when
comparing studies using different tests, a set of odorants spe-
cific to PD has not been found [30, 150]. The lack of speci-
ficity to PDmay also reflect the absence of specific damage to/
lack of different receptor types, either at the OE or OB levels
[30]. Moreover, it must be taken in consideration that most
odorants used in the olfactory tests are composed of multiple
chemicals, and different combinations of chemicals can pro-
duce the same smell [30].

Epidemiological studies have indicated an inverse asso-
ciation between smoking and PD [151–153]. PD risk is
lowest among subjects with the longest duration of
smoking, the greatest lifetime dose of smoking, the most
cigarettes smoked per day, and, in past smokers, the fewest
years since quitting [153]. On the other hand, olfactory
function was less attenuated in current cigarette smokers
with PD than in past or never smokers with PD [153, 154].
This observation is in agreement with recent findings on
general population showing that smoking habit is associated
with a better smell recognition/memory [6].

The use of complementary measures of the olfactory sys-
tem in PD has been explored, such as biopsies of the OE,
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measurements of OB volume, and functional neuroimaging,
as potential biomarkers in PD. No specific pathological
changes in the OE biopsies of PD patients compared with
non-PD patients have been found [155–157]. When using
structural magnetic resonance imaging (MRI), mixed re-
sults have been found. On a structural level, a reduced OB
volume in PD patients compared with healthy controls has
been described, suggesting that morphological abnormali-
ties of the OBmay contribute to the olfactory dysfunction in
PD [158–161]. Moreover, the volume of the OBs and tracts
was significantly smaller in patients with PD than in other
PD-related disorders, suggesting that OB volumes allow to
not only distinguish PD patients from healthy individuals
but also potentially differentiate PD from atypical parkinso-
nian syndromes [162]. However, most studies have shown
no difference in OB volumes between PD and controls, as
well as no correlation between volume and disease charac-
teristics, such as duration, motor symptom scores, or sever-
ity of olfactory impairment [100, 163–165]. Although
methodological differences in the studies may be taken in
account for the controversial results, it has been proposed
that OB volumes cannot be used as a screening test to diag-
nose presymptomatic PD patients [164]. By using voxel-
wise analysis of diffusion-weighted imaging (DWI), an in-
creased diffusivity in the olfactory tract of early PD patients
has been observed [166]. In addition, PD patients with an-
osmia had reduced fractional anisotropy (FA) values, in
contrast with the PD patients without severe olfactory dys-
function and the healthy controls [167]. All these studies
suggest an abnormal structural integrity in the central olfac-
tory structures in PD patients [167, 168].

Based on functional fMRI studies, a reduced neuronal ac-
tivity in the amygdala and hippocampus has been reported in
PD patients in the presence of olfactory stimuli inside the
scanner [169] and a decreased functional connectivity in the
primary olfactory cortices as well as the secondary olfactory
structures compared with controls [170].

Olfactory Dysfunction as a Biomarker for Early PD and Disease
Progression

PD has a premotor period of several years [171, 172].
Olfactory dysfunction is often one of the first manifestations
of the disease, preceding the appearance of the classical motor
symptoms by at least 5 years [9, 14, 28, 135, 143, 173–175]
and may be considered a biomarker for the diagnosis of PD in
its early premotor stages, as well as for the prediction of symp-
tom progression [26, 27, 173, 174]. Earlier detection of PD
would enable testing of potential disease-modifying treatment
strategies when pathology is less advanced and treatments
may be more effective [28, 135].

Many studies have demonstrated an association between
olfactory dysfunction and an increased risk to develop PD

[33, 143, 171, 173, 174, 176]. These findings are supported
by clinic-pathologic studies demonstrating higher odds of in-
cidental Lewy body pathology on autopsy for hyposmic pa-
tients without clinical symptoms of PD compared with
normosmic participants [126, 177]. Further, a reduced intrin-
sic integrity of the substantia nigra in patients with unex-
plained smell loss support the PD at-risk status of these pa-
tients [178]. Due to many other causes of hyposmia in other
disorders and the general population [28], combining olfac-
tion with other markers of premotor PD improves the positive
predictive values [176, 179, 180].

Dopaminergic imaging with single-photon emission
computed tomography (SPECT) is highly specific for the
dopaminergic deficit seen in parkinsonian disorders and can
be used to identify a high-risk group for PD since it has been
demonstrated that dopamine transporter imaging deficit
precedes a PD diagnosis by several years [132, 181].
Moreover, using olfactory testing in clinically unaffected
first-degree relatives of PD patients with a 5-year follow-
up showed that all of the hyposmic individuals who went on
to develop PD had an abnormal dopamine transporter im-
aging at baseline [180]. In addition, the combination of
hyposmia and dopamine transporter imaging deficits may
be highly predictive of conversion to PD within 4 years of
clinical follow-up, as recently shown [182].

In addition to serving as a marker of early PD, olfactory
function has also been studied as a potential marker of dis-
ease progression [28]. Early studies suggested that olfactory
dysfunction in PD remains stable over time, appearing in-
dependent of disease severity, disease duration, or dopa-
mine transporter abnormalities [66, 183]. However, more
recent longitudinal studies have shown that olfactory im-
pairment was not stable, although it did not deteriorate in a
linear fashion [174, 184, 185] and that marked changes in
olfactory threshold and odor discrimination alterations cor-
relate with more rapid disease progression [185–187] and
dopamine transporter imaging [179, 188].

Olfactory Deficit and Cognitive Decline in PD

Cognitive decline is frequent in PD, especially in the later
years of the disease, and they are often present in people with
PD aged over 70 years regardless of the age at disease onset
[135]. Cognitive decline in PD presents usually as several
specific cognitive domains, including episodic verbal learning
and verbal memory, attention, and executive function [26,
135, 173, 189–191].

The correlation between olfactory dysfunction and cogni-
tive decline in PD has been examined in both cross-sectional
and longitudinal studies, suggesting that olfactory dysfunction
may serve as a predictor of cognitive decline [7, 28, 192]. In
newly diagnosed PD patients, it has been reported that olfac-
tory dysfunction increases the risk of dementia up to 10 years
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after PD diagnosis regardless of baseline cognitive function,
age, gender, and motor dysfunction decline [192, 193] al-
though several studies have suggested that only PD patients
with severe hyposmia and mild cognitive impairments devel-
oped severe dementia after 3 years [194, 195]. On the other
hand, being normosmic with normal cognition at baseline is a
good predictor of a stable cognitive function up to 10 years
after diagnosis [192].

Because it is a marker of high sensitivity, olfaction may be
used in combination with other putative biomarkers in order to
increase specificity as a predictor of cognitive decline in PD
[190]. Cerebrospinal fluid (CSF) biomarkers, including tau
and Aβ1-42 have been associated with cognitive impairment
in PD and DLB [196, 197] and reduced CSFAβ1-42 being an
independent predictor of cognitive decline in two mixed stage
PD cohorts [198, 199].

Olfactory Dysfunction and PD Differential Diagnosis

Olfactory dysfunction has been suggested to be useful in
distinguishing PD from other neurodegenerative diseases.
Several studies have focused at olfactory function in par-
kinsonian syndromes, suggesting olfactory dysfunction as
a clinical marker to distinguish PD from other parkinson-
isms [200–202]. A preserved or only mildly impaired ol-
factory function in a parkinsonian patient is more likely to
be related to atypical parkinsonism such as MSA, PSP, or
CBD, whereas markedly reduced olfaction is more sug-
gestive of PD [200–203].

In addition, patients with tauopathies associated with par-
kinsonism, such as CBD and PSP, tend to have fairly normal
olfactory function, frequently indistinguishable from healthy
controls [201, 204, 205], helping to differentiate these disor-
ders from PD and MSA [29, 205]. MSA patients may experi-
ence olfactory dysfunction although the severity of the smell
loss is less pronounced than in PD patients, tending to have
olfactory impairment intermediate between PD and the
tauopathies [202–205].

Olfactory function may be used to differentiate PD from
other forms of parkinsonism, such as drug-induced parkinson-
ism (DIP) and vascular parkinsonism [28]. DIP patients usu-
ally had normal or close to normal olfaction that facilitates the
identification of patients with “unmasked” PD [26, 206].
Similarly, when comparing olfactory function in patients with
vascular parkinsonism and PD, the patients with PD showed
lower olfactory scores, whereas those with vascular parkin-
sonism are not different from healthy controls [207].

Olfactory Dysfunction in Genetic PD

Olfactory dysfunction in genetic forms of PD shows hetero-
geneity depending on the affected gene [24, 208]. The most
common cause of inherited parkinsonism are the mutations in

the leucine-rich repeat kinase 2 (LRRK2) gene that account for
a relevant proportion of familial and sporadic PD cases [141,
142, 209, 210]. Several causal mutations have been found in
the LRRK2 gene, being the G2019S mutation the most com-
mon worlwide [211]. Hyposmia has been reported to be ap-
proximately 30% less frequent in LRRK2-PD patients than in
idiopathic PD [212–215]. In addition, olfactory function pre-
sents better UPSIT scores in LRRK2 G2019S PD than in idi-
opathic PD patients [77, 141, 142, 212, 216]. The causes for
the differences in olfactory function between LRRK2-PD and
idiopathic PD remain unknown. Less-severe involvement of
olfactory structures or a more heterogeneous pathology in
LRRK2-PD has been suggested to account for such differences
[217, 218]. Olfactory function seems to be particularly pre-
served in females with the G2019S mutation, suggesting a
gender effect in the expression of some LRRK2-PD symptoms
[212]. Several studies suggested that asymptomatic carriers of
the LRRK2 G2019S mutation are not more hyposmic than
healthy controls [183, 215, 219], suggesting that olfactory
dysfunction is not a common symptom at the prodromal phase
of LRRK2 G2019S-associated PD, being not a good predictor
of conversion to PD at the premotor stage [219].

Other cause of genetic PD is that linked to α-synuclein
gene alterations. Patients carrying the A53T mutation of the
α-synuclein gene presented with hyposmia, while no olfac-
tory deficits were observed in carriers of the α-synuclein
E46K mutation [220–222]. The most-frequent form of ge-
netic PD with autosomal recessive inheritance is that asso-
ciated to mutations in the Parkin gene. In these patients, the
absence of olfactory dysfunction is common [223, 224]. In
patients with mutations in the PINK1 gene, other less-
frequent form of recessive PD, olfactory abnormalities have
been described [225].

PD patient carriers of a mutation in the glucocerebrosidase
(GBA) gene, the most common risk factor for PD, seems to
have impaired olfaction after the appearance of motor symp-
toms [226–228].

Mechanisms Involved in Olfactory Dysfunction in PD

The origin of olfactory dysfunction in PD remains currently
unknown, but it is believed to relate both peripheral and cen-
tral olfactory impairments [7]. The mechanisms involved in
the loss of smell in PD may involve neuropathological alter-
ations and/or dysfunction caused by changes in neurotransmit-
ter levels in the olfactory system [28].

Neuropathological Correlates of Olfactory Dysfunction in PD
The olfactory system is among the earliest brain regions
involved in PD before involvement of the nigrostriatal
pathway [123, 143]. According to Braak staging of the
disease, Lewy pathology begins in the OB and dorsal

Curr Allergy Asthma Rep (2018) 18: 42 Page 7 of 19 42



motor nucleus of the vagus, consistent with the early on-
set of olfactory dysfunction [7, 9, 123, 153, 192, 229].

It has been hypothesized that one of the initial events in PD
is a pathogenic access to the brain through the nasopharynx,
resulting in olfactory dysfunction [154]. This “vector hypoth-
esis” has also been discussed for the pathogenesis of other
neurodegenerative diseases associated with hyposmia such
as AD [124]. It has been suggested thatα-synuclein pathology
may spread from peripheral to central olfactory structures
[124]. This is supported by the observation that in PD cases
and controls with incidental Lewy bodies,α-synuclein pathol-
ogy in the OB and associated structures is found [230]. Recent
work in rodents using microinjections of α-synuclein fibrils
into the OB demonstrate that the olfactory route can be a
vector of pathology spreading into the substantia nigra and
other regions involved in later stages of PD [7, 231••, 232].
Specifically, they found that α-synuclein aggregates progres-
sively spread from the OB to a total of over 40 different brain
subregions bilaterally over the course of 12 months, and that
the progressive development of synucleopathy was coupled to
the emergence of specific olfactory deficits [231••].

Until now, however, there is little information about possi-
ble PD-specific changes at the peripheral level of the olfactory
system. The involvement of OE on olfactory loss, have not yet
been defined. While it has been suggested that the OE may
offer a diagnostic target, several studies have shown no sig-
nificant differences in immunohistochemical markers, includ-
ing differentα-synuclein subtypes, of OE in PD patients when
compared with controls [155, 233]. These observations sug-
gested that the alterations in olfaction in PD may be not to be
directly associated with specific changes in the OE but with
processes associated with Lewy body formation in central
olfactory areas [135, 144, 230]. In addition, the study of the
EEG components in PD patients has provided evidence for a
decline of central brain networks as a causal factor for olfac-
tory loss in PD [168].

At the OB level, it has been described that the synucleopathy
density scores are correlated with UPDRS motor scores, sug-
gesting that α-synuclein pathology develops early and con-
tinues to accumulate [127]. α-Synuclein inclusions are found
in interneurons, in the internal plexiform layer, and less fre-
quently in MCs and TCs, which raises the possibility that these
relay neurons might be more resistant to developing α-
synuclein aggregates than other neurons [24, 230]. A role of
MCs and TCs in the propagation of pathology to connected
regions is, however, not excluded [7]. PD patients also showed
a loss of MCs, but dopaminergic are rarely affected in either the
OB or associated nuclei [234]. Moreover, an increase in
periglomerular dopaminergic neurons [235–237] and a direct
axonal dopaminergic projection from the substantia nigra to the
OB have been described [60], suggesting a relevant role of
dopamine in olfactory dysfunction [102••].α-Synuclein pathol-
ogy has been found across the central olfactory system,

including the AON, cortical nucleus of the amygdala, piriform
cortex, olfactory tubercle, entorhinal cortex, and orbitofrontal
cortex [230, 238, 239]. The cortical nucleus of amygdala re-
ceives the primary OB projections showing more α-synuclein
pathology and neuronal loss than other nuclei in the amygdala
[240]. As a result, the volume of the amygdala is reduced by
20% [240]. The loss of volume in the amygdala and the
piriform cortex inversely correlates with olfactory deficits sug-
gesting that cell loss in these regions could contribute to the
functional deficits [189, 241].

In addition to α-synuclein pathology, tau pathology has
also been found in the AON in PD [237, 242]. Interestingly,
patients with CBD and PSP, parkinsonian disorders with little
or no olfactory loss, did not demonstrate tau pathology in the
AON, suggesting that tau pathology may contribute to olfac-
tory impairment in PD [237, 242].

Neurotransmitter Systems in Olfactory Dysfunctions in PD In
addition to the dopaminergic system, progressive degenera-
tion of the cholinergic and serotoninergic neuromodulatory
systems innervating olfactory structures has been suggested
to correlate with olfactory loss [24, 102••, 134, 243].

Dopamine Dopamine has long been known to play a major
role in the pathogenesis of PD, but more recently, its asso-
ciation with olfactory loss has been investigated. The OBs
contain a population of approximately 10% of dopaminer-
gic interneurons within the glomerular layer and dopamine
receptors are expressed in the OB, specifically D2-like re-
ceptor in the periphery and D1-like receptor in the cores and
in the external plexiform layer [244, 245]. Dopaminergic
interneurons participate in olfactory processing, and deter-
mine olfactory abilities, such as perception, discrimination,
and olfactory social interactions [58, 60, 102••, 246–248].
In addition, a high plasticity of the OB dopaminergic neu-
rons in response to manipulation of the olfactory pathway
has been reported. Thus, odor deprivation by naris occlu-
sion selectively reduces the number of adult-generated do-
paminergic cells [249, 250], which recover after naris
reopening [250]. Moreover, in preclinical studies, the ad-
ministration of a selective dopamine D2 receptor agonist
either systemically or locally to the OB decreases odor de-
tection performance [247], whereas a dopamine D1 receptor
agonist has the opposite effect [247, 251]. These findings
suggest that the dopaminergic neurons inhibit olfactory per-
ception via D2 receptors and stimulate it via D1 receptors

Whether alterations in dopamine activity are directly asso-
ciated with olfactory dysfunctions in PD is still unknown.
Several studies have demonstrated correlations between olfac-
tory tests and a decrease in dopamine transporter activity in
the substantia nigra and striatum in PD patients [188, 252,
253]. However, olfaction has not been found to be responsive
to dopaminergic replacement therapy [183]. On the other
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hand, the fact that the number of striatal dopaminergic neurons
is generally decreased in PD [158, 254] is confronted with a
100% increase of tyrosine hydroxylase-positive (TH, the key
enzyme of the dopamine pathway) cell numbers at the level of
the OB that has been described in PD patients [235]. In addi-
tion, it has been reported that increasing inhibitory action of
dopaminergic interneurons would account for hyposmia in
these patients [184]. In a more recent study, however, investi-
gating approximately twice as many subjects, the same au-
thors found similar number of OB TH-positive cells in male
controls and male PD patients, suggesting that hyposmia in
PD patients may be not explained by an increase in BO dopa-
minergic neurons [235]. Despite these controversial results
regarding the number of BO TH-positive cells in PD patients,
a role of dopamine in olfactory dysfunction in PD must be
considered. Moreover, the recently described direct dopami-
nergic projection from the substantia nigra to the OB provides
a new neuroanatomical basis for altered dopaminergic neuro-
transmission in hyposmia in PD

Acetylcholine Cholinergic innervation of the OBs arises from
the horizontal limb of the diagonal band of Broca to the glo-
merular layer and moderately in the subglomerular layers [56,
255]. The OBs express both muscarinic and nicotinic acetyl-
choline receptors [256–258]. Several studies have demonstrat-
ed that acetylcholine release and activation of acetylcholine
receptors facilitate olfactory learning, memory, and odor dis-
crimination [259–262]. The cholinergic system has been as-
sociated with olfactory dysfunction in PD since Lewy bodies
and neuronal loss in the substantia nigra occurs concurrently
with accumulation of α-synuclein deposition in cholinergic
neurons of the basal forebrain [24, 123, 263, 264].

The protective effect of smoking on odor recognition that
has been described in PD patients [153, 154] could reflect
the agonist effect of nicotine on the cholinergic system.
However, the association between changes in acetylcholine
levels and olfactory impairment has been described as not
specific for PD [9].

Serotonin Serotonin arises from the raphe nuclei, which send
projections to the OB [57, 265]. Serotonergic fibers are dens-
est in the glomerular layer, which is innervated by the median
raphe nucleus [266]. Fibers from the dorsal raphe, however,
target the mitral and granule cell layers of the OB, as well as
the piriform cortex and the amygdala [265].

The major effect of serotonin in the OB is the modulation
of MC activity, being predominantly excitatory although inhi-
bition was observed to a lesser frequency at the accessory
olfactory bulb level [57, 267]. Neuromodulation of olfactory
circuits by acetylcholine plays an important role in odor dis-
crimination and learning [265].

In patients with PD, Lewy pathology is found in the raphe
nuclei [123], along with marked depletion of serotonin in the

OB and other areas of the olfactory system [268, 269], where-
as a preservation of serotonin was found in disorders with
normal or close to normal olfaction, such as PSP [270].
Although the evidence is still far from conclusive, these ob-
servations suggest that alterations in serotonin levels may
have a role in the olfactory dysfunction in PD [269].

Dementia with Lewy bodies

DLB is diagnosed when cognitive impairment precedes par-
kinsonian motor signs or begins within 1 year from its onset
[271]. In DLB, olfactory deficits are similar to PD being often
apparent in early stages of the disease and considered part of
the emerging concept of prodromal DLB [271, 272]. Similar
to those with iLBD, patients with DLB frequently exhibit
severe pathology in the OB; however, studying the olfactory
mucosa α-synuclein pathology has been found only in the
cribrifrom plate [273].

Similarly as that which occurs in PD, in addition to α-
synuclein pathology, DLB also displays tau and Aβ pathology
[274], suggesting, as already mentioned, a role for aggregated
tau in the olfactory dysfunction of synucleopathies.

Alzheimer’s Disease

AD is the most common neurodegenerative disorder in older
individuals, clinically characterized by progressive deteriora-
tion in cognitive functions and dementia [275]. AD accounts
for 60–80% of all cases of dementia [276], with an annual
incidence of 1% in persons aged 60–70 years and 6–8% in
those aged 85 years or more [277]. The prevalence of AD will
continue to increase alongside the longevity of the population
[276]. The pathological hallmarks of AD are neuronal loss, the
accumulation of amyloid-β plaques, and phosphorylated tau
protein neurofibrillary tangles (NFTs), which may contribute
to the neurodegenerative processes [275, 276].

Olfactory Dysfunction in AD

One of the earliest brain regions affected by AD is the olfac-
tory system showing amyloid plaques and NFTs, with olfac-
tory dysfunction being an early symptom of AD [276, 278,
279]. Approximately 85% of patients with early-stage AD
exhibit olfactory dysfunction [276], being developed prior to
the appearance of cognitive dysfunction [280, 281].

Deficits in odor detection, identification ability, recogni-
tion, discrimination, and long-term odor recognition memory
have been reported in AD [80, 147, 280]. However, odor
identification, defined as the ability to identify and name spe-
cific odorants, and discrimination are more severely impaired
than odor detection [7, 148]. Studies involving odor discrim-
ination abilities in AD patients have been more criticized than
studies on odor identification [79]. The main reason is that—
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possibly—olfactory discrimination requires recomplex pro-
cessing than odor identification [79, 282].

The overall severity of olfactory dysfunction in AD is sim-
ilar to that in PD; however, PD patients present more severe
impairment of detection threshold [7]. These findings suggest
that the neuroanatomical pathology underlying olfactory im-
pairment in AD versus PD are to some extent different [7].
Since low odor identification scores have been associated with
higher levels of AD pathology in central olfactory structures
[283], this suggests that AD patients are more affected in
higher-order olfactory tasks than to the inability of odor infor-
mation to enter the brain [7, 148].

Olfactory dysfunction in AD is often unnoticed. Only
6% of AD patients complain at an early stage about a
decrease in olfactory function whereas 90% of these pa-
tients demonstrated a significant impairment in the olfac-
tory test [284, 285]. It has ben proposed that MCI patients
with a low olfactory function score are considered more
likely to develop AD, especially those with a low olfac-
tory function score who are not aware of their problems in
the sense of smell [284].

In longitudinal studies, reduced olfactory identifica-
tion performance predicts faster cognitive decline in
older controls and persons with mild cognitive impair-
ment or AD dementia [33, 105, 286].

Olfactory Dysfunction as a Predictor for MCI to AD Conversion

The gradual onset and slow progression of AD poses a chal-
lenge for early differentiation of AD from other causes of
cognitive decline, including healthy aging and MCI [276].
After initial studies establishing the presence of olfactory
dysfunction in AD patients compared with cognitively in-
tact subjects [287], subsequent research has focused on the
use of odor identification impairments for predicting the
conversion from MCI to AD [286].

Thus, prospective cohort studies established that olfacto-
ry deficit infers risk for development of cognitive impair-
ment [110]. A clear increase in odor identification deficits
predicting conversion from cognitively intact individuals to
MCI and to AD has been reported [34, 284, 286]. In MCI
patients, baseline odor identification deficits were associat-
ed with a fourfold increased risk of conversion to AD [34,
284, 286]. Thus, results of a 2-year follow-up showed that
47% of MCI patients with olfactory impairment and 11% of
MCI patients with a normal sense of smell eventually de-
veloped AD [288]. Olfactory deficit defined as UPSIT score
equal or lower than 34 out of 40 in participants with MCI
predicted conversion to AD at 2-year follow-up [284].
Impairment in odor discrimination also occurs in patients
with MCI and AD but is slightly less robust than odor iden-
tification in distinguishing patient groups [282].

A meta-analysis suggested that the combination of odor
identification tests with clinical/neuropsychological assess-
ment and imaging biomarkers could be the most useful tool
to detect subclinical AD and predict the conversion fromMCI
to AD [148]. In this line, a 3-year follow-up showed that a
combination of olfactory function impairment, verbal memo-
ry, hippocampus volume, and entorhinal cortex volume had a
strong predictive value (90% specificity and 85.2% sensitivi-
ty) for AD converting from MCI [289].

Based on currently available knowledge, the importance of
olfactory assessment in daily clinical practice should be rec-
ognized. In addition, olfactory function tests should be incor-
porated in the assessment of high-risk populations for demen-
tia to screen systematically for subclinical AD [114].

Mechanisms Involved in Olfactory Dysfunction in AD

Neurodegeneration and Olfactory Dysfunction in AD The pre-
cise mechanisms underlying olfactory dysfunction in AD are
still largely unknown. Diminished olfactory identification has
been associated with markers of neurodegeneration, such as
reduced entorhinal cortical thickness, hippocampus, and
amygdala volumes [32, 289]. Additionally, loss of left hippo-
campal volume has been associated with the performance of
odor recognition tasks in AD patients [290]. Moreover, using
fMRI, it has been shown that the blood oxygenation level-
dependent signal in the primary olfactory cortex was weaker
in patients with early-stage AD than in healthy controls [291].

Neuropathological Correlates of Olfactory Dysfunction in AD
At the neuropathological level, in AD patients, amyloid and
tau deposits have been found throughout the olfactory path-
ways, including temporal piriform cortex [79, 105, 116]. In
the OBs, a minimal number of amyloid plaques have been
also found, although the NFTs with abnormally phosphor-
ylated tau protein are typically higher [242, 292].

Although the local mechanisms related to Aβ-
associated pathophysiology in olfactory regions are still
unknown, several studies have implicated a close relation-
ship between the spatial and temporal patterns of Aβ and
olfactory dysfunction in AD [293, 294]. Aβ is present in
the OE of 71% of AD cases but only in 22% of normal
control cases [279]. The increased expression of
presenilin proteins (PS1 and PS2), the catalytic compo-
nents of protease complexes that directly cleave the amy-
loid precursor protein, exclusively occurring in the OE
enlighted the possibility for a feasible biomarker in the
preclinical stages, since it can be observed at early stages
of AD [279]. However, the progression of Aβ plaques in
the brain is less predictable than that of NFTs [7]. Thus,
the involvement of Aβ plaques in the olfactory function
might be subject to a lot of variance [7]. Moreover, in
vivo imaging studies have shown weak associations
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between amyloid and olfactory impairments [15, 32, 278].
In spite of a recent study showing that Aβ disturbs local
GABAergic neuron circuits through both presynaptic and
postsynaptic mechanisms that might affect the odorant
information process resulting in abnormal outputs form
MCs [295], previous data suggest that AD-related odor
identification deficits are not directly related to fibrillar
Aβ burden, ascribing olfactory deficits to other neuro-
pathologic features such as NFTs [296••].

All together suggests that impairments in odor identifica-
tion tests could be more associated with tau deposition and
neurodegeneration in regions involved in olfactory process-
ing. In this line, odor identification deficits in early AD has
been associated with NFTs in the OB, and olfactory projection
areas [105, 277, 297], especially in the entorhinal cortex, and
hippocampus CA1 region [105, 278, 296••]. According to
Braak and Braak staging of the neuropathology in AD [122],
as the disease progresses, three main stages can be distin-
guished based on the distribution of neurofibrillary tangles:
trans-entorhinal, limbic, and neocortical stages [14, 242].
Tau aggregates that make up the NFTs in AD and other
tauopathies have been shown to be capable of undergoing
cell-to-cell transfer and propagate aggregate pathology in a
prion-like fashion in experimental models of disease [298].
Despite all these studies, further research on the cellular and
molecular mechanisms underlying olfactory dysfunction in
AD is required.

Genetic Factors in Olfactory Dysfunction in AD The possible
contribution of genetic factors to the olfactory dysfunction in
AD, such as the presence of one or two copies of the ε4 allele of
apolipoprotein E (Apoε4), an established risk factor for AD,
has been suggested [33, 299]. Volumetric MRI studies have
shown that Apoε4 is associated with the degree of atrophy in
the entorhinal cortex in early AD patients [300]. Moreover, it
has been suggested that people with anosmia and one Apoε4
allele have an approximate fivefold increased risk of later AD
[301]. However, in a large multi-ethnic older community co-
hort, no significant associations between the UPSIT score and
the presence of the Apoε4 allele has been shown [302].

Neurotransmitter Systems in Olfactory Dysfunction in AD
Neuromodulatory systems are early affected in AD, with
30-90% cholinergic cell loss in the nucleus of Meynert
[303]. Cholinergic deficits could contribute to the olfactory
dysfunction in AD patients, because acetylcholine plays a
major role in the olfactory learning process [304].
Moreover, in a small, non-blinded, uncontrolled study, it
has been demonstrated that the treatment response of the
cholinesterase inhibitor, donepezil, was associated with an
improvement in olfactory function of AD patients. This re-
sult suggested that olfactory recognition might be used to
predict therapeutic effects in AD patients [281].

Other Neurodegenerative Disorders

The classic clinical features of the progressive supranuclear
palsy (PSP) include supranuclear vertical ophtalmoplegia, se-
vere postural instability with early falls, and subcortical de-
mentia [201], most commonly developing in the seventh de-
cade of life. PSP shares many common features with PD;
however, several studies have suggested that hyposmia, which
is a common and early feature of PD, is not present in PSP
[204]. However, mild deficits in odor identification have been
described in PSP [201, 242].

Corticobasal degeneration (CBD) is a tauopathy that may
present with bradykinesia, which may be misdiagnosed as
PSP. Regarding the olfactory deficit in CBD, several studies
have found no alterations in olfactory function [204] or only
slight alterations [205].

Clinical studies have shown mild deficits in odor identifi-
cation inmultiple-system atrophy (MSA) [204, 205], although
a study failed to confirm this previously reported hyposmia
[203]. Among the diseases that have mild or no olfactory
deficits, MSA is the only one with pathological inclusions in
olfactory regions [242], being tau accumulation present in the
OB in one third of PSP cases [242].

Olfactory dysfunction in amyotrophic lateral scleroris
(ALS) has not been deeply studied. Hyposmia has been
reported in idiopathic ALS and in Guamanian ALS patients
[305, 306], although, in several studies, hyposmia has been
found only in patients with bulbar symptoms [307], or in a
subgroup of ALS patients with cognitive impairment [308].
A neuropathology study suggested that TDP-43 inclusions
might be involved in the olfactory dysfunction since these
inclusions have ben observed in the olfactory system [309].
In a recent report, ALS patients showed a decreased odor
threshold; however, they did not show impaired perfor-
mance in identification and discrimination tests, resembling
the pattern of olfactory dysfunction occurring in sinonasal
diseases that results from impeded odorant transmission to
the olfactory cleft [306]. In addition, ALS patients with
alterations of respiratory function performed worse in the
olfactory tests than the ALS patients with preserved respi-
ratory function [306], suggesting that olfactory dysfunction
in ALS patients might be partly a consequence of impaired
respiratory function.

Conclusions

Epidemiological studies show that the prevalence and se-
verity of olfactory dysfunction increases with age, al-
though the mechanisms underlying olfactory dysfunction
with advancing age are still unclear. In addition, olfactory
dysfunction in cognitive normal persons could represent
preclinical neurodegenerative disorders.
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In the neurodegenerative diseases, olfactory dysfunction
can appear early, frequently preceding the motor and cognitive
symptoms, being considered a prodromal symptom of some
diseases, such as PD and AD. The measure of olfactory func-
tion in association with other clinical, biological, or neuroim-
agingmarkers is a useful tool for preclinical detection strategy,
differential diagnosis, and for enrollment in neuroprotective
therapeutic strategies.

Although several neuropathological mechanisms have
been associated with the olfactory dysfunction in neurodegen-
erative diseases, further preclinical and clinical research on
cellular and molecular mechanisms underlying olfactory dys-
function in neurodegenerative diseases is required.
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