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Abstract Proteomics encompasses a variety of ap-
proaches unraveling both the structural features, post-
translational modifications, and abundance of proteins.
As of today, proteomic studies have shed light on the
primary structure of about 850 allergens, enabling the
design of microarrays for improved molecular diagnosis.
Proteomic methods including mass spectrometry allow
as well to investigate protein-protein interactions, thus
yielding precise information on critical epitopes on the
surface of allergens. Mass spectrometry is now being
applied to the unambiguous identification, characteriza-
tion, and comprehensive quantification of allergens in a
variety of matrices, as diverse as food samples and al-
lergen immunotherapy drug products. As such, it repre-
sents a method of choice for quality testing of allergen
immunotherapy products.
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Introduction

Proteomics, defined as the in-depth analysis of protein reper-
toires within a given species, organ, or organelle, has consid-
erably extended in the last few years our knowledge of an ever
expanding number of proteins [1]. As a result, more than
550,000 proteins have now been described in the literature,
from a total of more than 63 million protein sequence entries
currently referenced in public databases [2]. Whereas proteo-
mic methods are broadly applied to the deciphering of numer-
ous physiological and pathophysiological mechanisms [3–7],
we focus in the present review on their current concrete appli-
cations to the field of allergy [8••]. Food and respiratory aller-
gies as of today represent a major public health burden, with
an increasing prevalence [9–12, 13•]. In this context, proteo-
mics is of great interest for the identification and structural
characterization of allergens involved in such allergies. Also,
immune epitopes derived from such allergens can be defined
using technologies such as X-ray diffraction or hydrogen deu-
terium exchange (HDX) mass spectrometry (MS). Moreover,
proteomics can provide semi-quantitative or quantitative in-
formation regarding those molecules, for example, within
food or environmental samples, as well as pharmaceutical-
grade natural extracts used for allergen-specific immunother-
apy (AIT). Proteomic approaches are also useful for the
in vitro diagnostic of allergen sensitization and further for
searching biomarkers of efficacy for AIT. Herein, we review
each of those applications of proteomics to allergen identifi-
cation, characterization, quantification, and quality testing, as
well as the discovery of biomarkers of AIT efficacy.
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Proteomics Dedicated to Allergen Identification

Identification is critical for the detection of allergens not only in
food and beverages but also within AIT products from the bio-
pharmaceutical industry. Hundreds of known allergens are pro-
teins or glycoproteins [14••]. Those allergens are commonly
identified based on their IgE reactivity and subsequently classi-
fied as minor or major allergens on the basis of the prevalence of
IgE sensitization to them [15]. In the early 1980s, the combina-
tion ofmodern biochemistry withmolecular biology gave rise to
the identification of an exponential number of new allergens that
were further purified, sequenced, and expressed as recombinant
proteins. Those allergens originating from either animal dander,
foods, mites, pollens, whole insects, or derived venoms and
yeasts were initially partially sequenced by Edman degradation
to identify the first 10 to 30 amino acids, thus subsequently
allowing to perform gene cloning and sequencing [16–19].
Within the last two decades, MS and most particularly tandem
MS (MS/MS) have progressively and advantageously replaced
Edman degradation in order to obtain entire allergen sequences
[20–26]. MS also contributed to the elucidation and detection of
a number of post-translational modifications such as N-glyco-
sylation, among which some important cross-reactive carbohy-
drate determinants encompassing for instance the galactose-al-
pha-1,3-galactose motif [21, 27–34].

Immunological methods have been the gold standard for
allergen identification or detection and are routinely used to
this aim in many laboratories performing dot blots or western
blots [35, 36]. The selectivity of the latter methods relies upon
antibody specificity, associated with either a polyclonal or
preferably a monoclonal antibody (mAb). However, the pro-
duction of suitable mAbs is cumbersome and difficult since
both the specificity and the stability of the obtained product
are never guaranteed a priori. Moreover, matrix interference,
cross-reactivity, and other molecules such as antibodies or
lectins can interfere or abolish the detection of the allergen
of interest [37]. Aptamers (i.e., oligonucleotides or peptides)
selected for their ability to bind to a specific target molecule
represent an attractive alternative tomAbs, but this technology
is currently not widely available [38]. In this context, MS
carries significant advantages by providing a virtually
reagent-free allergen identification, based on the acquisition
of MS/MS data from the allergen of interest prior to an in
silico comparison with protein sequence databases. For in-
stance, a single multiplexed MS method can specifically de-
tect egg, milk, and soy allergens, with a level of detection
ranging from 0.1 to 2 μg/g of food sample [39–41, 42•].

In the last few years, allergen identification has benefited
from combined approaches associating proteomics with tran-
scriptomics and IgE immunoblotting. Bi-dimensional poly-
acrylamide gel electrophoresis (2D-PAGE) combined with
MS is a method of choice to discover new allergens, especially
major allergens [43–45]. Briefly, the proteome from a

biological sample (e.g., aqueous mite or pollen extract) is first
subjected to isoelectric focusing (i.e., first dimension) to frac-
tionate proteins based on their charge, with further separation
according to molecular masses (i.e., second dimension). As a
result, hundreds of proteins are usually resolved as small spots
within the polyacrylamide gel, which can further be trans-
ferred to a membrane by western blotting. The membrane is
then revealed by sera from allergic patients, highlighting IgE
reactive spots subsequently characterized by MS/MS. When
limited or no data are available in protein databases, the use of
transcriptomic information (i.e., data from RNA sequencing)
is highly valuable to identify new allergens of clinical impor-
tance. This combined approach based on omics technologies
was successfully implemented by us and others to characterize
allergen extracts obtained from either house dust mites or
pollens from tropical grasses or ragweed [46–48]. Moreover,
we applied MS as a release testing identification method to
confirm that a drug product made of a mix of five grass pollens
contains in a consistent manner grass pollen group 1 major
allergens (namely, Ant o 1, Dac g 1, Lol p 1, Phl p 1, and
Poa p 1) originating from each of the selected grass species [31].

Unraveling Allergen Epitopes Through Proteomics

Understanding the allergen/antibody binding interaction (as well
as potential cross-reactivity) through the mapping of epitopes
represents an essential component in the development of both
immunoassays as well as AIT drug products [49–51]. To this
aim,complexmethodologies suchasnuclearmagnetic resonance
spectroscopy (NMR) or X-ray diffraction were successfully im-
plemented to characterize a small number of allergen epitopes
[52–55]. Antibodies raised against allergen-derived peptides
were also successfully used to compete with the patients’ IgEs
in binding to the native allergen, thereby identifying immune
epitopes [56]. Broader information can also be obtained through
the simple production and testing of synthetic overlapping pep-
tides that cover the entire allergen sequence [57–59]; however,
this approach fails to identifymost conformational epitopes [60].

HDX-MS can be used to locate linear and conformational
epitopes in a manner that complements classical structural
approaches [61–63]. HDX-MS probes the solvent accessibil-
ity of proteins in their native state based on the rate of ex-
change of backbone amide hydrogens (H) against deuterium
(D). In this regard, the binding of a mAb to a target allergen
reduces the solvent accessibility of the epitope leading to a
mass reduction in the complex compared to the free allergen.
The technology has been established several years ago and is
now available on fully automated instruments in order for
instance to develop and compare biologicals such as therapeu-
tic mAbs [64].

In our hands, we have used HDX-MS to identify an epitope
specifically recognized by a Der p 1-specific mAb (namely,
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5H8 from Indoor Biotechnologies, Cardiff, UK). Briefly,
Der p 1-5H8 complexes were obtained at 30 °C prior to
labeling with a deuterated PBS buffer. Over the time course
of the experiment (ranging from 1 min to 1 h), aliquots of the
complex were recovered, quenched, and dissociated prior to
MS analysis. Our HDX-MS data confirmed that the 5H8 mAb
recognizes a conformational epitope located in the B domain
of Der p 1 (Fig. 1a), composed of segments Thr48-Ala57,
Tyr82-Tyr93, and the Ser102-Ile113 loop. An equivalent epi-
tope was identified by X-ray crystallography (Fig. 1b), in
agreement with the HDX-MS approach [65–67]. Such data
demonstrate that conformational epitopes can be identified

bymeasuring the change in deuterium uptake between the free
and bound allergen. Compared to X-ray crystallography,
HDX-MS results are of medium resolution (i.e., 8–10 resi-
dues) but the technology requires low quantities of biological
material (i.e., 5–10 pmols per injection) and provides a rapid
(1 to 2 days) and efficient way to map epitopes.

Proteomics for Allergy Diagnostic

Proteomic approaches can also be used to perform molecular
allergy diagnostic. On a routine basis, the anamnesis

Fig. 1 Comparison of the Der p 1
epitope targeted by Fab 5H8 as
elucidated by a HDX-MS and b
X-ray crystallography. The
binding of Fab 5H8 reduces the
solvent accessibility of three
regions within the B domain of
the Der p 1 allergen, covered by
peptides Tyr48-Ala57 (red),
Tyr82-Tyr93 (green), and Ser102-
Ile113 (blue). Equivalent regions
were identified by X-ray
crystallography. The amino acid
residues involved in hydrogen
bonding upon complex formation
are also displayed. An excellent
agreement between the two
epitope mapping strategies was
observed
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combining symptom assessment and skin prick testing data is
the main cornerstone of allergy diagnostic [68–70]. The latter
relies as well upon specific IgE in vitro binding assays, mak-
ing use of microarrays of purified allergens as part of a Bcom-
ponent resolved diagnostic^ in order to improve routine clin-
ical care. As of today, microarrays carrying over 100 distinct
allergens offer the opportunity to characterize patients’ IgE
sensitization patterns to multiple allergens in a single analysis
with small blood volumes and distinguish true sensitization
from cross-reactivity [71, 72•, 73]. The clinical interest of such
technologies, including point-of-care or near-patients diagnos-
tics, is however currently limited by the availability of highly
purified, well-characterized, and stable allergens. In the near
future, proteomic-based miniaturized devices allowing a more
accurate, faster, and simpler diagnostic of allergic sensitization
will likely contribute to the emergence of personalized AIT
tailored for individual allergic patients [74•].

In this context, new nanoscopic scale biosensors are being
developed to assess patient’s circulating IgEs from as little as
50 μL of blood sample. For instance, the abioscope apparatus
(Abionic SA, Lausanne, Switzerland) is a novel small foot-
print device that allows to quantify allergen-specific IgEs
(e.g., directed to either Can f 1, Der p 1, Fel d 1, or Phl p 1)
in 5 min, thanks to modern nanofluidic biosensors that en-
hance molecular interactions and reduce incubation time from
hours to minutes. Results obtained with this technology com-
pare to the ones generated using the Immunocap technology
(Thermo Fischer Scientific, Uppsala, Sweden) [71].

Proteomics to Document Pharmaceutical Quality

AIT was shown to restore appropriate immunoregulatory
responses in allergic patients, thereby alleviating clinical
symptoms and reducing the uptake of symptomatic
drugs [75–82]. As of today, AIT treatments rely upon
standardized allergen extracts obtained from natural
source materials (e.g., mites, pollens) produced and test-
ed as per health authorities recommendations [83, 84].
The guideline on allergen products (CHMP/BWP/
304831/2007) provides European manufacturers with
recommendations in terms of quality for the production
of allergen products intended for the diagnostic or treat-
ment of allergic diseases [85]. Importantly, health au-
thorities request a specific identity test for the allergenic
source materials used for drug manufacturing. To ad-
dress this topic, electrophoretic (PAGE) or immunologi-
cal (western blotting, enzyme-linked immunosorbent as-
say (ELISA)) methods are frequently performed, even
though the specificity of those approaches is not always
fully documented. We and others have shown that a fast
and simple MS acquisition can identify and distinguish
several pollen source materials [86].

Biotyping based on matrix-assisted laser desorption/
ionization time-of-flight (MALDI-ToF)MS has been original-
ly applied for the reliable and swift identification of pathogen-
ic microorganisms in clinical and veterinary microbiology
[87–89]. Using this straightforward methodology, we could
identify, in a reproducible manner, source materials frommul-
tiple species including insect venoms (i.e., Apis melifera,
Poliste spp., Vespula spp.), molds (i.e., Alternaria alternata,
Aspergillus fumigatus, Aspergillus niger, Cladosporium
herbarum, Cladosporium IHEM, Penicillium notatum), grass
and cereal pollens (i.e., Agrostis, Anthoxanthum odoratum,
Avena fatua, Avena sativa, Bromus hordeaceus, Cynodon
dactylon, Dactylis glomerata, Hordeum vulgare, Lolium
perenne, Phleum pratense, Poa pratensis, Secale cereale,
Triticum, Ventenata dubia, Zea mays), tree pollens (i.e.,
Chamaecyparis obtuse, Cryptomeria japonica, Juniperus
ashei, Olea europaea) and house dust mites (i.e., Blomia
t r o p i c a l i s , De rma t o p h a g o i d e s f a r i n a e , a n d
Dermatophagoides pteronyssinus). This technology, in addi-
tion to being user-friendly, requires only few milligrams of
product to allow unambiguous source material identification.
As illustrated in Fig. 2, even closely related species can be
identified and distinguished on the basis on their unique mo-
lecular compositions, when assessed byMALDI-ToFMS pro-
teomics. We thus believe that the latter method may be suit-
able for release testing of most allergenic source
materials.

In the interest of allergic patients, the quality of AIT
biologicals must be properly documented with respect to
their composition, consistency, and stability using state-
of-the-art and validated analytical methods. Specifically,
proper and consistent allergen dosing is critical to guar-
antee AIT safety and efficacy. To this aim, allergenic
extracts must be standardized based on their potency,
which reflects their ability to bind IgEs from allergic
patients. In addition, such biological drug products must
contain consistent, defined, and clinically efficacious
amounts of major allergens [90–92, 93•, 94]. Despite a
sustained interest in purified recombinant allergens to
perform AIT, natural standardized allergen extracts re-
main the only authorized therapeutic option, although
documenting pharmaceutical quality of the latter is far
more complex when compared with the former [95].
Immunological methods, especially ELISA, are routinely
used to assess major allergen content of natural extracts
[94]. The prerequisites for this method rely on the spec-
ificity of mAbs as well as the quality of the reference
standard, and the concern arose that some allergen
proteoforms (or isoallergens) might not be properly
quantified by antibody-based assays [91, 93•].

In this context, MS-based allergen quantification
methods were recently developed to circumvent poten-
tial specificity issues associated with ELISA [96–99,
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100•, 101]. Currently, this methodology relies on the
quantification of peptides derived from the allergen fol-
lowing enzymatic digestion. Briefly, the allergenic ex-
tract (or food or beverage sample) is reduced and
alkylated to disrupt disulfide bonds within the allergens,
thereby facilitating their proteolysis by trypsin.
Resulting proteotypic peptides are subsequently separat-
ed by liquid chromatography and quantified by triple
quadrupole MS/MS. As developed in the 1990s, the
reference standard can be one (or more) synthetic isoto-
pically labeled peptide with a sequence identical to the
one from the protein to be quantified [102]. Because the
latter analytical procedure assumes that 100 % of the
allergen is digested during sample preparation, an alter-
native and preferred method is rather based on standard
addition of non-labeled intact allergen as a reference
standard. The main advantage of this latter technique
is that it provides accurate and comprehensive allergen
quan t i f i c a t i on , i r r e spec t i v e o f t he ex t en t o f
target allergen digestion. As a result, based on this stan-
dard addition method, we found a 30-fold increase in
absolute quantification of grass pollen group 1 allergen
with MS when compared with results obtained using a
dedicated ELISA, likely as a consequence of the vari-
ability of grass pollen allergens with some isoallergens
poorly recognized by either one of the mAbs used in
the ELISA [31, 103]. Overall, the most compelling rea-
sons to recommend the implementation of allergen
quantification by MS for release testing of AIT drug

products are the unrivaled specificity and comprehen-
siveness of this method.

Identification of Biomarkers of AIT Efficacy

There is currently a growing interest in identifying biomarkers
guiding the physician’s decision to initiate, continue, or termi-
nate AIT [104–108]. A biomarker is defined as a molecule
that is detected or quantified in the body fluids to differentiate
a patient from a healthy individual or to document the impact
of a treatment [109]. As of today, very few studies related to
AIT have revealed candidate biomarker molecules correlating
with clinical benefit at an individual patient level [110]. Such
biomarkers would be most valuable for many actors, includ-
ing but not limited to the physicians and patients as well as
health authorities and payers. The search for such biomarkers
now benefits from the combined use of omic technologies, as
part of a Bpanoromic^ approach [111•].

We have applied a combination of proteomic methods,
namely, 2D differential gel electrophoresis (2D-DiGE) and
label-free MS, in order to identify candidate biomarkers of
clinical efficacy by comparing the proteomes of various sub-
types of effector and regulatory human dendritic cells (DCs).
Briefly, 2D-DiGE consists in labeling the proteins from the
samples to be compared with different dyes and further sub-
jecting the labeled proteins to 2D-PAGE. Following separa-
tion, gel images were acquired with a wavelength specific of
each dye and statistically compared for protein abundance.

31: Zea mays

30: Vespula spp

29: Ventenata dubia

28: Triticum

27: Secale cereale

26: Poliste spp

25: Poa pratensis

24: Phleum pratense

23: Penicillium notatum

22: Olea europaea

21: Lolium perenne

20: Juniperus ashei

19: Hordeum vulgare

18: Dermatophagoides pteronyssinus

17: Dermatophagoides farinae

16: Dactylis glomerata

15: Cynodon dactylon

14: Cryptomeria japonica

13: Cladosporium IHEM

12: Cladosporium herbarum

11: Chamaecyparis obtusa

10: Bromus hordeaceus

9: Blomia tropicalis

8: Avena sativa

7: Avena fatua

6: Aspergillus niger

5: Aspergillus fumigatus

4: Apis melifera

3: Anthoxanthum odoratum

2: Alternaria alternata
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Fig. 2 Composite correlation
index matrix visualization
(Biotyper, Bruker Daltonics) of
31 different allergenic extracts
assessed by MALDI-ToF MS
(AutoFlex Speed, Bruker
Daltonics). Reddish (hot) colors
mark closely related species.
Bluish (cold) colors mark non-
related species. Proteins from the
allergenic extracts were
resuspended in 70 % formic acid
solution and sonicated. One
microliter of sample was
deposited on the MALDI target
with 1 μL of α-cyano-4-
hydroxycinnamic acid matrix
solution and dried prior to
MALDI-ToF acquisition
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Similarly, label-free MS consists in a statistical analysis of the
amount of proteins within the compared sera and also allows
quantifying hundreds of proteins. Those two orthogonal and
semi-quantitative methods evidenced, among other mole-
cules, complement component 1 (C1Q) and the receptor
stabilin-1 molecules as candidate markers of the clinical toler-
ance induced by grass pollen AIT [112]. In combination with
qPCR, an extensive label-free MS study revealed at least five
proteins that are differentially expressed in DC2s and DCreg
cells, thereby confirming that AIT modifies key components
of the innate immune system within 2 months of treatment
[113]. These semi-quantitative methods were further applied
to compare sera from grass pollen allergic patients enrolled in
a double-blind placebo-controlled study performed in an ex-
posure challenge chamber [114]. As a result, we observed
differences in post-translational modification of serum α-2-
HS-glycoprotein (or fetuin A) when comparing sera from pa-
tients exhibiting clinical responses with weak AIT responders
(manuscript in preparation).

Overall and despite the fact that the identification of bio-
markers based on proteomics is still a lengthy, resource-de-
manding, and complex process, it remains a unique approach
to identify proteins or protein isoforms (e.g., glycoforms) that
represent candidate biomarkers of AIT efficacy. For this rea-
son, proteomics is usually applied to a limited number of sera
(up to 100) and more simple methods (e.g., ELISA, qPCR) are
subsequently applied to a larger number of patients to validate
those molecules.

Conclusions

Current allergy care can benefit from many applications
of proteomics, whether through specific allergen detec-
tion in numerous matrices, in vitro diagnostic, or docu-
mentation of the quality and consistency of biological
products intended for safe and efficacious AIT. In this
context, we speculate that mass spectrometry and hy-
phenated techniques (including powerful biocomputing
dedicated to data mining) will play an expanding role
in the field of allergy. During the next decade, we be-
lieve that proteomics will keep paving the way for (i)
improved understanding of the pathophysiology of aller-
gic diseases, (ii) unambiguous identification and charac-
terization of allergens, (iii) highly specific and compre-
hensive allergen quantification, and (iv) enhanced mo-
lecular diagnostic including the identification of efficacy
biomarkers. Lastly, it is also through the use of state-of-
the-art proteomics, likely in combination with genomics
and next-generation sequencing, that second generation
allergen immunotherapy drug products will be made
available for allergic patients.
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