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Abstract Regulatory T (Treg) cells that express the transcrip-
tion factor forkhead box protein P3 (FOXP3) play an essential
role in enforcing immune tolerance to self tissues, regulating
host-commensal flora interaction, and facilitating tissue repair.
Their deficiency and/or dysfunction trigger unbridled autoim-
munity and inflammation. A growing number of monogenic
defects have been recognized that adversely impact Treg cell
development, differentiation, and/or function, leading to heri-
table diseases of immune dysregulation and autoimmunity. In
this article, we review recent insights into Treg cell biology
and function, with particular attention to lessons learned from
newly recognized clinical disorders of Treg cell deficiency.
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Introduction

T lymphocytes have a fundamental role in fighting foreign
pathogens by generating a diverse repertoire of antigen recep-
tors through antigen receptor gene rearrangement [1].

Unfortunately, this diversity might lead to generation of T cell
populations that recognize self-antigen and result in autoim-
munity [2]. One way of protection from these self-reactive T
cells is by the process of negative selection that prevents such
harmful cells from maturation by successful inactivation or
clonal deletion in thymic tissue. Several studies have shown
high rates of autoimmunity in genetic mutations affecting thy-
mic central tolerance [3, 4]. As some of these autoreactive T
cells might escape medullary thymic epithelial tissue to the
periphery or might be exclusively expressed in the peripheral
organs, immune tolerance is necessary for the elimination of
these self-reactive cells. For that reason, dominant tolerance
ensured by regulatory T cells has been documented as an
important strategy to maintain peripheral tolerance in human
and mice [5, 6]. The importance of this population in mice
have been delineated by neonatal thymectomy performed at
day 3 of life that resulted in autoimmunity and production of
autoantibodies, while transferring thymic or splenic T cells to
these thymectomized mice from adult wild type prevented the
development of immune-mediated inflammation and tissue
damage [7, 8]. Compelling evidence has shown this thymic
suppressive population expresses CD4 and IL-2 receptor α
chain (CD25) and has been characterized as CD4+CD25+ reg-
ulatory T (Treg) cells [9]. Subsequently, forkhead box protein
P3 (FOXP3) was identified as a transcription factor indispens-
able for Treg cell development and function [10–12].
Deleterious mutations in FOXP3 lead to immune dysregula-
tion, polyendocrinopathy, and enteropathy X-linked (IPEX)
syndrome in humans as well as fatal autoimmunity in scurfy
mice [13, 14]. The aim of this review is to highlight current
information on the defining features of T regulatory cells as
well as their phenotypic and functional heterogeneity with
particular emphasis on the consequences of this compartment
deficiency and or dysfunction in the development of immune
dysregulation and autoimmunity.
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Treg Cell Subsets and Markers

Treg cells represent 5 to 10 % of the peripheral CD4+ T cell
compartment in humans and inmice. The two key populations
of Treg cells are those that develop in the thymus, referred to
as natural or thymic Treg (nTreg or tTreg) cells and induced
Treg that develop in the periphery from naïve conventional
CD4+ T cells (iTreg or pTreg cells, respectively) [15].

In general, FOXP3+ Treg cells express high levels of
interleukin-2 receptor α (CD25) and a low level of IL-7 re-
ceptor α (CD127) on the cell surface [16]. The majority of
Treg cells constitutively express high levels of the inhibitory
molecule cytotoxic T lymphocyte-associated antigen 4
(CTLA4) and the glucocorticoid-induced TNFR family relat-
ed (GITR), as well as the regulatory cytokines IL-10 and
transforming growth factor-beta (TGF-β) [17–20]. While
FOXP3 staining is currently the best available marker for
Treg cells, it may also be transiently induced at low levels in
human (but not in mouse) T conventional (Tconv) cells upon
their activation. Expression of other Treg cell markers such as
CD25 and CTLA4, and down-regulation of CD127, may sim-
ilarly be affected upon activation of Tconv cells. Accordingly,
employmen t o f combina to r i a l marker s such as
FOXP3highCD25highCD127low may better discriminate hu-
man Treg cells from otherwise activated Tconv cells. Human
Treg cells can be further classified based on their activation
profile using FOXP3 and CD45RA/RO. Resting Treg cells are
CD45RA+FOXP3low, and activated Treg cells are
CD45RA−FOXP3high while the CD45RA−FOXP3low popula-
tion reflects effector cytokine-producing non-Treg cells [21].

Two markers have been used to discriminate nTreg from
iTreg cells. Helios, a member of the Ikaros family of transcrip-
tion factors, is highly enriched in nTreg as compared to iTreg
cells and is commonly used as a marker of Treg cells of thymic
origin [22]. Furthermore, neuropilin-1 is similarly enriched in
nTreg versus iTreg cells. However, expression of both
markers can be altered by T cell activation, and they should
be judiciously used in discriminating those populations under
conditions of inflammation or generalized T cell activation
[23].

Finally, Treg cells that become unstable and lose their
FOXP3 expression are referred to as ex-Treg cells [24].
They acquire effector functions and may contribute to pathol-
ogy in inflammatory and autoimmune diseases [25•].

Treg Cell Development

nTreg cell development in the thymus proceeds through dis-
crete steps including intermediate avidity interactions between
self-reactive TCR on developing thymocytes and their cog-
nate antigens presented in specialized thymic niches. These
interactions, in the context of optimal input from co-

stimulatory molecules and cytokines, enable the acquisition
of CD25 expression, epigenetic modification of FOXP3, and
other Treg cell-related genetic loci, leading to upregulation of
FOXP3 and other Treg cell markers [26].

The interaction of the T cell receptor (TCR) with self-
antigens in the thymus is pivotal for Treg cell differentiation.
Typically, conventional thymocytes that receive high strength
TCR signals undergo apoptosis while those that pass positive
selection and receive low affinity signals will eventually de-
velop into mature Tcells. In contrast, the development of Treg
cells in the thymus appears to require intermediate strength
interactions between their TCRs and self-peptide/MHC li-
gands. These interactions, in the context of specialized niches
in the thymic medulla, including medullary thymic epithelial
cells (mTecs) and hematopoietic antigen presenting cells, lead
to the upregulation of CD25 and also enabling subsequent
developmental steps in thymic Treg cell development [27].

In addition to the TCR, co-stimulatory molecules, includ-
ing CD28 and members of the tumor-necrosis factor receptor
superfamily, including GITR, OX40, and TNFR2, all make
important contributions to Treg cell differentiation [28•, 29].
These pathways converge on downstream signaling interme-
diates, most notably NF-κB, STAT5, mTOR, and others, to
promote Treg cell development [30].

FOXP3 is upregulated at the terminal stage in thymic Treg
cell differentiation under the action of IL-2 via the CD25 con-
taining high-affinity IL-2R complex that provides the critical
stimulus inducing its expression. FOXP3 itself is dispensable
for thymic Treg cell development. However, it plays an indis-
pensable role in enabling Treg cell function in the periphery.
FOXP3 expression directly regulates a sizeable component of
the Treg cell transcriptome, including further upregulation of
CD25 and high expression of suppressor genes as well as
repression of pro-inflammatory cytokines. It also shapes the
Treg cell transcriptome by stabilizing the interaction of its
different components, including those induced by TCR and
cytokine signaling. On the other hand, a large fraction of the
core Treg cell transcriptome is maintained in the absence of
FOXP3, consistent with the FOXP3-independent develop-
ment of Treg cells. Nevertheless, the mutant Treg cells acquire
the phenotype and the relevant genetic circuitries of activated,
unstable cytotoxic T cell-like cells that lack regulatory func-
tions [31].

Besides FOXP3 expression, epigenetic (external DNA
modifications that affect gene function without changing
DNA sequencing) has an important impact on Treg cell de-
velopment and function. These epigenetic marks show some
heterogeneity between Treg and Tconv cells. Indeed, most
nTreg cells have a completely demethylated CNS2 (conserved
non-coding region 2) at the FOXP3 locus while the Tconv
cells (CD4+CD25low) possess a partially methylated pattern
even after transient FOXP3 upregulation. Treg-type DNA hy-
pomethylation is exclusively imprinted in nTreg cells and
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found to be important in their suppressor function, lineage
stability, and controlling Treg cell-specific genes expression
[32–34, 35•].

Additionally, other transcription factors, includingHelios and
GATA3, play an important role in conferring suppressive func-
tions on Treg cells, especially in the context of different inflam-
matory cues [36•, 37, 38]. Homeostatic proliferation of Treg
cells in the periphery is dependent on cytokines, most notably
IL-2, which act to maintain Treg cell fitness and maintain their
stability and regulatory functions. In contrast, other signals in-
cluding those delivered by the Notch family of receptors act to
restrain Treg cell function in the periphery [39••].

In addition to nTreg cells, de novo generation of iTreg cells
contributes to peripheral tolerance [40]. iTreg cells are particu-
larly abundant at the mucosal interface, where they are induced
in specialized niches by the action of tolerogenic antigen pre-
senting cells (APCs) such CD103+ dendritic cells in the gut and
CD11c+ macrophages in the lung. iTreg cell generation is de-
pendent on TGF-β production by APCs and is potentiated by
the production of retinoic acid, which acts to stabilize newly
formed iTreg cells [41–43]. These cells possess a TCR repertoire
distinct from that of nTreg cells, and the two populations
synergize to maintain peripheral immunological tolerance [44].
iTreg cells are enriched at the environmental interfaces and are
enriched in specificities directed at microbial antigens [45].
Microbial sensing by iTreg cells in the gut via the Toll-like
receptor-associated adaptor proteinMyD88 promotes their func-
tion and their differentiation into T follicular cells that regulate
anti-commensal IgA production in Peyer’s patches [46•, 47•].
By regulating the anti-commensal IgA response, the Treg cells
play an essential role in shaping a healthy commensal flora that
contributes to peripheral tolerance.

Under conditions of sustained inflammation and/or lympho-
penia, iTreg cells (and to a lesser extent nTreg cells), may ac-
quire attributes of effector T cells and express cytokines and
effector molecules that contribute to the inflammatory response
such as food allergy [48•, 49•]. In extremis, this plasticity may
lead to the loss of FOXP3 expression, leading as mentioned
above to the generation of pathogenic ex-Treg cells that partic-
ipate in disease pathology [25•]. Collectively, these findings
indicate that Treg stability, function, and fate are influenced by
multiple mechanisms that might be upstream of FOXP3.

Treg Cells: Regulatory Mechanisms and Functional
Specialization

Regulatory T cells are central players in the area of the periph-
eral tolerance. By their immunosuppressive capability, they
maintain immune homeostasis and prevent autoimmunity in
diverse anatomical locations. The suppressive mechanisms of
this population may proceed by contact-dependent suppres-
sive mechanisms either through inhibitory receptors (e.g.,

CTLA-4, LAG3, Galectin-1) or by means of perforin and
granzyme B-dependent, Treg cell-mediated cytotoxic target
cell killing [50–53]. Treg cells may also mediate contact-
independent suppression either by acting as IL-2 sink (through
Treg cell-bound CD25) or by producing inhibitory cytokines
(e.g., IL-10, TGF-β, IL-35) [54–56].

More than general suppressive activity, Treg cells might
further differentiate in the periphery as a part of Treg plasticity
to specialized fates that specifically control Th1, Th2, Th17, or
T follicular helper (Tfh)-type immune responses by acquiring
the transcriptional program of the specific effector cells they
suppress, such as T-bet, IRF4, STAT3, or Bcl-6, respectively
[57–60]. It is also important to note that the suppressive func-
tion of Treg cells might limit the beneficial effector responses
against tumors and chronic infections [61].

Interestingly, Treg cells have an important role in tissue pro-
tection both directly by inducing tissue repair through
amphiregulin production and indirectly by limiting tissue dam-
age through the down-regulation of the inflammatory response
[62••]. Beyond tissue protection, numerous reports have also
suggested other Treg cell functions, including protection against
allergic disorders, transplant rejection, and atherosclerosis as
well as controlling metabolic disorders [63–65].

Monogenic Diseases Resulting in Treg Cell
Deficiency/Dysfunction

Treg cells play a key role in immune homeostasis by maintain-
ing a balanced adaptive immune response. Human congenital
defects that affect Treg cell number and/or function disrupt this
balance and result in autoimmunity, lymphoproliferation, aller-
gic dysregulation, and ongoing lymphocytic infiltration in dif-
ferent organs, which lead to disease progression and impact
patient survival. The spectrum of manifestations due to Treg
cell defect might range from mild allergy or autoimmunity to
lethal immune dysregulation disorders. Interestingly, several
human genetic disorders have been described recently and not-
ed to have a tremendous impact on Treg cell development and
functional activity. A loss of function mutation in FOXP3, the
key transcriptional factor for Treg cell differentiation, leads to
IPEX phenotype. Subsequently, a number of other gene defects
have been described to cause IPEX-related phenotypes includ-
ing loss of function mutations in CD25, STAT5b, LRBA, and
CTLA4 (Fig. 1).

IPEX

IPEX is a rare genetic disorder resulting from lack of func-
tional Treg cells due to loss of function mutations in FOXP3.
It exclusively affects males given its X-linked recessive pat-
tern of inheritance and is often fatal within the first few years
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of life unless rescued with bone marrow transplantation [66].
Clinically, IPEX presents with a triad of autoimmune enterop-
athy, autoimmune endocrinopathy, and eczematous dermati-
tis. The most common manifestation is enteropathy followed
by endocrinopathy, especially insulin-dependent type 1 diabe-
tes mellitus. Additional described manifestations include
immune-mediated cytopenias, which may present as neutro-
penia, anemia and/or thrombocytopenia, and autoimmune ne-
phropathy, hepatitis, and lung disease. Food allergy with ele-
vated serum IgE and peripheral eosinophilia are very common
in this disorder, reflecting a breakdown in oral tolerance.
Patients with IPEX usually have a wide range of autoanti-
bodies due to adaptive immune dysregulation. As more than
60 FOXP3 mutations have been reported to date, it has been
observed from the clinical phenotype reported for these mu-
tations that there is genotype/phenotype relationships [67].
The only available curative treatment for this disease is allo-
geneic hematopoietic stem cell transplant with reduced-
intensity chemotherapy. Before transplant, patients require nu-
tritional support and immunosuppressive therapy, which may
include glucocorticoids and/or steroid-sparing agents such as
calcineurin inhibitors, the mechanistic target of rapamycin
(mTOR) inhibitor, and others [68•].

IPEX-Like Disorders

IPEX-like disorders have been described in many patients,
both males and females, who lack detectable mutations in

FOXP3 [69]. Putative mutations in this syndrome may in-
volve genes that adversely affect Treg cell differentiation
and function and that present with an overlapping clinical
picture with that of FOXP3 deficiency. To date, the most
well-characterized IPEX-like disorders include mutations
along the IL-2Rα/STAT5b and CTLA4/LRBA pathways, de-
tailed below.

CD25 and STAT5b Deficiency

Fatal autoimmunity was initially described inmice lacking IL-
2, IL-2Rα, IL-2Rβ, or STAT5 isoforms. Reconstitution of
these mutant mice with Treg cells fromwild-typemice rescues
disease [70–73]. These observations confirmed the critical
role for the IL-2R-STAT5 signaling pathway in Treg cell ho-
meostasis and function. Interleukin-2 (IL-2) receptor is
formed by three subunits namely α (CD25), β (CD122), and
γ (CD132) subunit. Among those, CD25, the high-affinity IL-
2 receptor, is a unique subunit that exclusively binds IL-2 and
constitutively expressed at high levels by Treg cells. CD25
deficiency in human leads to both autoimmunity and immu-
nodeficiency with recurrent infections. Features of CD25 de-
ficiency that shared with IPEX include chronic eczema, enter-
opathy, lymphoproliferation, and autoimmunity disorders
such as alopecia, diabetes mellitus, thyroiditis, and autoim-
mune hemolytic anemia [74–77]. CD25 deficiency is permis-
sive to Treg cell differentiation, with normal count of FOXP3+

Treg cells found in circulation [78]. However, loss of CD25
expression impairs Treg cell suppressive function by several

Fig. 1 Defective Treg cell suppressive mechanisms in IPEX and IPEX-
like disorders. Shown are key pathways for maintaining Treg cell homeo-
stasis and function highlights human monogenic defects that lead to se-
vere immune dysregulation due to altered Treg cell function. The engage-
ment between IL-2 and IL-2R and the initiation of signal transduction
through STAT5b phosphorylation are important for FOXP3 expression.
While FOXP3 deficiency leads to IPEX, loss of function mutations in

IL2Rα or STAT5b manifest with IPEX-like phenotype. LRBA-CTLA4
pathway is indispensible for Treg cell suppressive activity. LRBA con-
trols CTLA4 expression, and the latter provides a negative feedback both
directly by competing CD28 for binding to CD80/CD86 ligands and
indirectly by down-regulating the co-stimulatory molecules on APCs.
Both LRBA and CTLA4 deficiency cause IPEX-like disorder
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mechanisms. These include the defective production by Treg
cells of the suppressive cytokine IL10, and their failure to
provide an IL-2 Bsink^ that deprives Tconv cells of IL-2, lead-
ing to their apoptosis in a Bim-dependent manner [54, 75, 79].
Finally, the decreased sensitivity of CD25-deficient Treg cells
to IL-2 impairs their metabolic fitness in the context of an
immune response [80].

In contrast to FOXP3-deficient patients, CD25 deficiency is
distinguished by chronic infections with members of the herpes
family of viruses. The susceptibility to viral infections may
reflect the importance of IL-2 signaling in generating effective
cytotoxic CD8+ effector and memory T cell responses as well
as NK cell activation [81–83]. Of note, CD25-deficient patients
reported to date lack food allergies and significantly elevated
IgE level, reflecting a distinct mechanisms for the control of
oral allergic sensitization by Treg cells.

The transcriptional activating factor STAT5b, part of IL2/
STAT5 axis, is required for signal transduction of gamma
chain cytokines, growth hormone, erythropoietin, prolactin,
and granulocyte colony-stimulating factor (G-CSF) [84].
STAT5b deficiency presents with growth failure, delayed pu-
berty, prominent forehead, recurrent infections, chronic diar-
rhea, eczema, and lymphoid interstitial pneumonitis [85, 86].
Autoimmunity is a common manifestation in this monogenic
defect due to abnormal Treg cell development and function,
and most of the patients have hypergammaglobulinemia and
increased percentages of memory T cells [87]. Finally, low
IGF-1, low IGFBP-3, and high prolactin are usually present,
reflecting defective growth hormone receptor signaling [88].

LRBA and CTLA4

Cytotoxic T lymphocyte antigen–4 (CTLA-4) is an inhibitory
receptor expressed on both Treg and activated Tconv cells.
CTLA4 expression on Treg cells is essential for their contact-
dependent suppression. CTLA4 regulates the immune response
by competing with CD28 for the ligands CD80/CD86 and also
removing these ligands from antigen-presenting cells (APCs)
via transendocytosis [89], which abrogates subsequent Teffector
cells activation. Recent report showed that CTLA4 trafficking
and expression is regulated by LPS-responsive and beige-like
anchor (LRBA) [90••]. Both CTLA4 haploinsufficiency and
LRBA deficiency lead to severe immune dysregulation and fatal
autoimmunity in human, and several patients who presented
recently with IPEX-like phenotype were found to have muta-
tions in LRBA [91••] or CTLA4 gene [92••, 93••]. Collectively,
the clinical presentation of those two monogenic defects is sim-
ilar, ranging from CVID phenotype to severe IPEX-like disor-
der. These features include recurrent infections,
hypogammaglobulinemia, inflammatory bowel disease, lym-
phoproliferation with granulomatous lymphocytic infiltration
(brain, lung, liver, kidney, bone marrow), solid tumors, intense
autoantibody responses, and profound autoimmunity including

autoimmune cytopenia, psoriasis, alopecia, arthritis, and autoim-
mune hepatitis [91••, 92••, 93••, 94–96, 97•]. There are many
immunosuppressive medications that have been tried to sup-
press immune dysregulation and autoimmunity without good
clinical improvement. Interestingly, it has been shown recently
that medications targeting CTLA4 such as CTLA4 fusion pro-
teins and hydroxychloroquine (lysosomal degradation inhibitor)
are highly effective in controlling the profound autoimmunity in
these disorders [90••, 98••]. Finally, the curative treatment option
is still hematopoietic stem cell transplantation despite the high
risk of mortality and possible recurrence of autoimmunity post
transplant [99].

Conclusion

It is clear that Treg cells play a critical role not only in main-
taining peripheral tolerance and preventing autoimmunity
(negative regulation) but also in promoting tissue repair, in-
testinal IgA response, and healthy commensalism (positive
regulation). Exploring the molecular mechanisms involved
in Treg cell dysfunction in IPEX and IPEX-like disorders
provides insight into the biology of Treg cells and their role
in common autoimmune and immune dysregulatory diseases.
This understanding enables the development of successful
therapeutic interventions in these disorders.
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