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Abstract Allergic rhinitis, particularly seasonal allergic rhi-
nitis, is considered a classic Th2-mediated disease, with im-
portant contributions to pathology by interleukins 4, 5 and 13.
As such, allergic rhinitis is an excellent model for studying
allergic inflammation, with findings potentially relevant to the
mechanism of lower airways inflammation seen in allergic
asthma. However, recent evidence has revealed roles for ad-
ditional non-Th2 cytokines in asthma, including IL-17 family
cytokines and epithelial-derived cytokines. Additionally, pu-
tative roles for epithelial-derived cytokines and innate lym-
phoid cells have been described in chronic rhinosinusitis with
nasal polyps. Here, evidence for the involvement of different
cytokines and cytokine groups in allergic rhinitis is considered.
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Introduction

Cytokines constitute a diverse group of immunomodulatory,
signalling molecules with a wide range of functions in health
and disease. Whilst initially identified to be of lymphocyte
origin, they are now known to be produced by many different
cell types, including immune, structural and organ-specific
tissues. They orchestrate host responses to infection and trau-
ma, as well as the potentially damaging responses seen in
allergic, inflammatory and autoimmune disease.

Cytokines play an essential role in mediating allergic in-
flammation. The importance of the ‘type-2’/Th2 cytokines,
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particularly IL-4 and IL-13, in both the development of aller-
gic sensitisation and pathology of allergic inflammation in
asthma is well established [1]. However, inflammatory re-
sponses in asthma are more complex than simple overexpres-
sion of Th2 cytokines. Recent research has identified addi-
tional contributions from the IL-17 family of cytokines [2] and
epithelial-derived cytokines such as TSLP [3] and IL-33 [4],
amongst others.

Allergic rhinitis, particularly seasonal rhinitis, is an excel-
lent model for studying allergic inflammation, where the
triggering factor(s) can clearly be identified, and sufferers
can be studied during periods of disease and remission. More-
over, the nasal mucosa is easily accessible for provocation
with allergen and recording of responses, both clinical and
immunological. This article will discuss the cytokine profiles
identified in studies of allergic rhinitis in humans. The evi-
dence for Th2-predominant responses will be discussed, as
well as roles for other cytokine groups, including Th1-, Th17-
and epithelial-derived cytokines.

Approaches to Investigating Nasal Cytokines

Nasal secretions are produced by seromucous glands and
goblet cells, with possible additional input from leaked plasma
contents during acute allergic responses. Secretions can be
collected directly, using absorptive materials placed on the
mucosa [5] or by lavage with saline [6]. Cytokine levels can
then be quantified by ELISA or other immunoassays. Lavage
has the advantage of allowing concurrent cytological investi-
gation, but the disadvantage of dilution of nasal fluid, which
may render some mediators undetectable [7].

Nasal mucosal brushing or scraping can provide mRNA,
allowing assessment of cytokine gene expression by real-time
PCR [8]. Nasal biopsy allows use of immunohistochemistry
and in situ hybridisation to quantify and localise cytokine-
producing cells [9]. Nasal epithelial cell lines, obtained at
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brushing or biopsy, may be investigated for cytokine produc-
tion in vitro [10].

Cytokine production by isolated peripheral blood mononu-
clear cells, T cells and dendritic cells exposed to allergen
in vitro has also been investigated in allergic rhinitis [11,
12¢]. Serum levels of cytokines primarily produced in the
nasal mucosa might be expected to be very low, but differ-
ences between allergic rhinitics and controls have been iden-
tified [13].

The timing of investigation is important. Studies of season-
al allergic rhinitis may be done both in and out of season,
allowing comparison [14]. Given that allergen exposure in
daily life is difficult to control for, an alternative approach is to
use nasal allergen provocation. With this approach, applied
doses can be standardised and the precise time course of
response studied. An example of symptom and peak nasal
inspiratory flow responses to nasal allergen challenge is
shown in Fig. 1. A drawback to this approach is that it is
markedly different in both timing and magnitude to allergen
exposure in daily life. Conversely, environmental exposure
chambers can provide controlled allergen exposure at com-
monly encountered levels over time [15].

It is also important to consider the profile of the patient
group studied, such as perennial or seasonal rhinitics, the
presence or absence of concurrent asthma, and the triggering
allergen(s). Also, mono- versus polysensitisation may alter
responses to a single allergen [16]. Lastly, the intrinsic prote-
ase activity of some allergens may influence innate immune
responses in a non-IgE-dependent manner [17].

Th2 Cytokine Profiles

Nasal allergen provocation induces early phase symptoms —
itching and sneezing, followed by rhinorrhoea and nasal
blockage — within minutes of allergen exposure, accompanied

- Diluent
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8 - Repeat allergen

TNSS

Fig. 1 Response to grass pollen nasal allergen challenge in allergic
individuals. Purified Timothy grass (Phleum pratense) pollen allergen or
diluent only was applied by nasal spray to both sides of the nasal mucosa
at time 0, after initial assessments at baseline and following a nasal saline
lavage. A repeat challenge with the same allergen dose was repeated
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by release of mast cell-derived mediators, including histamine
[18], tryptase [6], PGD2 [18] and cysteinyl leukotrienes [19].
Neuropeptides are also elevated, including substance P, calci-
tonin gene-related peptide (CGRP) and vasoactive intestinal
polypeptide (VIP) [20]. During the early phase response,
however, Th2 cytokines remain at pre-challenge levels [5].
Whilst only a minority of patients show a distinct late phase
clinical response (5; Scadding GW, Durham SR, unpublished
data), an increase in IL-4, -5 and -13 may be detected in nasal
fluid from 3-4 h onwards, rising to 6-9 h post challenge [5,
21-23]. Whether levels have reached a plateau by this point is
unclear; by 24 h they are returning to baseline [24]. Levels of
tryptase, IL-4, -5 and -13 in fluid directly absorbed from the
nasal mucosa before and after grass pollen allergen challenge
are shown in Fig. 2.

In high Th2-cytokine-secreting individuals, the correlation
between different cytokines, particularly between IL-13 and
IL-5, is strong, as illustrated in Fig. 3 [5]. Interleukin-5 ap-
pears to be present in highest concentration, with levels in
excess of 1,000 pg/ml recorded, followed by IL-13 [5, 23,
25¢]. Concentrations of IL-4 and IL-9 are lower, with a range
of approximately 0-200 pg/ml for IL-4 and 0-100 pg/ml for
IL-9 (5; Scadding, Durham unpublished data). The regulatory
cytokine IL-10 is also present in nasal fluid and may be
increased after nasal allergen challenge [26]. An increase in
Th2 chemokines has also been reported. Eotaxin has been
most frequently studied; increases in RANTES, MCP-1 and
MIP-1« have also been identified [21, 24, 27, 28].

Studies of cytokine profiles during natural exposure to
seasonal or perennial allergens provide information on the
usual disease state of rhinitic patients, but not on the immedi-
ate time course of the allergic response. Increased levels of IL-
4,1L-5 and IL-10, accompanied by elevated eosinophils, were
found in nasal lavage fluid in school children with grass or tree
pollen seasonal allergic rhinitis [29]. Direct absorption of
nasal fluid with synthetic filter strips demonstrated elevated

200

approximately 4 weeks after the initial challenge. Symptom scores
(TNSS, total nasal symptom score, 0-12) and peak nasal inspiratory flow
(PNIF, L/min) were recorded before and after challenge for 6 h. Mean+
SE of 18 volunteers
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levels of IL-5, IL-13, eotaxin-1, TARC, MCP-1, MIP-1f3 and
IP-10 in children with symptomatic allergic rhinitis [30].
Klemens et al. compared nasal fluid mediators in seasonal
allergic rhinitis and viral rhinitis [31]. Allergics had elevated
ECP, tryptase and IL-5; viral infection produced increased
levels of a range of inflammatory cytokines, including IL-
1B, IL-6, IL-7, IL-17, IFNy, IL-8, TNF& and GM-CSF, but
also IL-4 and IL-5. Interestingly, lower in-season IL-4 and IL-
10 levels in nasal fluid have been reported in one study, but
both were elevated at 5 h after nasal allergen challenge out of
season, highlighting the potential discrepancies between the
two approaches [32].

In situ hybridisation revealed elevated levels of IL-4 and
IL-5 mRNA in nasal turbinate mucosal biopsies taken either in
season [14, 33, 34] or 6 h after grass pollen allergen challenge
[9]. Raised IL-10, IL-13 and RANTES mRNA post challenge
have also been described [35]. A trend towards an increase in
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Fig.3 Spearman correlation between IL-5 and IL-13 levels in nasal fluid
of 18 patients before and after grass pollen nasal allergen challenge.
(Adapted from Scadding et al. [5])

IL-9 mRNA in season was accompanied by an increase
in c-kit+mast cells [36].

Immunohistochemical staining revealed fewer IL-10+ cells
in the nasal mucosa of allergics after grass pollen challenge
compared to controls (12). Peripheral blood myeloid dendritic
cells from the same patients secreted less IL-10 in vitro and
tended to support differentiation of naive T cells into Th2 or
Th17 cells rather than Thl cells. This reveals a systemic
discrepancy between allergics and non-atopics. In the same
vein, a number of studies have reported elevated serum Th2
cytokines in allergics, including IL-5 [37] and IL-9 [38].

Several investigators have looked for associations between
single nucleotide polymorphisms in Th2 cytokine genes and
risk of allergic rhinitis, with IL-4 and IL-13 SNPs most fre-
quently studied. Modest associations have been identified for
some SNPs [39, 40] but not others [41]. Associations are likely
to be population-specific, and may also be gender-specific [42].

In summary, both nasal allergen challenge and in-season
studies demonstrate a clear Th2 cytokine profile in allergic
rhinitis, with a time course in keeping with the classical model
of late phase allergic inflammation. Further research is needed
to determine how closely these profiles relate to clinical out-
comes, the relationship between early phase mediators, such as
tryptase, and late phase Th2 cytokines, and whether cytokine
profiles can be used to predict response to treatment, particu-
larly specific-allergen immunotherapy. The standardisation of
procedures, particularly for allergen challenge and nasal fluid
analysis, plus the use of increasingly sensitive, low-volume
immunoassays, should enable more reliable comparison be-
tween studies and insight into these areas.
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Thl and Inflammatory Cytokines

Investigators have examined IFNvy as a measure of Thl re-
sponses in allergic rhinitis. Most studies of symptomatic
rhinitics have not identified increases in nasal fluid compared
to controls or out-of-season levels [29, 31, 43]. In fact, in a
study by Benson and colleagues, an increase in [FNy during
seasonal grass pollen exposure was seen in non-atopics, but
not allergics. In this study, allergic status was best
characterised by a high IL-4:IFNvy ratio in nasal fluid [29].
Similarly, lower tissue expression of IFNy in turbinate biop-
sies from grass pollen allergics than controls was seen both
before and after nasal challenge [12¢]. Furthermore, in vitro,
allergic peripheral blood plasmacytoid and myeloid dendritic
cells released less IFNy and IL-12, respectively [12¢]. No
significant increase was seen in IFNy levels in nasal fluid
following grass pollen challenge, despite increases in several
other mediators [5].

Elevated nasal fluid IL-18 has been identified both during
seasonal exposure in pollen allergics and, to a greater extent,
in symptomatic dust mite allergics [44]. Conversely, elevated
IL-113 levels were only found in seasonal rhinitics, in agree-
ment with previous studies [45, 46]. Nasal allergen challenge
has resulted in increased IL-1{3, GM-CSF, IL-6 [27] and IL-8
[24] compared to baseline values. However, Klemens et al.
[31] found no significant increases in IL-1[3, IL-6, IL-8,
GM-CSF, TNF« or the chemokines MCP1 and MIP-1{3 in the
nasal fluid of seasonal allergic rhinitics, but did identify
increases during viral upper respiratory tract infection.

Th17 Family Cytokines

The Th17 family of cytokines, particularly IL-17A (often
referred to simply as IL-17), have proinflammatory effects in
chronic asthma [47] and chronic rhinosinusitis—particularly
chronic rhinosinusitis with nasal polyps in patients of Chinese
ethnicity [48]. Their role in allergic rhinitis is less well
established.

In a study of seasonal allergic rhinitics, IL-17A levels in
nasal fluid increased 5 h after nasal allergen challenge, falling
back to pre-challenge levels at 24 h [32]. However, during
natural seasonal exposure in the same patients, IL-17A was
largely undetectable. (It should be noted that different nasal
fluid collection methods were used for the challenge and in-
season phases of the study, potentially accounting for this
difference.) Conversely, Xu et al. [10] did record elevated levels
of [IL-17A and IL-17 F (as well as IL-25/IL-17E and TSLP) by
nasal lavage in unchallenged house dust mite allergics. This
raises the possibility that cytokine profiles differ between
pollen- and house dust mite-induced rhinitis (perhaps as a result
of intrinsic Der p1 protease activity), although methodological
differences may again be relevant. Additionally, the populations
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studied—European and Chinese, respectively—might also
account for differences, particularly in light of the different
cytokine profiles described in European and Chinese nasal
polyps [48]. Whilst IL-17 was found to be increased in nasal
fluid in a European population during viral infection, no
increase was found during seasonal allergen exposure [31].
Nasal allergen challenge with grass pollen did not produce
increases in nasal fluid IL-17 despite increases in several Th2
cytokines and chemokines [49].

Two studies have reported increased serum IL-17A levels
in allergic rhinitics: during the pollen season [50], and before
and after house dust mite bronchial challenge [51]. In the latter
study, the concentration was intermediate between non-atopic
controls and allergic asthmatics.

Inferior turbinate tissue from perennial dust mite allergic
rhinitics had greater IL-17A+cells by immunohistochemistry
and IL-17A mRNA by real-time PCR, and an increased
proportion of CD4+IL-17A+cells in tissue homogenates
compared to non-allergic controls [52]. But IL-17A expres-
sion did not correlate with clinical symptoms.

Peripheral blood myeloid dendritic cells isolated from grass
pollen allergics had increased propensity to induce T cell IL-
17 secretion in vitro [12¢]. Grass or birch pollen allergen-
challenged peripheral blood mononuclear cells were found
to have significantly upregulated IL-17 receptor (IL-17RB)
gene expression — more so than IL-5, GATA-3 or FceRIL
Protein levels of IL-17RB were also increased on basophils
post challenge [53].

Overall, evidence suggests that IL-17 may be elevated in
allergic rhinitis, predominantly in mite-induced, perennial
rhinitis. Whether it has a functional, pathological role in
allergic rhinitis is unclear. Areas of potential research inter-
est include treatment effects on IL-17, influence of IL-17
on response to treatment, particularly to intra-nasal cor-
ticosteroids, and whether elevated IL-17 may put indi-
vidual rhinitics at increased risk of developing asthma or
rhinosinusitis.

Epithelial-derived Cytokines

Recent evidence from murine asthma models suggests that
airways inflammation and hyper-reactivity are dependent
on cytokines secreted predominantly by the airway epithe-
lium, including TSLP, IL-33 and IL-25. These cytokines
are released by tissue damage, pathogen recognition or
even by allergen exposure. They affect Th2 cell function
either directly or via innate lymphoid cells, which in turn
produce IL-5, IL-9 and IL-13 [54]. These novel cytokines
and innate lymphoid cells appear to be relevant to both
human asthma [55, 56] and chronic rhinosinusitis with
nasal polyps [57¢, 58e¢]; their relevance in allergic rhinitis
is also under investigation.



Curr Allergy Asthma Rep (2014) 14:435

Page 5 of 8, 435

A higher concentration of TSLP was found in nasal lavage
fluid from unchallenged house dust mite sensitised allergic
rhinitics than non-atopic controls [10], at a mean of 33.8 pg/ml
in allergics. In the same study, dsRNA induced TSLP release
from human nasal epithelial cells in vitro. Immunohistochem-
ical staining and real-time PCR have revealed increased ex-
pression of TSLP protein and mRNA in turbinate tissue of
allergic rhinitics [59, 60]. TSLP production by human nasal
epithelial cells in vitro was stimulated by a TLR2 ligand, as
well as by IL-1 and TNF« [59]. A further study identified
increased TSLP expression in vitro in human nasal epithelial
cells derived from mugwort allergics in season compared to
controls [61]. The results of these interesting studies require
confirmation in larger, well-characterised cohorts. Of note, in
a study of 11 TSLP single-nucleotide polymorphisms in a Han
Chinese population, none were associated with susceptibility
to allergic rhinitis [62]; but the same SNPs had gender-specific
associations with nasal polyposis [63].

Data concerning IL-33 are conflicting. Levels of approxi-
mately 5 ng/ml were found in nasal secretions (collected by
aspiration) of a cohort of house dust mite and Japanese cedar
allergic rhinitics — significantly higher than in non-atopic
controls [64] — but IL-33 was undetectable in serum in either
group. Conversely, IL-33 was undetectable in nasal lavage
fluid collected during seasonal pollen exposure and present at
only low pg/ml levels, without a significant increase following
nasal challenge using direct mucosal fluid absorption with
filter discs [65]. In this latter study, however, the soluble IL-
33 receptor, ST2, was elevated in the nasal fluid of allergics in
season. Serum IL-33 has been detected by other researchers, at
varying levels: a median of 549 pg/ml in Japanese cedar
allergics [13], 2133 pg/ml in house dust mite allergics [66]
and 28.5 ng/ml in grass and tree allergics [67]. In each of these
studies, the serum concentration was greater than in non-
atopic controls.

Haenuki et al. reported reduced turbinate epithelial expres-
sion of IL-33 on immunohistochemical staining in allergic
rhinitics. However, 1L-33 mRNA expression was increased
in pollen allergics biopsied in season [68¢]. Conversely, in-
creased IL-33 protein and mRNA expression has been report-
ed in biopsy tissue from house dust mite allergics [66]. In this
latter study, human nasal epithelial cell IL-33 expression
in vitro was induced by either [IFNy or a TLR9 ligand. Finally,
a weak association between an IL-33 gene single nucleotide
polymorphism and Japanese cedar pollinosis has been report-
ed [13].

A convincing role for epithelial-derived cytokines in aller-
gic rhinitis in man has yet to be proven, although this area is
now of great research interest. As in asthma, these possible
upstream inflammatory mediators would make very attractive
targets for pharmacotherapy, with the potential for more di-
verse inhibitory effects than is seen with targeting individual
Th2 cytokines.

Other Cytokines and Mediators

Periostin [69], osteopontin [37] and IL-31 [70-72] have all
been studied in the context of allergic rhinitis, with greater
levels found than in controls, thus indicating possible patho-
logical roles. Conversely, the anti-inflammatory protein CC10
(Clara Cell 10kD protein) has been identified in reduced levels
in allergic rhinitic nasal mucosa, with an inverse correlation
with osteopontin expression [73].

Treatment Effects on Cytokine Profiles

Intranasal corticosteroids are the most effective pharmacother-
apy for allergic rhinitis. They decrease eosinophil infiltration
into the nasal mucosa during seasonal allergen exposure [33].
This may be due to their ability to suppress local mucosal IL-
5, as detected in nasal fluid [34, 74], or at mRNA level by in
situ hybridisation [33]. Intranasal corticosteroids also inhibit
increases in IL-4, -5 and -13 after nasal allergen challenge [21,
24] and prevent seasonal increases in IL-4 [14] and eotaxin
[75]. They appear to have a less pronounced effect on seasonal
neutrophil infiltration into the nasal mucosa [74] and accom-
panying inflammatory or Th1 cytokines, including IFNvy, IL-
13 and TNF« [76]. However, topical fluticasone did signifi-
cantly inhibit IL-1[3, IL-8, IL-6 and MIP-1« release in nasal
fluid following nasal allergen challenge [77].

Specific allergen immunotherapy is highly effective when
used in appropriate patients and induces lasting immunolog-
ical tolerance [78] associated with production of functional,
allergen-specific IgG4 antibodies [79]. Grass pollen immuno-
therapy has been shown to inhibit the seasonal rise in eosin-
ophil infiltration into the nasal mucosa as well as reduce IL-5
mRNA expression in tissue [80] and IL-5 protein in nasal fluid
[81]. Interferon-y mRNA levels are increased, with clinical
improvement accompanied by an increase in the local
IFNy:IL-5 ratio [82]. Local IL-10 mRNA expression is in-
creased, as is IL-10 production by peripheral blood T cells
in vitro [83]. There is a reduction in IL-9 alongside reduced c-
kit+mast cells [36]. Immunotherapy may also inhibit allergen-
induced peripheral blood T cell IL-4 production in vitro [84].

Conclusions

Allergic rhinitis is associated with a dominant Th2 cytokine
profile, which is suppressed by corticosteroids. The profiles
seen following either nasal allergen challenge or in-season/
symptomatic assessment are broadly similar, although the
magnitude of cytokines may be greater following high dose
challenge. Controlled allergen challenge has the advantage of
providing a time course of mediator release, demonstrating
that Th2 cytokines increase from basal levels as early as 3-4 h
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post challenge, reaching peak levels at or after 6-8 h and
returning to near baseline levels by 24 h. The precise cellular
source of these cytokines requires further clarification. Whilst
infiltrating T cells and eosinophils are likely to contribute, the
rapid appearance of these cytokines in nasal fluid suggests
local resident cells may also be involved.

Innate lymphoid cells have been recognised as a source of
Th2 cytokines, particularly IL-13, in mouse models of allergic
asthma. A role for these cells in human allergic rhinitis has to
be established, but research on the epithelial-derived cyto-
kines believed to be responsible for activating innate lym-
phoid cells is now taking off and beginning to provide inter-
esting results. Further investigation is required.

With increasing realisation of the interaction between up-
per and lower airways, it is important to look for common
pathomechanisms. Emerging evidence in asthma suggests it is
a heterogeneous disease, with some forms being less cortico-
steroid responsive. This pattern may, in part, be accounted for
by IL-17/Th17-cell-mediated, neutrophilic inflammation. Pre-
dominant Th17-type inflammation has also been demonstrat-
ed in some patients with chronic rhinosinusitis with nasal
polyps. A clear role for IL-17 family cytokines in allergic
rhinitis has yet to be confirmed, with results at present con-
flicting. As is the emerging trend with asthma, it may one day
be possible to differentiate allergic rhinitics into various phe-
notypes (including differential corticosteroid-responsiveness),
based in part on cytokine profiles, allowing for improved,
targeted treatments.
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