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Abstract The eosinophil is a multifunctional granulo-
cyte best known for providing host defense against
parasites. Paradoxically, eosinophils are also implicated
in the pathogenesis of allergic inflammation, asthma,
and hypereosinophilic syndromes. Emerging evidence
also supports the potential for harnessing the cytotoxic
power of eosinophils and redirecting it to kill solid
tumors. Central to eosinophil physiology is interleukin-
5 (IL-5) and its receptor (IL-5R) which is composed of
a ligand-specific alpha chain (IL-5R«) and the common
beta chain (3c). Eosinophil activation can lead to their
degranulation, resulting in rapid release of an arsenal of
tissue-destructive proinflammatory mediators and cyto-
toxic proteins that can be both beneficial and detrimen-
tal to the host. This review discusses eosinophil
immunobiology and therapeutic strategies for targeting
of IL-5 and IL-5R, as well as the potential for harness-
ing eosinophil cytotoxicity as a tumoricide.
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Introduction

Eosinophils are innate immune effector cells best known for
providing host defense against parasites, as well as playing a
role in the pathogenesis of allergic diseases such as asthma,
and in hypereosinophilic syndromes (1-4). In the past de-
cade, additional physiologic roles for eosinophils have
emerged, which include coordination of tissue remodeling
events, orchestration of homeostatic functions, and regula-
tion of innate and adaptive immunity [1-3, 4¢]. Typically,
eosinophils are found in low numbers in the blood (1-4 % of
total peripheral blood leukocytes; less than 500/cu mm), and
under homeostatic conditions are also found within mucosal
tissues, as well as primary and secondary lymphoid organs
[5]. Eosinophils can be rapidly generated from bone marrow
progenitors and recruited to sites of inflammation. The
cytokine, interleukin-5 (IL-5), is essential for the differenti-
ation and survival of eosinophils from hematopoietic pro-
genitors [6]. Eosinophils and their progenitors express the
IL-5R which is composed of a ligand specific alpha chain
(IL-5Ra) and the common beta receptor (3c¢) which is
shared by IL-3Ra and GM-CSFR« [7]. Chemotactic mole-
cules are necessary for eosinophil recruitment and migra-
tion. Eotaxin-1 is an eosinophil-specific chemokine and is
the most potent chemokine for eosinophils [8, 9]. Other less
selective chemokines include RANTES, eotaxin-2, eotaxin-
3, MCP-2, and MCP-3, which also utilize the eotaxin-1
receptor (CCR3) [8, 9].

Central to eosinophil effector functions is the capacity of
these cells to immediately release their tissue-destructive
cytoplasmic granules upon activation by various stimuli.
Eosinophil granule secretion leads to the release of pre-
formed pro-inflammatory mediators such as cytokines, che-
mokines, lipid and neuro-mediators, growth factors, and
cationic proteins [1-3, 4+, 5]. Eosinophils are characterized
by the presence of specific granules that contain four classic
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cationic proteins: major basic protein (MBP), eosinophil
peroxidase (EPO), eosinophilic cationic protein (ECP), and
eosinophil-derived neurotoxin (EDN) [1-3, 4+, 5]. The col-
lective destructive power of these cytotoxic proteins pro-
vides efficacy against infectious organisms, accounts for the
bystander damage to host tissue during eosinophilic inflam-
mation, and makes them potentially attractive candidates for
use as tumoricidals. Eosinophils mediate remodeling via
profibrotic cytokines, such as TGFf3, and eosinophils are
the largest producers of TGF 3 in the airway [10, 11]. TGFf
contributes to airway remodeling by detaching airway epi-
thelial cells and increasing deposition of extracellular matrix
proteins which causes fibrosis via matrix metalloproteinases
(MMP) and IL-6 [10, 11].

Eosinophils in Parasite Immunity

Eosinophils are central to host immunity against parasites
[12—15]. In addition, eosinophils can effectively participate
in immunity to bacterial and viral infections via ligation of
pattern recognition receptors by damage-associated molecular
pattern molecules (DAMPs) and pathogen-associated molec-
ular pattern molecules (PAMPs) to pattern recognition recep-
tors [13, 15]. Eosinophils are most effective against helminth
parasites. When parasites infiltrate host tissues, a Th2 re-
sponse is elicited which increases the generation of eosino-
phils under the influence of IL-5 [12, 14]. Eosinophils are
recruited to the site of infection by eotaxin-1. Once in contact
with the parasite, the eosinophil degranulates to release reac-
tive oxygen species and cytotoxic molecules such as EDN,
EPO and MBP [14]. Eosinophils will also secrete lipid bodies
which contain a variety of eicosanoids that are necessary
(along with mast cells) for the smooth muscle modulation that
occurs in peristalsis designed to expel parasites [14].

Eosinophils in Allergic Inflammation and Eosinophilic
Syndromes

Eosinophils have a firmly established role in allergic inflam-
matory responses. In humans and mice, one of the hallmarks
of asthma is eosinophilic infiltration of the bronchial muco-
sa and submucosa, and the number of airway eosinophils is
directly associated with disease severity in asthmatic
patients [16, 17]. A role for eosinophils in the pathogenesis
of asthma was experimentally supported using eosinophil-
deficient mice, which had markedly diminished allergen-
induced airway inflammation and markedly diminished
bronchial hyper-reactivity [18, 19]. Similar results were
seen with IL-5-deficient mice, implicating the IL-5/eosino-
phil axis in allergic inflammation [20]. This axis was like-
wise implicated in humans by the presence of increased IL-5
in bronchoalveolar lavage fluid and bronchial biopsies of
patients with allergic asthma [21-24].

Perhaps where eosinophilic pathology is most blatant is in
hypereosinophilic syndromes (HES), which encompass a va-
riety of disorders whose commonality is chronic elevation of
blood eosinophil counts [25, 26+, 27¢]. HES can cause com-
plications such as cardiomyopathy, hepatosplenomegaly, neu-
ropathy, skin lesions, and pulmonary disease. These symptoms
can be fatal if untreated, and are secondary to the tissue damage
caused by the eosinophils’ toxic mediators. Subtypes of HES
are being delineated, and include those with the PGDF-FIPL1
fusion gene, and those secondary to increased IL-5 production,
as well as idiopathic causes [25, 262, 27¢].

Other diseases characterized by eosinophilia include eosin-
ophilic esophagitis (EE) and eosinophilic gastroenteritis (EG),
referring to excess eosinophil infiltration of the esophagus and
the stomach or intestines, respectively [28—30]. Experimen-
tally, eotaxin-deficient mice had attenuated EE and IL-5-
deficient mice had complete ablation of EE [31]. EG can occur
in all parts of the gastrointestinal tract, and like EE, is usually
caused by allergic responses. Churg Strauss syndrome (CSS)
is also characterized by hypereosinophilia, and nasal polypo-
sis is characterized by increased IL-5 production and infiltra-
tion of eosinophils in the polypoid tissue [32-34].

Duality of Eosinophil Physiology

The descriptions above demonstrate that eosinophils can be
harmful or beneficial. There are two prevailing paradigms to
explain this duality: either (1) the participation of eosino-
phils in allergic inflammation are part of a common physi-
ologic Th2 immune response to environmental insults at the
host—environment interface, or (2) eosinophils in allergic
inflammation are a physiologically unintended or misdir-
ected pathologic response that stems from the host’s use of
the Th2 anti-parasite immune response pathway [35]. In
support of the first option, the LIAR hypothesis specifically
emphasized that the role of eosinophils is to provide “Local
Immunity and Remodeling Repair,” explaining that the bas-
al levels of eosinophils in the tissues are responsible for
homeostatic remodeling [35, 36¢]. Hence, the allergic re-
sponse would be an over-exuberant, intended response to
potentially harmful environmental antigens. By extension,
Th2 immune responses may have also specifically evolved
against non-infectious noxious agents or toxins as a mech-
anism to promote behavioral change (like the avoidance
venomous stinging or biting animals). Whether Th2 im-
mune responses evolved independently against parasites
and non-infectious noxious agents, or are based on a shared
mechanism, continues to be debated [35, 36°].

IL-5 and the IL-5 Receptor Complex

Eosinophils are critically dependent on IL-5 for their
differentiation, activation, prolonged survival, increased
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adhesion to vascular endothelial cells, and augmentation
of cytotoxic activity [1-3, 4e]. IL-5 is a glycoprotein
homodimer that is produced by Th2 cells, as well as by
NK cells, mast cells, basophils, and eosinophils [6].
Activated eosinophils produce IL-5 in an autocrine fashion
to prolong their survival, and some evidence suggests that IL-
5 is necessary for eosinophil migration along with chemokines
like eotaxin-1 and RANTES [37].

IL-5 binds to a heteromeric receptor composed of a
65-kD, high affinity, ligand-specific IL-5Rx and a
homodimeric 130kD (¢, which is common to the GM-
CSFR and the IL-3R [7]. Structurally, the IL-5 homo-
dimer is composed of two four alpha helix motifs A-D
and A’-D’ that are arranged in an up-up-down-down
antiparallel configuration connected by loops [7, 38].
The homodimer conformation interdigitates the A, B,
and C helices from one molecule and the D’ helix from
the other molecule, thereby yielding a molecule with a
pair of four alpha helical bundle motifs with a C2-axis
of symmetry [39]. Although this structure provides the
homodimer with two potential binding domains for
IL-5Ra and two for (¢, only one IL-5SRa has been
shown to directly bind to IL-5 [39]. The structural
interactions of IL-5Rx-bound IL-5 to ¢ have yet to
be solved. The IL-5 binding domain for IL-5R«x lies
within the 1st and 3rd antiparallel loops [40], while the
fc binding domain is anchored by the glutamate-13
residue (Glu-13) of IL-5 [39]. A recent crystallography
study showed that steric hindrance is responsible for
one IL-5Ra being bound by the IL-5 homodimer
[41]. It is predicted that IL-5 and the IL-5R complex
forms in the same way that the GM-CSF and the
GM-CSFR forms a dodecamer complex, with two IL-
5/IL-5R« complexes binding to (¢, followed by further
aggregation of these ligand/receptor complexes, which
enables engagement of adjacent (¢, thereby facilitating
transphosphorylation of JAK2 and signal transduction
via STATS [42].

The IL-5Ra extracellular region consists of 3 fibro-
nectin type III domains (D1, D2, D3). D2 binds IL-
5’s M2 region using the D2 (3132 loop while also
binding at the hinge site between D2 and D3. It is Dl
which is thought to be imperative for IL-5 binding, and
dependent on Ile-161 [43]. After IL-5 binds to IL-5R«x
via disulfide bonds, a conformational change occurs to
allow IL-5 interaction with the 3c. Both 3¢ and IL-5Ra
are constitutively associated with JAK kinases, and are
responsible for signal transduction [44]. The main sig-
naling pathways involved are the JAK/STAT, Ras/
MAPK, p38/NFkB, and the phosphoinositide 3-kinase
(PI3K) pathways. These signaling pathways direct the
transcription of various genes involved in eosinophil
differentiation, activation, and survival [44].

@ Springer

Strategies for Antagonizing Eosinophils

As eosinophils play a contributing role to allergic inflam-
mation, asthma, and hypereosinophilic syndromes, eosino-
phil depletion has been a tantalizing target for treatment of
these conditions. Since IL-5 is a specific mediator of eosin-
ophil differentiation and survival, IL-5 and its receptor have
evolved as drug targets (Fig. 1). Alternative strategies for
antagonizing eosinophilic inflammation include targeting
eotaxin, eosinophil adhesion molecules, or eosinophil sig-
naling pathways. However, the greatest success has resided
in targeting IL-5 or IL-5Rax.

Targeting IL-5

Early on, it was determined in murine models that IL-5
neutralizing antibodies were effective down-regulators of
eosinophilic inflammation, with similar favorable outcomes
as those with IL-5- deficient or IL-5SRx-deficient mice [45].
In developing anti-IL-5 neutralizing monoclonal antibodies
(mAD), the crucial epitopes are within the 3¢ binding do-
main and the IL-5R« binding domain. Targeting the (3¢
binding domain on IL-5 would still allow IL-5 to bind to
IL-5Rx on the surface of eosinophils, but signaling could
not occur since engagement of the 3¢ would be blocked.
Conversely, targeting the IL-5SRa binding domain on IL-5
would block IL-5 binding to the eosinophil. Targeting either
of these IL-5 domains would be predicted to be equally
efficacious. Currently, there are only two IL-5 neutralizing
mAb in human use, mepolizumab and reslizumab (Fig. 1).
Both of these mAb have been humanized, bind to epitopes
within the IL-5R & binding domain (Table 1), and bind to IL-
5 with similar affinity, 4.2 pM and 20 pM, respectively
[46—49]. Mepolizumab is an IgG1k antibody, while Resli-
zumab is an IgG4«k antibody, and hence they exhibit differ-
ences in their Fc biologic activity [47—49]. Whether their
isotype differences will be clinically important is not clearly
defined. Of note, there are no commercially developed mAb
that bind the IL-5 3¢ binding domain, although this remains
a viable target.

Mepolizumab

Clinical trials utilizing mepolizumab are summarized in
Table 2. The initial mepolizumab trial targeted asthma
patients. In this study, adult males with asthma received a
single infusion of mepolizumab, and while peripheral blood
eosinophil levels were reduced, there was no effect on
clinical signs and symptoms [49, 50]. Subsequent studies
selected for patients with eosinophilic asthma and sub-
groups that were insufficiently controlled with corticoste-
roids. In prednisone-dependent asthmatics, an infusion of
750 mg mepolizumab was administered once a month for
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IL-5Ra

Fe receptor

Benraluzimab %

IL-5 neutralization

Fig. 1 Current therapeutic strategies for antagonizing the IL-5/IL-5
receptor axis. In an inactivated state, the IL-5 receptor consists of two
single IL-Rox chains (dark orange chains) and a (¢ dimer (blue and
green chains). Two different clinical approaches have been used to
inhibit IL-5-induced signaling in eosinophils: (1) neutralization of IL-5
by humanized mAbs, mepolizumab and reslizumab (leff panel); and (2)
neutralization of the IL-5 receptor alpha chain (IL-5R«) to block IL-5
binding and mediate ADCC lysis, benralizumab (right panel). 1L-5

5 months. Patients receiving the intervention had decreased
blood and sputum eosinophils and improved asthma control
as judged by decreased asthma exacerbations and lower
requirements for prednisone [51]. In another study in adults
with corticosteroid-refractory asthma, 12 monthly doses of
mepolizumab resulted in fewer exacerbations, and patients
improved their AQLQ score [52]. These trials also saw a
subgroup improvement in patients with nasal polyposis. In
an independent study on adults with severe nasal polyposis,
patients who received two monthly infusions of 750 mg
mepolizumab had a significant reduction in blood ECP
and soluble IL-5R«, and nasal IL-5R«, IL-6, and IL-1f3,
which correlated with polyp improvement based on total
polyp score (TPS) [53].

Mepolizumab has been used against a variety of
eosinophil-mediated diseases, and studies have shown re-
markable clearance of blood, lung, and bone marrow eosi-
nophils. Among the HES, mepolizumab trials have focused
on FIPILI-PDGFRA-negative patients, since the FIPILI—
PDGFRA fusion gene promotes eosinophilia independent of
IL-5 and is treated with the kinase inhibitor imitamib [54].
In patients requiring corticosteroid treatment for HES,
750 mg of mepolizumab was administered intravenously
every 4 weeks for 36 weeks [54]. Of the patients who
received mepolizumab, 84 % lowered their prednisone

IL-5R neutralization and ADCC

neutralization by mepolizumab and reslizumab involves the binding of
these mAb to IL-5 domains which bind to IL-5R«, thereby blocking
the formation of a signaling competent IL-5R complex (left panel). In
contrast, Benralizumab actually binds the cell surface IL-5R« to pre-
vent IL-5 binding altogether. However, this approach also leads to
antibody-dependent cellular cytoxicity (ADCC) caused by Fc receptor
binding on NK cells to the anti-IL-SRx mAb on eosinophils (right

panel)

dosage to below 10 mg/day as compared to 43 % of the
placebo group which achieved this end point. The interven-
tion group also had lower blood eosinophil numbers (95 %
less than 600/uL), and the placebo group had a shorter time
to treatment failure. Overall, hypereosinophilia was better
controlled in the intervention group [54]. To determine if
mepolizumab was equally effective for the lymphocytic and
non-lymphocytic subsets of HES patients, 750 mg mepoli-
zumab was administered every 4 weeks (55). This study
showed that corticosteroid use could be reduced to a similar
extent, but blood eosinophil numbers were not as attenuated
in lymphocytic HES as they were in patients with non-
lymphocytic HES.

When used to treat eosinophilic esophagitis, patients who
were dysphagic (among other symptoms) received 10 mg/kg
mepolizumab (up to 750 mg) every 4 weeks for 3 total
treatments. All patients had improved clinical outcomes
related to decreased dysphagia, blood eosinophil levels were
decreased 6-fold, and three of the four patients had de-
creased esophageal epithelial hyperplasia [56]. In a study
that looked more closely at the molecular modulations,
Straumann demonstrated that the improvement in dysphagia
was likely due to reduction in tenascin C and TGF31 in the
esophagus, although this study showed only mild clinical
improvements [57]. To determine if mepolizumab could be
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Table 1 Targeting IL-5 and the IL-5R

Target Sites  Drug

Other Names Isotype Mechanism

Human Uses

IL-5 Mepolizumab (GSK) SB-240563

Bosatria

SCHS55700
Cinquil

Reslizumab (Cephalon)

IL-5R a Benralizumab (Medlmmune) MEDI-563

Bc & Eotaxin TPI ASM8 (Pharmaxis)

IgGlk Neutralizing antibody

IgG4k  Neutralizing antibody

Antisense gene target

(Phase 2) Asthma

(Phase 2) Adult eosinophilic esophagitis
(Phase 2) Pediatric eosinophilic esophagitis
(Phase 2) Churg Strauss syndrome

(Phase 2) Nasal polyposis

(Phase 3) Hypereosinophilic syndromes
(Phase 3) Pediatric eosinophilic esophagitis
(Phase 3) Rhinovirus induced asthma
(Phase 3) COPD

(Phase 3) Asthma

(Phase 2) Hypereosinophilic syndromes
(Phase 3) Pediatric eosinophilic esophagitis
(Phase 2) Loiasis

IgGlk ADCC, competitive inhibition (Phase 2) Asthma

(Phase 2) COPD
(Phase 2) Asthma

safely and effectively used in children, three monthly infu-
sions of 0.55, 2.5, or 10 mg/kg mepolizumab were admin-
istered [58]. In children that had fewer than 20 eosinophils
per high power field, there was an improvement in esopha-
geal erythema, friability, and furrows or vertical lines.

Mepolizumab has also been used successfully for patients
with Churg—Strauss syndrome (CSS) [59]. In a case report
of a 28-year-old female, monthly infusions of 750 mg
mepolizumab reduced eosinophils to normal levels, resolved
the patient’s asthma, and improved lung parenchyma by
chest radiographs [60]. In a clinical trial of patients with
CSS and marked eosinophilia, four monthly infusions of
750 mg mepolizumab resulted in a 64 % reduction of
corticosteroid use at 12 weeks, and a 61 % decrease at
24 weeks. Eosinophilia was also reduced, but upon cessation
of the study exacerbations recurred [61].

Mepolizumab was unsuccessful in the treatment of
atopic dermatitis [61, 62]. In two studies by Oldhoff,
mepolizumab did not improve patient prognosis as
judged by physician global assessment (PGA), scoring
atopic dermatitis SCORAD, and thymus- and activation-
regulated chemokine (TARC) scores and by atopy patch
test. In these studies, blood eosinophilia was reduced,
but tissue eosinophilia was not [61, 62].

Reslizumab
Clinical trials utilizing reslizumab are summarized in
Table 2. In a reslizumab pilot study, 1 mg/kg reslizumab

was administered intravenously once to patients with severe
persistent asthma that was not controlled by corticosteroids

@ Springer

[63]. Eosinophils were significantly reduced by about 50 %
after 2 days and slowly reestablished to about 18 % 30 days
after reslizumab intervention [63]. However, the only no-
ticeable improvement was increased forced expiratory vol-
ume (FEV) at the 24-h post-treatment time point which was
not sustained. In a later study of patients with poorly con-
trolled asthma and sputum eosinophilia, the intervention
group received monthly intravenous infusions of reslizu-
mab. Results indicated that, while all patients had attenuated
eosinophil numbers, only the nasal polyposis subgroup
showed increased lung performance based on an Asthma
Control Questionnaire (ACQ), which indicates that reslizu-
mab may be an important therapeutic for certain disease
subgroups [64].

In a limited study for HES, a single infusion of reslizu-
mab (1 mg/kg) was administered to four adults with HES
inadequately controlled by corticosteroids [65]. Three
patients had significant reduction of eosinophilia, and two
also had improved clinical symptoms. After cessation of
treatment, eosinophil levels rebounded and exacerbations
occurred. The fourth patient had no reduction in eosinophil-
ia, with self-limited exacerbations [65].

Reslizumab treatment has also been used for pediatric
eosinophilic esophagitis [66]. Patients received 1, 2 or 3 mg/
kg reslizumab infusions monthly for 4 months. While all
groups had a reduction of eosinophils, complete clearing of
the esophagus did not occur and esophagitis improvement
did not correlate with eosinophil reduction [66]. This study
reported minimal adverse outcomes, the most common be-
ing cough, headache, congestion, and respiratory tract in-
fection. Reslizumab is presently in further clinical trials for
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the aforementioned diseases to better elucidate the specificity
of treatment, along with a clinical trial to evaluate its use in
patients with loiasis, in an effort to limit host tissue damage
associated with the loiasis-induced hypereosinophilia [67].

Targeting the IL-5 Receptor

There are two commercial therapeutics that target the IL-5R:
benralizumab and TPI ASMS8 [68-70]. Clinical trials with
these agents are summarized in Table 2. Benralizumab is an
IgG1k mAb specific for IL-5R« [68, 69]. This drug has
been developed to bind to the first fibronectin domain on IL-
5Ro which attenuates eosinophil number by competitively
inhibiting binding of IL-5 to the IL-5R, as well as by
antibody-dependent cell-mediated cytotoxicity (ADCC) via
FeyRIII expressed by NK cells, macrophages, and neutro-
phils (see Fig. 1) [43, 68, 69]. The eosinophil-lowering
capability is effective up to 56 days after administration.
Benralizumab has been shown to be effective in clinical
trials with asthma patients in whom it reduced eosinophil
numbers in a dose-dependent manner, as well as reducing
ECP levels. Benralizumab is also currently in phase II trials
for the treatment of chronic obstructive pulmonary disease
(COPD) [71].

TPI ASMS is an antisense oligonucleotide that targets
expression of both 3¢ and eotaxin-1 [70]. While (¢ is an
attractive target in that it would potentially inhibit the three
Th2 cytokines, IL-5, IL-3, and GM-CSF, chronic treatment
might result in pulmonary alveolar proteinosis (PAP) due to
inadequate GM-CSF signaling [72, 73]. Likewise, targeting
fc would also target much broader subpopulations of
leukocytes.

TPI ASMS has been tested with 4-day and 14-day treat-
ments [70]. These short-term treatment regimens and the
short half-life of TPI ASM8 may mitigate potential chronic
effects that could arise. In one study, it was determined that
the half-life for the cocktail was less than 7 h and that the
drug did not accumulate overtime [70]. In another study,
mild asthmatics were antigen challenged and then inhaled
TPI ASMS with increasing doses for 4 days (twice daily for
the first 3 days and then once on the fourth day after
challenge). After 7 h there was a 60 % reduction in sputum
eosinophils and a 68 % reduction after 24 h. Likewise, ECP
levels were reduced after 3 days and early asthma response
was attenuated, and consequently so was late asthma
response [70].

Hansen et al. have described an anti-3c¢ mAb that antag-
onizes signaling in vitro [42]. The study showed that their
anti-3¢c mADb inhibited GM-CSF-dependent colony forma-
tion by bone marrow cells from patients with chronic mye-
lomonocytic leukemia, and hence might be a future
therapeutic for such patients [42]. However, a potential risk
with anti-3¢ mAb treatment may be PAP [72, 73].
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Strategies for Harnessing Eosinophil-Mediated
Inflammation

Eosinophils and Cancer

Although most literature regarding the immune system and
tumor cells concentrates on the role that CD8+ cytotoxic T
cells and Th1 cytokines play in the tumor immune response,
tumor-associated tissue eosinophilia (TATE) is widely rec-
ognized. [74—-83]. The induction of a Th1l immune response
(by M1 macrophages) is most commonly associated with
increased tumor control and better prognosis of disease,
while the Th2 immune response and its related molecules
may exacerbate tumor growth and decrease tumor control
[84, 85]. Nonetheless, TATE in some cancers has been
associated with an improved prognosis [74—80]. Hence,
there is no agreement as to whether the presence of eosino-
phils is beneficial or detrimental to patient outcomes.

As reported by van Driel, TATE has a poor prognosis in
cervical cancer, while Ishibashi reported that TATE in
esophageal squamous cell carcinoma has no correlation with
prognosis [81, 82]. To investigate the potential effect of
eosinophils on carcinomas, Wong compared the effect of
IL-5 neutralizing antibody treatment to placebo on chemi-
cally induced squamous cell tumors in hamsters [83]. Eo-
sinophil levels were decreased and the tumor burden was
lower in anti-IL-5-treated hamsters. Thus, in this model,
eosinophils appeared to be contributing to tumor pathogen-
esis. Eosinophils are involved in tissue remodeling and they
produce VEGF as well as induce endothelial cell production
of VEGF [86, 87]. Furthermore, eosinophils produce pro-
angiogenic cytokines, as well as matrix degrading enzymes
in the form of MMP, all of which are associated with
remodeling [88-91]. Together, these data suggest that eosi-
nophils could be used by tumor cells to promote their
survival and expansion.

Conversely, patient survival or time to recurrence was
improved in patients with TATE in some colon, breast,
colorectal, nasopharyngeal, oral, gastric, and head and neck
cancers [74—-80], and metastasis was less frequent in colon
cancer and head and neck cancer [75, 76]. These studies
have suggested that eosinophils could be used as a prognos-
tic indicator such that patients with TATE could receive less
aggressive interventions.

Eosinophils as a Tumoricide

Few studies have been performed to elucidate the con-
nection between eosinophils and tumor prognosis. In
mice, B16 OVA melanoma tumor clearance was depen-
dent on eotaxin and degranulating eosinophils [92]. Ad-
ditionally, IL-5 transgenic (Tg) mice, which overexpress
IL-5 and have hypereosinophilia, had decreased tumor
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burden after fibrosarcoma induction, and ecotaxin-
deficient mice had greater fibrosarcoma burden. Eosino-
phil encapsulation of the tumor was prolonged in IL-5
Tg mice which may account for arrest of tumor growth
[93]. Cormier furthers this observation in mice by dem-
onstrating that eosinophil accumulation occurs early in
subcutaneously injected melanoma tumors and localizes
specifically to necrotic tumor areas and encapsulated
areas [94]. A study performed in vitro on human-
derived colon cancer cells demonstrated that eosinophils
can kill tumor cells in a cell contact-dependent mecha-
nism requiring the adhesion molecules CD11a and CD18,
and that key molecules involved in the cytotoxic effects
were TNF, ECP, and Granzyme A [95¢].

Given that TATE is well described in cancer patients, and
can be associated with improved prognosis, the promotion
of eosinophil effector function is a potentially viable strate-
gy against tumors. Since the degranulation of eosinophils is
key for eosinophil effector function, any strategy that would
induce degranulation may be useful. The chemokine eotaxin
can stimulate eosinophil degranulation, so eotaxin promo-
tion might be beneficial. Indeed, an eosinophilotactic mole-
cule was reportedly produced from a large-cell anaplastic
carcinoma of the lung, so it may be possible to illicit a chemo-
kine dependent response via modulation of the tumor [96].
Likewise, many cytokines are associated with eosinophil de-
granulation, including IL-5, IL-33, and GM-CSF [97, 98].
Another strategy would be to cross-link the surface receptors
like FcaR using an antibody specific to the receptor [99].

Conclusions

IL-5 and IL-5R« are clearly established effective targets for
decreasing eosinophilia. Most strategies have successfully
utilized mAb, but more recent strategies include using anti-
sense oligonucleotides. Although initially developed for
potential use in the treatment of allergic asthma, broader
therapeutic potential is being demonstrated for subsets of
HES. In addition, a new avenue of therapy is the use of anti-
IL-5 therapeutics to dampen rather than ablate exuberant
eosinophil responses to parasitic infections in an effort to
prevent bystander host tissue damage. Furthermore, anti- IL-
S5Ra mAb capable of ADCC might be useful as treatment
for eosinophilic leukemia. An important consideration in the
use of eosinophil-modulating therapies is their potential
adverse effects. Thus far, the agents currently in human
trials have had minimal adverse effects reported. Other
potential targets for modulating eosinophilic inflammation
include chemokines like eotaxin and eosinophil adhesion
molecules. The potential to harness eosinophils against can-
cers is an exciting frontier that could potentially lead to
technological breakthroughs in clinical medicine.
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