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Abstract Asthma is a chronic inflammatory disease of the
airways that leads to various degrees of recurrent respiratory
symptoms affecting patients globally. Specific subgroups of
asthma patients have severe disease leading to increased
healthcare costs and socioeconomic burden. Despite the

overwhelming prevalence of the asthma, there are limitations
in predicting response to therapy and identifying patients who
are at increased risk of morbidity. This syndrome presents
with common clinical signs and symptoms; however, aware-
ness of subgroups of asthma patients with distinct character-
istics has surfaced in recent years. Investigators attempt to
describe the phenotypes of asthma to ultimately assist with
diagnostic and therapeutic applications. Approaches to asthma
phenotyping are multifold; however, it can be partitioned into
2 essential groups, clinical phenotyping and molecular phe-
notyping. Innovative techniques such as bipartite network
analysis and visual analytics introduce a new dimension of
data analysis to identify underlying mechanistic pathways.
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Introduction

Asthma is a chronic inflammatory disease characterized by
inflammation of the airways leading to variable airflow
obstruction and airway hyper-responsiveness affecting close
to 300 million people globally [1]. Severe asthma, account-
ing for up to 15% of asthmatic patients, consumes extensive
health care costs and is an immense economic burden to
society [2]. In industrialized countries, despite 1% to 2% of
health care expenditure in management of asthma, clinicians
continue to struggle with treatment of severe asthma be-
cause response to current therapy is often variable and
unpredictable [3, 4].
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Themechanism of airway inflammation in asthma has been
extensively studied; however, the underlying pathophysiology
of asthma requires further investigation [5], as it is heteroge-
neous. Such mechanistic heterogeneity may underlie impor-
tant clinical phenotypes, sometimes called ‘endotypes’.
Technological advances in proteomics, genomics, and com-
puter science in the recent era have led to ongoing studies to
explore the inflammatory pathways and signaling mecha-
nisms associated with asthma. Numerous research techniques
have been utilized to characterize the multiple phenotypes of
asthma to assist with therapy and prognostication. The latest
investigations attempt to use methods of classification that
rely less on a priori assumptions in an attempt to create
distinct subsets of patients. Ultimately, the objective of defin-
ing the clear phenotypes of asthma includes prediction of
response to therapy, calculation of the clinical trajectory, and
reduction of clinical heterogeneity in clinical trials.

Asthma is a heterogeneous clinical disorder with variable
ages of onset, duration of disease process and extent of
airway obstruction [6]. Over the past decade, despite the
commonality of some clinical signs and symptoms, an
awareness of subgroups of asthma patients with distinct
characteristics has surfaced [7]. The ‘phenotype’ represents
the patients’ observed characteristics and, given the hetero-
geneity of asthma, this becomes a complex task to under-
take. Approaches to asthma phenotyping are multifold;
however, it can be partitioned into 2 essential groups,
clinical phenotyping and molecular phenotyping. Clini-
cal phenotyping attempts to utilize the clinical presenta-
tions, characteristics, and results of common diagnostic
tests to subgroup patients. In contrast, molecular pheno-
typing attempts to demystify the complex pathways in
an attempt to classify the pathophysiologic process at a
molecular level, based in patterns of expression of proteins or
nucleic acids.

Clinical Phenotypes

Allergic Asthma

In the spectrum of clinical phenotypes, several subtypes are
noteworthy. First, the allergic asthma phenotype is a syndrome
used frequently by clinicians to describe the constellation of
airway hyperesponsiveness to various stimuli, excessive mu-
cus production, airway eosinophilia, positive skin test
responses to aeroallergens, and elevated serum immunoglob-
ulin E (IgE) [8, 9]. The airway inflammation is mediated by
the T cell differentiation to the TH2 cellular pathway and
production of inflammatorymediators, specifically interleukin
4 (IL-4), interleukin 5 (IL 5), and Interleukin 13 (IL-13) [10].
The term allergic asthma gained popularity in the clinical
arena by general practitioners and subspecialists to describe

the seasonal respiratory decompensation associated with aller-
gens, or persistent disease associated with perennial allergens.

Exercise Induced Asthma

Second, exercise induced asthma (EIA) is well described
entity, but the pathophysiology is controversial. The presen-
tation of EIA is focused on the sudden onset of asthma
symptoms, typically shortness of breath and wheezing,
which occurs after the onset of exercise [11]. Patients will
exhibit dyspnea and bronchoconstriction, often manifested
to the greatest extent after 10 minutes of exercise, or shortly
following its cessation. Most patients recover within 60
minutes of cessation of exercise [12]. Both the thermal and
osmotic theories have attempted to uncover the mechanism
of EIA, but this is yet to be entirely clarified. The thermal
theory suggests that the airway cooling and subsequent
rewarming sets off an inflammatory cascade. On the other
hand, the osmotic theory proposes cellular volume changes
as the trigger for inflammatory mediator release [13]. Clini-
cians have used exercise induced asthma to describe the
dyspnea associated with exercise in known asthmatics, and
this entity can be observed in close to half of the patients
with asthma [14]. It is often important to distinguish patients
with exercise as one of several triggers of asthma symptoms
from those whose exclusive trigger is exercise.

Despite the heterogeneity of asthma, underlying chronic
airway inflammation is the hallmark of this disease process.
Thus, therapy with inhaled corticosteroids has been the stan-
dard of care for symptom control, often leading to reduction of
inflammatory mediators and reduced airway obstruction [7],
improvements in quality of life, and reduction in exacerba-
tions of asthma. Interestingly, clinicians have recognized a
subset of patients with severe or refractory asthma, accounting
for about 5%–7% of patients with asthma [6], who have a
decreased response to steroids and have increased symptoms.
Although this clinical phenotype is small in number, these
patients utilize 50% of health care cost for asthma secondary
to the frequent exacerbations, uncontrolled symptoms, and
requirement for hospitalization [15, 16].

Clinical Clusters

Given the significant morbidity and lack of understanding of
this subset of asthma patients, the National Heart, Lung, and
Blood Institute (NHLBI) established the Severe Asthma
Research Program (SARP) made up of several academic
institutions to further investigate this group of patients.
Several seminal papers have emerged from this effort, but
relevant to the question of phenotyping, SARP studies
revealed 5 clinical phenotypes of asthma by using unsuper-
vised modeling suggesting that different pathophysiologic
mechanisms likely leads to the clinical presentations. The
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recent SARP publication [17••] notes that close to 1600
asthma patients and over 500 severe asthma patients have
been evaluated with the SARP collaborative network.

Using the extensive researched clinical variables
recorded on the patients, agglomerative cluster analysis
was used to classify patients into 5 distinct clusters [18].
The first cluster encompasses patients with mild allergic
asthma with early onset and history of atopy. These patients
generally have normal lung function and have less health
care utilization. The largest group of asthma patients are in
Cluster 2, who have mild to moderate allergic asthma. This
group exhibits atopy and early onset but are different than
Cluster 1 due to the borderline low FEV1 values. Cluster 3
patients are older, very late onset, and have a higher BMI.
They are distinct from Clusters 1 and 2 secondary to the less
atopic nature, frequent need for systemic corticosteroids,
and greater than 3 controller medications. One-third of the
patients belong to Clusters 4 and 5, who have longer dura-
tions of disease compared with the other clusters. These 2
clusters differ in pulmonary function tests and response to
bronchodilators. Patients in Cluster 4 have a less reduced
FEV1 with reversibility to almost normal range with bron-
chodilators (albuterol). However, Cluster 5 patients have
more severely reduced FEV1 with much reduced response
to bronchodilators.

Induced Phenotype

These 5 clinical phenotypes give clinicians a framework to
categorize patients, but do not provide much help in predict-
ing response to therapy. The presence of comorbidities or
modifying factors such as smoking, gastroesophageal reflux
disease and sinusitis frequently encountered in clinical prac-
tice leads to constraints in classifying patients into these
clusters. Inhaled corticosteroids continue to be the mainstay
of chronic therapy for asthma; however, the response to this
therapy remains inconsistent. Response to corticosteroids is
an “induced phenotype,” and physicians use the degree of
response to tailor therapy. Early identification of these in-
duced phenotypes is vital as corticosteroid-resistant patients
have increased morbidity and mortality [17••]. Further
investigations in genetic analysis, molecular science, and
imaging attempt to expose the mechanisms underlying air-
way inflammation and, furthermore, to understand the var-
iable response to therapy.

One common theme in the methods to classify asthma
thus far is that divisions are based on grouping of patients
with similar characteristics, be it molecular or clinical data.
These independent divisions do not necessarily correlate
across the spectrum for a universal asthma classification
schema. This disconnect has prompted investigators to de-
velop novel methods to classify asthma phenotypes, based
on molecular markers or inflammatory pathways.

Molecular Phenotype

Molecular phenotypes of asthma have been investigated
with great vigor in an attempt to shed light on the funda-
mental pathways leading to the clinical presentations of
asthma. The putative link between the distinct mechanism
and the variation in clinical presentation needs further ex-
ploration. Molecular phenotyping has the advantage of in-
corporating knowledge of the fundamental pathways of
disease. This understanding is essential to development
biomarkers, diagnostic strategies and therapeutics. Histori-
cally, airway inflammation in asthma is thought to be T-
helper type 2 (Th2) mediated and the cells involved include
basophils, eosinophils, and mast cells [19]. Cytokines, in-
cluding IL-4, IL-5, and IL13 play a prominent role in the
inflammatory cascade [20, 21].

Cellular Phenotype

In this subdivision of molecular phenotypes, the cellular
phenotypes are noteworthy. As early as the 1990s, Wenzel
et al conducted sputum analysis and bronchoscopic evalua-
tion on severe asthmatics, and 2 subtypes of SA were iden-
tified: eosinophilic and non-eosinophilic [21]. Further work
continued to focus on the cellular component of airway
inflammation. Eosinophilic airway inflammation in general-
ly associated with airway hyper-responsiveness and chronic
asthma. With continued investigation of induced sputum,
elevated numbers of neutrophils were noted in asthmatic
patients with increased airflow obstruction [21]. Subsequent
studies supported these results that a neutrophilic phenotype
correlates with the chronic narrowing of the airways [22],
lower eosinophilic counts, and poor response to inhaled
steroids [23]. In addition, it is well known that during acute
asthma exacerbations, airway neutrophilia is present [24].
Ongoing studies continue and infectious etiologies of the
neutrophilic phenotype have been suggested.

Gene Expression

Woodruff and colleagues extended the molecular investiga-
tions to gene expression profiling of airway epithelial brush-
ings. They noted that a group of up-regulated genes were
enhanced by IL 13 suggesting that IL-13 likely is an activa-
tor of epithelial cells in asthma. However, there was vari-
ability in IL-13 expression in patients with asthma, and there
is a subgroup of asthmatics with low levels of IL-13 despite
similar symptoms. Their work revealed a distinct group of
up-regulated genes in asthmatics and additionally noted that
elevated expression of a set of genes, CLCA1, periostin, and
serpinB2, was associated with enhanced response to cortico-
steroids [25]. Further investigations elucidated that asthmat-
ic patients can be classified into “Th2 high” and “Th2 low”
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groups suggesting different degrees of airway inflammation
[26]. The 2 observations were key because of the concept
that a panel of genes or proteins may be a better index of
molecular phenotype than any single molecule could be.

Studies conducted by Brasier et al [27] explored pheno-
types at a molecular level in depth using the assistance of the
SARP database and biobank. The clinical clusters described
by SARP suggest that severe asthma patients have different
inflammatory processes and likely have distinct airway in-
flammatory mediators. This observation led to the hypothe-
sis that cytokine expression in the airway might discriminate
severe from non-severe asthma. Thus airway cytokine ex-
pression patterns in bronchoalveolar lavage (BAL) from
matched group of patients with non-severe and severe asth-
ma were analyzed using multiplex cytokine arrays. The data
revealed 18 cytokines that have measurable concentrations
in the BAL. Unsupervised agglomerative hierarchical clus-
tering was performed and this identified 4 asthma pheno-
types. Importantly, Group 1 had a significantly reduced
FEV1, FVC, and FEV1 improvement after bronchodilator
therapy compared with the other groups, and 60% of these
patients were classified as severe asthma by SARP inves-
tigators. Group 2, interestingly, had the best preservation of
lung function and predominantly composed of non-severe
asthma patients. The findings revealed that BAL cytokine
patterns were informative distinguishing asthma pheno-
types, but did not per se provide much information about
the underlying mechanisms of inflammation. Hence, further
studies at the proteomic and advanced analytic levels were
required to understand the relationship between protein ex-
pression patterns and variable asthma presentations.

Machine Learning Methods to Predict Asthma
Phenotypes

Brasier et al [27] undertook an analysis of BAL protein
expression patterns with the intermediate phenotypes of
bronchial responsiveness to methacholine, beta-agonist
bronchodilator response, airway eosinophilia, and airway
neutrophilia. In the SARP dataset, these intermediate phe-
notypes had little overlap. Additional analysis of the protein
expression patterns demonstrated that each the intermediate
phenotype was associated with a distinct protein expression
pattern. It is perhaps not surprising that cellular inflamma-
tion (neutrophilic or eosinophilic) was related to cytokine
and chemokine expression. However, it was of considerable
interest that protein expression patterns also related to phys-
iologic variables of methacholine responsiveness and β-2
agonist bronchodilator responses. The observations hint at
the power of protein expression profiling.

Brasier et al [28] have tested the accuracy of four differ-
ent statistical (machine) learning methods to predict each

intermediate phenotype. The authors classified 1048 sub-
jects enrolled in the U.S. severe Asthma Research Program
(SARP) into 4 distinct clinicopathologic subsets, heuristi-
cally derived from pathophysiologic phenotypes of these
patients. BAL cellularity determined 2 groups based on
‘eosinophil rich’ or ‘neutrophil rich’ pathology while phys-
iologic response to albuterol (bronchodilators) and metha-
choline (hyper-responders) comprised of the other two
groups. Using logistic regression (LR), multivariate adap-
tive regression splines (MARS), classification and regres-
sion trees (CART) and random forest (RF) methods,
cytokine data from the BAL fluid was analyzed for predic-
tion of the above defined subtypes.

This approach led to the identification of LR and MARS as
optimal statistical learning approaches for phenotyping of asth-
ma. The method described in the article attempts to find the
optimal statistical technique capable of working with molecular
data (cytokines) and predicting a clinical phenotype.

The advantage of this method allows for prediction of
asthma type based on molecular data. Another advantage
was the molecular cytokine data supported the empiric
grouping and strengthened classification architecture by
finding cytokine profiles that were unique enough to distin-
guish the a priori classified patient subsets. Moreover, one
could surmise that this method is clonally applicable to a
similar data set in other disease conditions.

One drawback that this method has in common with others
is the heuristic grouping of patients into defined phenotypes. A
change in the defining conditions could lead to a different set of
patient subgroups, leading to a new classification, which may
then have its own unique statistical method capable of predict-
ing the phenotype. Thus, the emergent classification would be
‘condition based’. Moreover, subsets based on the assumption
that the defining characteristic is a ‘fixed attribute’ for that
group may not apply in situations with high fluxes. Patients
with rapidly evolving pathology or in the case where there is
change from eosinophilic to neutrophilic infiltrate and vice-
versa would not fall into any one category. Another difficulty
of this methodology is that just as patient subgroups are pre-
defined, so are the choices of statistical models used, leading to
lack of nonexclusivity in choice of machine learning methods.

One way to let the information reveal patterns of disease
is to use Network analysis. Information gleaned from statis-
tical learning approaches can be supplemented with a net-
work based approach.

Network Analysis Methods

Network Basics

Network analysis is a discipline of network science and a
part of graph theory in mathematics. A network is formed by
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a set of nodes connected in pairs by “edges” (Fig. 1). Net-
works have been used to analyze a wide range of datasets,
including gene–disease interactions [29] and disease–gene
associations [30]. A molecular unipartite (single variable)
association network of asthma with 129 SNP has been pub-
lished by Renkonen et al [31]. Though asthma classification
was not attempted, important associations between subgroups
of protein classes like Toll-like receptors and chemokines
were demonstrated. Recently, networks have also been used
to determine if quantitative proteomics of bronchial biopsies
from asthmatics can distinguish biological functions [32].
Though networks analyses are finding increasing use in the
published literature to analyze a wide range of scientific data
such as social networks, occurrence of comorbidities and
gene–gene interactions [33•], these unipartite analyses show
only one part of a bipartite (eg, subject–cytokine) relationship.

Bipartite Networks

In contrast to the unipartite networks used in previous studies,
bipartite networks contain 2 sets of nodes such as subjects and
cytokines, and edges can connect only nodes from different sets.
This approach is ideal for the representation of bipartite relation-
ships, which is both more powerful and considerably more
complex. Bhavnani et al [34] used this representation to conduct
a secondary analysis of the SARP cytokine data. This analysis
of the SARP data differed from previous attempts to classify
asthma patients, as it did not assume an a priori classification of
either patients based on phenotypic (severe vs non-severe or
hyper-responsive vs normal), or molecular information.

Application of Bipartite Networks

For a bipartite network analysis to reveal patterns of mean-
ingful relations between variables being studied, the tabular

data need to be converted into a network representation. In this
case, asthma patients and cytokines were represented as nodes
and their normalized cytokine expression values, (Fig. 2),
represented as edges connected each patient to each cytokine.
Furthermore, in common with network principles, graphical
elements like node size (proportional to total expression value
of the connecting edges, in this study) and edge thickness
(proportional to normalized cytokine expression values in this
study) allowed for an information-rich representation in addi-
tion to affecting the network architecture. Application of
force-directed algorithms (eg, Kamada-Kawai algorithm [35]
used in this case) to the layout pushes together nodes that have
a similar profile, and pushes apart nodes that do not. Thus,
patients who had a higher cytokine expression value for a
particular cytokine were spatially closer compared with those
who have lower cytokine expression value for the same cyto-
kine. Once the topological relationships are established, the
next step is to contrast the real network to random permuta-
tions of the network. This is done by comparing the variance,
skewness, and kurtosis of the dissimilarities (either between
patients, or between cytokines) in the ‘real’ network, to 1000
permutations of the same data. Validation of a pattern is based
on the principle that the probability of the observed pattern in
the network could not have occurred by random chance.

Bipartite Networks in Asthma

As an example (Fig. 2) using this technique, the authors
demonstrated that eotaxin and IL-4 (cytokine nodes) were
placed close to each other. Exploratory visual analysis of the
force-directed layout revealed topological characteristics,
which can denote important relationships. Exploratory visual
analysis in the SARP bipartite network also revealed 3 patient
clusters based on their cytokine profiles and the nature of their
relationship with the rest of the patient–cytokine network. The

Fig. 1 Network basics. A simple network is composed of nodes and
edges. Here the network attempts to describe the relationship between
the drug and clinical reaction. Red nodes denote the drug. The white
nodes denote the reaction. The edges connect the nodes. White nodes

(reaction) are distributed in space according to their degree of associ-
ation to the red nodes (chemical agent). By this representation subsets
of reactions and drugs can be identified. For example, it appears that
DDT, Hepatachor, and Dieldrin can lead to similar side effects
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next step was to quantitatively verify the boundaries and the
members of the individual clusters, which was done by using
agglomerative hierarchical clustering.

Biologic Implications of Bipartite Networks in Severe
Asthma

The significance of such exploratory visual and bipartite net-
work analysis comes from the biological implications of clus-
tering effect of cytokines with patients. In this study, the
finding of co-occurrence of eotaxin and IL4 (cytokine cluster
1) with patient cluster 1 allowed for authors to infer the
pathology of the pathways responsible for the phenotype.
Similarly, the specific grouping of cytokines in cluster 2
suggested the presence of a shared NFkB mediated innate
response (IL5, IFNγ, MIP1a, MIG, IL-17, and MIP-1b),
which is distinct from the cluster 1-Th2 mediated inflamma-
tory pathways. The third cluster of patients, with the weakest
cytokine expressions, also had the largest differences in ob-
structive measures of lung functions and lowest responsive-
ness to methacholine. By analyzing the clinical variable
associated with this subgroup, the authors inferred that this
subgroup had preserved lung function and less inflammatory
pathway activation. Thus, this molecular information-based
patient classification using bipartite networks revealed groups
of asthma patients with distinct pathologic mechanisms.
Moreover, the comparison of the above classification of
patients to the severe/non-severe classification did not show
a concordance, suggesting a shortcoming in using a single
variable to classify patients.

Application of this methodology is still in its early stages
when it comes to analysis of disease patterns in patient phe-
notypes. Using this method for asthma classification presents
an exciting precedent for other diseases and pathologic states.
Although bipartite networks are a powerful technique, they
are limited in the number of variables that can be simulta-
neously represented through graphical properties such as col-
or, size, and shape. However, the strengths include a unified
representation of both sides of a bipartite relationship (for
example, patients and cytokines) in addition to the nature of
each relationship through the edge weights. In addition, visu-
alizing the data using 3-dimensional layouts is possible [36],
allowing for an extension of analytical capabilities. Another
advantage of this method is that it guides the selection of
appropriate quantitative measures (eg, cluster analysis if such
a pattern exists in the data) that match the underlying structure
of the data.

There are other instances where bipartite networks have
proven to be useful. Lu et al have done bipartite analysis of
human microRNAs and disease associations [37] and dis-
covered patterns of microRNA associated with disease,
while other authors have extended network analysis of
microRNA data to oncogenic pathways [38] and even pro-
tein complexes and drug interactions [39].

Conclusions

Asthma is a chronic disease affecting a large segment of the
population. There has been an explosion of information,

Fig. 2 Network analysis of
asthma patients and cytokines.
The network reveals cytokine
and patient clusters
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processes, and data regarding asthma pathogenesis. Discovery
of new information permits characterization of the disease in a
new light. Apt classification and characterization of asthma
will help in providing the most appropriate care to patients
with diverse underlying pathophysiology. Network analysis of
biomedical data is a relatively new technique of analyzing
data. This robust method allows for visualization of emergent
patterns in seemingly complex information dense data sets.
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