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Abstract Allergic asthma is on the rise in developed
countries, and cockroach exposure is a major risk factor
for the development of asthma. In recent years, a number
of studies have investigated the importance of allergen-
associated proteases in modulating allergic airway inflam-
mation. Many of the studies have suggested the importance
of allergen-associated proteases as having a direct role on
airway epithelial cells and dendritic cells. In most cases,
activation of the protease activated receptor (PAR)-2 has
been implicated as a mechanism behind the potent allerge-
nicity associated with cockroaches. In this review, we focus
on recent evidence linking cockroach proteases to activation
of a variety of cells important in allergic airway inflamma-
tion and the role of PAR-2 in this process. We will highlight
recent data exploring the potential mechanisms involved in
the biological effects of the allergen.
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AHR airway hyperresponsiveness
A1AT alpha 1 antitrypsin
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DC dendritic cell
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mDC myeloid dendritic cell
PAR protease activated receptor
pDC plasmacytoid dendritic cell
SLPI secretory leukocyte protease inhibitor
TLR toll like receptor

Introduction

The incidence and severity of asthma has risen dramatically
over the past two decades. Cockroach allergy was first
reported by Bernton and Brown, two medical students
who noticed skin rashes immediately after a cockroach
crawled over the skin of an allergic patient. They subse-
quently reported that 44 % of allergy patients in New York
City had positive skin tests to cockroach [1]. Since that time,
considerable evidence has confirmed that exposure to cock-
roach induced allergy and asthma [2, 3]. It has been shown
that early life exposure to German cockroach (GC) allergens
leads to sensitization and the incidence of asthma [4, 5].
Children who were both allergic to cockroach allergen and
exposed to high levels of this allergen had greater hospital-
ization rates, unscheduled medical visits, and more days of
wheezing than children allergic to and exposed to dust mites
or cat dander [4], confirming cockroach as an important
allergen. Cockroaches are found throughout the world and
both the German cockroach (Blattella germanica) and the
American cockroach (Periplaneta americana) have been
associated with asthma. B. germanica is a widely distributed
urban pest, which most commonly infest homes, apartments,
restaurants and hotels in the United States. P. americana often
reside outside in sewers, stream tunnels and drainage systems;
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they can also be found in commercial and large buildings such
as grocery stores, restaurants and hospitals.

In this review, we describe the role of proteases associated
with cockroach in the development of allergic disease.We will
describe the current understanding of the role of cockroach-
derived proteases in modulating allergic airway inflammation
as well as present an overview of recent findings that
cockroach proteases can regulate the innate immune response.
This review will also highlight the role of protease-activated
receptor (PAR)2 in modulating these responses.

Cockroach Proteases

Potential sources of cockroach allergens include saliva,
feces, cast skins and dead bodies. We believe that the most
likely source of cockroach allergens are feces (frass)
because of the amount of excrement secreted from each
cockroach, the potentially high number of cockroaches
dwelling in homes and the fact that desiccated frass is likely
to crumble and become airborne as dust. German cockroach
(GC) frass and the commercially available whole body
cockroach extract contain serine protease activity [6, 7];
however, it is important to note that none of the allergens
from B. germanica have been showed to be proteolytically
active. Bla g 2 was shown to have characteristics of an
aspartic protease, but it was found to be inactive [8]. Three
cockroach species from Korea (B. germanica, P. americana
and T. fuliginosa) were confirmed to contain gelatinolytic
activity [9]. Per a 10, an allergen from P. Americana, was
shown to be proteolytically active [10]. Attempts at isolation
and characterization of the serine protease are underway,
and have led to the enrichment of the active protease,
virtually devoid of endotoxin [11]. This preparation has
been explored for the ability to induce an immune response.
It is also important to note that it is currently unclear whether
the active serine protease in GC frass is derived from the
cockroach, or commensal bacteria in the gut of the cockroach.

Protease-Activated Receptor (PAR)2

A number of proteases have been shown to signal directly to
cells by cleaving protease-activated receptors (PARs). PARs
are 7-transmembrane G coupled protein receptors that are
stimulated by a variety of extracellular proteases. Cleavage
of an extracellular amino portion of the molecule by
thrombin (for PAR-1, PAR-3 and PAR-4) or trypsin
(PAR-2) results in a new amino terminus which acts as a
tethered ligand that binds to the activation site of the receptor
to activate the heterotrimeric G-proteins in the cell membrane
[12]. PAR-2 has been implicated in allergic airway inflamma-
tion as mast cell tryptase (known to play a role in mediating
allergic airway inflammation and airway reactivity) was also
found to activate PAR-2 [13]. PAR-2 can also be activated,

without proteolytic cleavage, using the peptides SLIGKV
(human) or SLIGRL (murine) [14]. PAR-2 is expressed on
airway epithelial cells [15], alveolar macrophages [16], mast
cells [17], neutrophils [18] and dendritic cells [16]. GC frass
was shown to activate PAR-2[19, 20] in human bronchial
epithelial cells. The importance of PAR-2 expression in the
activation of alveolar macrophages [21], mouse tracheal
epithelial cells [11], and eosinophils [22] has recently been
demonstrated. Knight et. al. demonstrated increased PAR-2
expression on the asthmatic bronchial epithelium compared
with normal epithelium from biopsy sections [23]. In that
study, they found no difference in the amount of staining of
PAR-2 in samples obtained from steroid-dependent or steroid-
free asthmatics. A recent study isolated American cockroach
antigens Per a 1.0101 and Per a 1.0104 and found that these
increased PAR-2 protein expression and release of IL-4 and
IL-13 from P815 cells (a mouse lymphoblast-like mastocytoma
cell line) [24]. However, there was no evidence presented that
suggested these antigens acted directly on PAR-2. We recently
showed that GC frass upregulated PAR-2 levels on pulmonary
mDCs and on bone marrow-derived mDCs [25••], suggesting
that allergen upregulation of PAR-2 could play a role in medi-
ating the immune response.

Regulation of Allergic Airway Inflammation by Cockroach
Proteases

Role of Serine Proteases and PAR-2 in the Regulation of
Allergic Airway Inflammation. The earliest report implicat-
ing allergen-derived proteases in modulating allergic airway
inflammation showed that removal of protease fromAspergillus
fumigatus resulted in decreased airway hyperresponsiveness
(AHR) in a murine model [26]. Since that time, a few studies
have shown the importance of active proteases in cockroach
allergens in mediating allergic airway inflammation. Sensitiza-
tion of mice to allergen can occur by intratracheal or intranasal
instillation without the addition of adjuvant (type II allergens) or
by binding allergen to aluminum hydroxide (alum) and admin-
istration by intraperitoneal injection (type I allergens). Compar-
ison of naïve mice sensitized via intratracheal instillation with
GC frass or GC frass devoid of serine protease activity
(by preincubation with aprotinin), revealed that removal of the
protease from GC frass led to decreased AHR and mucin
production [27]. Interestingly, however, when mice were sensi-
tized using GC frass or protease-devoid GC frass bound to alum
and administered by intraperitoneal injection, there was no
difference in AHR or mucin production between protease-
containing or protease-devoid GC frass [28••]. These data im-
plicate the importance of protease activity in the GC frass in the
initiation of mucosal sensitization. The importance of PAR-2 in
mediating allergic airway inflammation was recently demon-
strated. Sensitization of wild type mice to GC frass resulted in
increased AHR, serum IgE, Th2 cytokine production (IL-13,
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IL-4 and IL-5) and Th17 cytokine production (IL-17A), cellular
infiltration (eosinophils, neutrophils and macrophages), and
mucin production [28••]. Sensitization of PAR-2-deficient mice
resulted in the significant decrease in all parameters of allergic
airway inflammation. Comparing whole body cockroach extract
(CE) to heat-inactivated CE, Arizmendi et. al. showed that
sensitization to heat-inactivated CE induced significantly less
eosinophilia when compared to untreated CE [29••]. They also
confirmed a decrease in AHR, eosinophila and serum IgG1 in
CE-exposed PAR-2-deficient mice, and confirmed the role of
PAR-2 in allergic sensitization to CE using an anti-PAR-2
antibody. Sensitization with the proteolytically active Per a 10
from P. Americana was sufficient to induce AHR, cellular
infiltration and both eosinophil peroxidase andmyeloperoxidase
activity levels [10]. In fact, the eosinophilia was higher in mice
treated with the active Per a 10 compared to P. Americana
extract. Together these data highlight an important regulatory
aspect of cockroach-derived proteases and the activation of
PAR-2 on regulating allergic airway inflammation. In the next
sections, we will discuss the potential mechanisms by which
proteases and PAR-2 activation stimulate the innate immune
response leading to subsequent development of allergic asthma.

Regulation of the Early Innate Immune Response
by Cockroach Proteases

Proteases Acting on the Airway Epithelium. While it was
once thought that the airway epithelium was a passive
physical barrier, it is now thought that the epithelial barrier
has a dynamic role in modulating airway inflammation.
Early work confirmed the role of cockroach-derived pro-
teases on expression of interleukin (IL)-8 and IL-6 from
human airway epithelial cells [6, 19]. Activation of PAR-2
induced G-coupled protein led to increased signaling
through mitogen-activated protein kinase (MEK), extracel-
lular signal regulated kinase (ERK) [19] and nuclear factor
for IL-6 (NF-IL-6) [30]. Recently, chemokine (C-C motif)
ligand 20 (CCL20) and granulocyte macrophage-colony
stimulating factor (GM-CSF) release were confirmed in
primary mouse tracheal epithelial cells (MTEC) and this
was dependent on active proteases and PAR-2 expres-
sion [11]. Since GM-CSF induced the development of
pro-asthmatic myeloid DCs (mDC) [31] and CCL20 is a
strong chemoattractant for lymphocytes and dendritic
cells, it was hypothesized that GC frass proteases could
directly affect the airway epithelium to initiate the
development of allergic airway inflammation. The role
of PAR-2 in regulating the innate immune response was
further implicated by the finding that human β-defensin
and CCL20 were significantly decreased in PAR-
2-deficient gingival epithelial cells following treatment
with Porphyromonas gingivalis [32]. Therefore, activation
of PAR-2 by allergen-derived proteases could be one

mechanism by which the airway epithelium responds to anti-
gen exposure.

A number of studies have suggested that proteases in
house dust mite (HDM) contributed to epithelial barrier
dysfunction [33–35]. To date, not much is known regarding
epithelial barrier dysfunction in regards to cockroach allergen.
It is thought that proteases in HDM increased permeability via
the detachment of Madin-Darby canine kidney (MDCK) cells
[36]; however, this has not been explicitly investigated in the
context of cockroach-derived proteases. It has been shown
that cockroach extract antigen increased vascular endothelial
growth factor (VEGF) in bronchial airway epithelial cells and
increased electrical resistance in these cells [37], although in
this study, a role for cockroach proteases was not addressed.
Topical application of cockroach allergens to repeated tape-
stripped hairless mice or humans resulted in a decreased
barrier recovery rate in a PAR-2-specific manner [38]. In
addition, topical application of a PAR-2 agonist peptide
delayed recovery while accelerated barrier recovery was
found in PAR-2-deficient mice compared to wild type controls
[39]. Thus it is possible that cockroach-derived proteases
could also alter lung epithelial barrier function, but further
research is required in this area.

Early Innate Immune Response. Within three hours follow-
ing a single exposure of GC frass to naïve mice, an innate
immune response occurs as evidenced by an increase in
tumor necrosis factor (TNF)α, KC, CCL20 and GM-CSF
levels in the BAL fluid [11, 40]. Chemokine and cytokine
release in vivo was found to be protease- and PAR-
2-dependent [11, 21]. We recently described a paradigm in
which DCs play a crucial role in the initiation of the innate
immune response via early release of TNFα, which modi-
fies cytokine expression of airway epithelial cells and the
ability of the cells to respond to allergen [41]. While the
importance of proteases or PAR-2 was not investigated in
that study, it is important to note that PAR-2-deficient bone
marrow-derived DC (BMDC) produce less TNFα than wild
type BMDC [25••]. Since the nature of DCs is to adapt to
the highly specialized environments in which they are
located [42•], the early release of TNFα from DCs could
act directly on the TNFα receptor (TNFR1) on airway
epithelial cells leading to increased expression of CCL20
and GM-CSF, an effect which would increase the recruit-
ment and activation of subepithelial DCs (Fig. 1). This is
supported by the finding that DCs cultured in the presence
of lipopolysaccharides secreted exovesicles containing
TNFα. which were then internalized by epithelial cells and
resulted in chemokine release [43]. Thus, following expo-
sure to allergen, both the DC and epithelium could play
supporting roles for the initiation of allergic inflammation
through the early release of TNFα from DCs which stim-
ulates the airway epithelium to release mediators of DC
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maturation and recruitment. In addition, cockroach allergens
have been shown to directly affect airway epithelial cyto-
kine and chemokine production via PAR-2 [11, 19, 44].
These actions could be further complicated by the likely
involvement of toll like receptors (TLR) and nucleotide
oligomerization domain receptors (NOD).

Recruitment, Development and Maturation of DCs in the
Lung. DCs are the most potent antigen presenting cells
(APC) and are thought to bridge the innate and adaptive
immune response. Two major subsets of DCs are critical
not only for the initiation of allergic airway responses,
but also to drive immunity (myeloid, mDC) or tolerance
(plasmacytoid, pDC). In the lung, immature DCs are
located within and directly beneath the respiratory epi-
thelium and are thus in a unique position to sample
antigen [45]. The turnover of the DC population is high
and immature DCs are continuously recruited from the
circulation along chemokine gradients. DC recruitment
into the lungs has been shown to be increased following
allergen exposure in humans [46] and mice [47]. We
found that the percentage of mDC in the lung was
significantly increased following a single exposure to
GC frass, and these levels were mildly, but significantly
decreased in PAR-2-deficient mice [11]. Since the whole
lung was studied in this context, it is possible that

investigation of mDC levels in the microenvironment
may highlight more substantial differences in mDC
recruitment.

Fields et. al. reported that PAR-2 played a role in DC
development and maturation. They showed that PAR-
2-deficient mice failed to develop DCs; however, the addi-
tion of TNFα to the culture or crosslinking CD40 triggered
DC development. In addition, the culture of bone marrow
progenitor cells in the presence of soybean trypsin inhibitor
(SBTI), a serine protease inhibitor, failed to result in mature
DCs. Addition of TNFα to the SBTI-treated cells resulted in
maturation of DCs [48]. These data suggested that serine
protease activation of PAR-2 stimulated the development of
DCs from bone marrow progenitor cells and may be impor-
tant for DC maturation. Interestingly, we have never
encountered an inability to culture mDCs from bones of
PAR-2-deficient mice compared to wild type mice. Our
culture method is similar to that of Fields et. al. [48];
however, we do not add IL-4 to our cultures. More research
is needed in this area to determine the role of protease
activation of DC development.

We recently showed that GC frass increased expression
of CD80 and CD86 on pulmonary mDCs, but that PAR-
2-deficient mDCs had a small, but statistically significant
decrease in the level of these co-stimulatory markers com-
pared to wild type mDCs [25••]. This complements the

Fig. 1 Schematic of the mechanisms activated by cockroach-derived
proteases and PAR-2. GC frass (blue circle) interacts with DC (in
green) and airway epithelial cells (in yellow) via activation of PAR-2
(orange rectangle). In addition, proteases may increase epithelial per-
meability resulting in increased permeability and increased accessibil-
ity to allergen (shown on left). GC frass acts directly on the airway

epithelium via PAR-2 to increase chemokine production leading to
recruitment and maturation of DCs. Activated DCs increase production
of TNFα, which also directly regulates chemokine production. GC
frass-derived protease and activation of PAR-2 are important for upre-
gulation of PAR-2 and CD80/CD86 expression on mDC and for the
release of cytokines IL-23, IL-6 and TNFα
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previous finding that a lack of protease/PAR-2 signaling
leads to a lack of mature DCs [48]. In our study though,
we used a complex antigen to stimulate pulmonary DCs,
which likely stimulates the cells by a number of mediators
and not just protease-PAR-2 activation. In unpublished
work, we found decreased expression of CD80 and CD86
following stimulation with protease-free GC frass compared
to untreated GC frass, but the frequency of mDCs expressing
these markers was unaltered (K. Page and I. Lewkowich;
unpublished observations). This would suggest that it is the
activation of PAR-2 by protease and not necessarily just the
presence of PAR-2 that is important for DC maturation. More
research into this area will further identify the role for PAR-2
in DC maturation in the lung following allergen exposure.

Cytokine Production and Antigen Uptake by DCs. APC
stimulate naïve CD4+ T cells to direct their differentiation
into T helper 1 (Th1), Th2 or Th17 cells. Th1 cells produce
IFNγ and provide protective immunity against viruses and
microbes, while Th2 cells produce IL-4, IL-5 and IL-13
primarily in response to helminths, allergens and extracel-
lular microbes. Th17 cells produce IL-17 and are associated
with an excessive inflammatory response leading to arthritis
and other inflammatory diseases. GC frass [25••] and whole
body cockroach extract (K. Page, unpublished observation)
are sufficient to induce a Th2/Th17 response in murine
lungs. PAR-2-deficient mice display reduced production of
both Th2 and Th17-associated cytokines, suggesting a role
for PAR-2 in influencing T cell responses [25••, 28••]. In
addition, the production of IL-6, IL-23 and TNFα by mDCs
was significantly decreased in PAR-2-deficient mice com-
pared to wild type mice [25••], suggesting the potential
importance of PAR-2 expression in regulating T cell differ-
entiation. Gao et. al. [49•] recently investigated Th1/Th2
cytokine profile of co-cultured pDC and CD4+ T cells
following treatment with cockroach antigen and found sig-
nificantly elevated levels of IL-13, IL-10 and TNFα, but no
increase in IL-12p70 or interferon (IFN)α. While the
involvement of protease/PAR-2 was not addressed, the bio-
logical relevance of cockroach activation of pDCs may be
important for future understanding of the role of pDC in
mediating allergic airway inflammation.

Another important aspect of dendritic cell activation is
the uptake of allergen by the DC. One report eloquently
showed that DC uptake of AlexaFluor 488-labeled OVAwas
enhanced when a selective PAR-2 agonist was added [50].
They stained for CD11c + cells and measured uptake of
AF488 OVA in DCs in the draining lymph node and spleen.
Using AlexaFluor 405-labeled GC frass, it was reported that
there was no difference between wild type and PAR-
2-deficient pulmonary mDC in their uptake of allergen
[25••]. While these two findings appear to contrast, it is
likely that pinpointing a target in the absence of other

signals (i.e. the use of a PAR-2 agonist) would give a
different result that when a real world allergen (which con-
tains endotoxin, proteases, a TLR2 agonist and a variety of
unknown components) is used. This finding does suggest,
however, that involvement in antigen uptake may not be a
primary role for PAR-2 when a naïve DC encounters a
complex allergen.

Role of DCs in Sensitization. Animal models have shown
the importance of DC in modulating allergic airway inflam-
mation [51]. Transfer of antigen-pulsed mDC into the air-
ways of naïve mice is sufficient to sensitize mice [52, 53],
while transfer of antigen-pulsed pDC induced tolerance
[54]. GC frass-pulsed mDC are sufficient to sensitize
mice for subsequent development of allergic airway
inflammation [25••].

PAR-2 expression was upregulated on mDC, but not
pDC following a single exposure to GC frass, suggesting
the importance of protease/PAR-2 activation on sensitiza-
tion to allergen [25••] Adoptive transfer of GC frass-
stimulated wild-type and PAR-2-deficient mDCs showed
that the lack of PAR-2 on sensitizing DCs markedly impacted
Th2 cytokine production thus providing evidence that PAR-2
on mDCs is involved in promoting Th2 immune responses. In
addition, we recently were successful in partially isolating the
serine protease fromGC frass and importantly this preparation
was almost completely devoid of endotoxin [11]. GC frass-
derived protease enhanced Th2 sensitization to a normally
tolerogenic antigen ovalbumin (OVA), suggesting its role as
an adjuvant for specific Th2 sensitization [25••]. This was
confirmed by increased AHR, serum IgE levels, and Th2
cytokine (IL-13, IL-4 and IL-5) production. Interestingly,
IL-17A levels were not increased by the GC frass-derived
protease, suggesting a complicated dynamic between Th2
and Th17 cytokine activation. Together these data highlight
the crucial role for DC activation by cockroach-dependent
proteases acting via PAR-2 in the initiation of allergic airway
inflammation.

Natural Inhibitors of Allergen-Derived Protease

A1AT. Alpha1 antitrypsin (A1AT) is a naturally occurring
protease inhibitor in serum and the main function of A1AT
is thought to maintain the physiological balance of
proteinase-antiproteinase. A1AT inhibits neutrophil elastase,
mast cell tryptase and cathepsin G and other serine
proteases. Interestingly, many of the proteases that A1AT
inactivates are proteases that have the ability to activate
PAR-2. No research to date has been conducted to determine
if there is a correlation between A1AT levels and activation
of PAR-2 by endogenous proteases. A1AT was shown to
inhibit antigen-dependent AHR in sheep [55], and therapeutic
A1ATaugmentation therapy has proven successful for at least
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one bronchial asthma patient [56]. We previously showed that
A1AT inhibited GC frass activity by 30–50 %; however, GC
frass was also capable of cleaving A1AT in a matter of 5
minutes [7]. This data would indicate that while A1AT levels
may be increased to inhibit the altered protease/antiprotease
balance, GC frass proteases may be a powerful inhibitor of the
body’s natural response to quench protease activity and inhibit
the activation of PAR-2.

SLPI. Secretory leukocyte protease inhibitor (SLPI) is
found in large quantities in bronchial and mucosal fluids
and is thought to play a number of important roles in the
lung. SLPI is a natural inhibitor of trypsin, mast cell tryp-
tase, and neutrophil elastase that may play a role in allergic
asthma. SLPI is constitutively expressed in mucosal tissues
and immune cells. In a recent study, it was shown that the
cleaved portion of SLPI (cSLPI) was increased in subjects
with allergic rhinitis and asthma compared to healthy
controls [57]. Overexpression of SLPI was shown to prevent
the development of AHR and prevented OVA-mediated IgE,
while ablation of the SLPI gene led to more severe
responses to OVA [58]. In our murine model, we find that
a single intratracheal instillation of GC frass leads to
increased SLPI mRNA levels in the lung within 3 hr (3.6±0.3
fold increase compared to PBS-treated mice) and we
find that increased SLPI mRNA is independent of GC
frass proteases or PAR-2 expression (K. Page, unpub-
lished observation). The importance of this finding is
that GC frass-derived proteases may serve to cleave and
inactivate the natural inhibitors in the lung thus allowing for
increased damage to the airway epithelium or increased inter-
action with the mucosal DCs. Interestingly a group showed
administration of SLPI prior to antigen prevented antigen-
induced AHR, cellular infiltration of eosinophils and neutro-
phils, and decreased mucus production in sheep [59]. In
addition, they found that administration of aerosolized SLPI
one hour after allergen challenge also decreased bronchocon-
striction and mucus velocity. SLPI is a broad spectrum serine
protease inhibitor, and it is unclear whether therapeutic bene-
fits would be derived from inhibiting the protease activity in
an allergen. It is perhaps more likely that the role of these
endogenous protease inhibitors would be to inhibit the
systemic increase of protease activity, likely derived from
mast cell and leukocyte proteases. Additional studies would
be required to determine a role for SLPI in GC frass activation
of PAR-2 in vivo.

Conclusions

Currently there are no conditional knockouts of the PAR-2
mice that allow the gene to be inactivated in a specific tissue
(i.e. the airway epithelium or the dendritic cell); however,

these types of studies will lead to a more comprehensive
study of the importance of PAR-2 on mediating this disease.
Investigations of how to clinically target PAR-2 and the
eventual importance of those inhibitors on novel therapeutic
interventions need to be further evaluated. It is important to
remember that not only can PAR-2 be activated at the time
of inhalation of allergen, but PAR-2 is also expressed on
other disease-mediating cells including eosinophils [60] and
mast cells [61]. Thus, activation of PAR-2 by the allergen
could lead to the initiation of disease and further activation
of PAR-2 by neutrophil proteases, or proteases derived from
a number of potential sources could lead to exacerbation or
chronic disease. Thus, it will be important to clearly identify
when to target PAR-2 activation therapeutically. The idea of
therapeutically targeting allergen-derived protease activity
to lessen the disease state has been recently reviewed [62].
In addition, a comprehensive study of PAR-2 with TLRs and
NODs in the context of GC frass needs to be completed. It is
known that GC contains both TLR4 and TLR2 [40], and it
has recently been suggested that PAR-2 and TLR4 signal
cooperatively [63•, 64]. This may open up novel areas of
study and may lead to the development of new therapeutics
for the treatment of allergic airway disease.
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