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Introduction
Airways are continuously exposed to a diversity of both
pathogenic and nonpathogenic microorganisms—eg, bacte-
ria, fungi, and viruses. Although fungal spores are inhaled in
large quantities, they are recognized by the innate defense
system, resulting in the effective elimination of microorgan-
isms from the airways, without extensive activation of the
cognate immune system. In allergic patients, inhalation of
fungal biomass might induce immunologic responses,
resulting in allergic manifestations of the airways, such as
asthma and/or rhinitis. In asthmatic patients, at least two
genetically determined characteristics interact with each
other in the final clinical outcome of atopic asthma. Ini-
tially, the patient has the genetic propensity to mount an IgE
response to inhaled allergens. Airway hyperresponsiveness
(AHR) is an inherited property that determines the tendency
of airways to narrow too easily to environmental stimuli.
The immune response to fungi is composed of an innate
and a cognate part, which might result in IgE antibody for-

mation against fungal components. Before being presented
to the immune system, allergens must pass the barriers of
the innate defense system of alveolar macrophages and the
epithelial cell layer, which actively eliminates particulates of
biologic origin (pollen, fungi, animal dander) [1,2]. Presen-
tation of fungal antigens to the immune system is depen-
dent on the nature and quantity of fungal biomass that is
inhaled, depth of deposition, and the rate of clearance and
elimination by phagocytes. Furthermore, characteristics of
the fungal wall and biologic active components excreted by
different fungi (eg, proteolytic enzymes, toxins) determine
the effectiveness of elimination, activation, and/or damage
of the mesenchymal (epithelial-fibroblast) cell layer and
final passage of fungal allergens through the airway wall.

Interest for fungus-induced asthma is currently increas-
ing after recognition that severity of asthma, both in chil-
dren and adults, is associated with sensitization to certain
fungi, but not to pollens [3]. Furthermore, sensitization or
exposure to fungi was found to be associated with hospital
admissions for asthma, life-threatening exacerbations of
asthma, and death from asthma [3]. However, an under-
standing of how and why fungi are associated with mani-
festations of severe asthma is poorly understood. In this
review, we only shortly describe the exposure to the various
fungal spores, because several excellent reviews have been
published recently [4,5]. We discuss the association of
asthma with sensitization to fungi and the limited data
describing sensitization to fungi in relation to correspond-
ing exposure in the same environment. Furthermore, this
review is focused on aspects of the interaction of fungal
components with cells of the airway wall and how genetic
variation underlying both the atopic constitution and air-
way reactivity might interact in the final outcome of fun-
gus-induced asthma.

Exposure to Fungal Biomass
Exposure to fungal biomass consists of exposure to living
fungal spores and fungal debris after death of fungal spores
and mycelium. Fungal spores generally do not easily release
their allergen content, owing to the rigidity of the spore wall,
and release of allergens will mainly occur during germina-
tion of the spores [6–8] or after cell death. Germination
times of spores differ largely, showing a short germination
time of 2 hours for Alternaria compared with the germination
time of other fungal spores (germination time 5–10 hours)
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[9]. Aeroallergens in death fungal masses are more soluble
and readily available for contact with the airway system,
which most likely explains the rate of asthmatic attacks
(often within 10–15 minutes) after inhalation of mold-con-
taminated air (eg, in barns) by sensitized patients. However,
the quantity and composition of this fungal dust is not fully
known. Currently, number and genera of fungal spores mea-
sured in the air is commonly used, assuming that:

1. Numbers of spores will reflect exposure to the total 
amount of inhaled fungal biomass

2. Availability and release of soluble fungal allergens 
will be similar for all fungi

Although the first assumption might be valid, the second
assumption is doubtful. The ratio of life over death fungal
mass for different fungi is unknown, but will most likely be
variable for different fungal species dependent on, for exam-
ple, differences in heat-resistance and/or size of spores.
Therefore, numbers of spores are not necessarily related to
bioavailability for the immune response. New techniques,
such as extraction of the filters used in air cleaners, followed
by immunologic determination of specific allergen [10], can
be used for the study of airborne fungal allergens. Figure 1
demonstrates measurement of extracellular polysaccharides
(EPS) specific to Aspergillus and Penicillium in both floor dust
and filter extracts from air cleaners [11•]. Aerobiologic stud-
ies have shown that fungal spores are continuously present
in the indoor and outdoor milieu and are inhaled in rela-
tively large quantities. Genera that are most commonly iden-
tified as a possible cause of fungus-related respiratory-tract
disorders belong to separate fungal groups—Ascomycetes,
Basidiomycetes, and Deuteromycetes [5,12,13]. Observa-
tions in European countries show remarkable similarities in
prevalence of outdoor fungi. Cladosporium is found most
abundantly and is often responsible for the majority of the
spores that are inhaled [12]. It is interesting to note that Alter-

naria is found in lower numbers compared with other fungi
and much less than Cladosporium (50 to 100 times less)
[14•,15]. In the United States, these quantitative differences
between Alternaria and Cladosporium are similar but less
impressive [4,5,16]. Exposure to fungal spores inside houses
is dependent on the quality of the building, the furniture, the
bedding, the humidity, and the presence of pets as important
determinants for growth of a diversity of fungal species
[5,17,18] and on numbers of outdoor fungi [4].

Exposure, Sensitization, and Age
Although it is assumed that fungal species found in the
greatest numbers will be associated with disease states in
humans [19], this concept is challenged by the observations
that spore numbers and sensitization in patients living in
the same area are only weakly or even not related to one
another. A study of the prevalence of spores of individual
species and corresponding sensitization shows that Cla-
dosporium is the least sensitizing fungus, comparable with
yeasts, followed by increasing skin test/spore count ratio for
Penicillium and Botrytis, whereas Alternaria and Aspergillus
show a high score for sensitization compared with corre-
sponding spore counts [14•]. Additionally, IgE determina-
tion in a pooled serum of patients of our department who
were multiply sensitized to fungi showed high titers for IgE
to Alternaria, followed by Aspergillus and Penicillium, whereas
Cladosporium showed the lowest titer [20]. Similar observa-
tions were reported for sensitization to fungi and corre-
sponding data of exposure in lawn cutters [21].

Epidemiologic data concerning sensitization to fungi
have been studied in different locations [4,5,19,22–24],
showing that sensitization to fungi is highly variable from
place to place and is dependent on local exposure.

Age-dependent sensitization to fungal allergens has
been studied in a limited number of cases, suggesting an
age-dependent distribution [25,26]. A first study, in a

Figure 1. Levels of Aspergillus- and Penicillium-
specific extracellular polysaccharides (EPS) in 
samples from floor dust and airborne dust. 
Filters from air cleaners were extracted with 
0.01 M NH4HCO3 buffer during a 2-hour 
period, as described previously [10]. An 
enzyme-linked immunosorbent assay protocol, 
using polyclonal antibodies [11•], was used for 
measuring EPS concentrations. LR—living 
room; BR—bedroom. (Antibodies provided by 
G Doekes.)
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group of adult allergic patients (14 to older than 50 years),
demonstrated that sensitization to different fungi, as mea-
sured by skin testing, showed lower sensitization at older
ages [27]. Additionally, prevalence for Alternaria and Cla-
dosporium ranked first (18%–20%) in the 14- to 19-year-
old group, with a lower prevalence (less than 5%) in older-
aged groups. In a second cross-sectional study, in atopic
children (aged 1–14 years), using prevalence of IgE to dif-
ferent fungi, an age-dependent sensitization was found,
followed by lower IgE titers with increasing age [28•]. IgE
to these fungi started around age 1, reaching a maximum
probability for IgE for all fungi at 7.7 to 7.8 years. A high
prevalence was found for Cladosporium, Aspergillus, and
Alternaria compared with Penicillium. This age-dependent
distribution of sensitization was very specific for fungi,
because sensitization to house dust mites (HDMs; IgE to
Dermatophagoides pteronissinus) showed rapid increasing
titers in this group of children, reaching maximum IgE
titers at 4 years, without a phase of decline until 14 years
(maximum age in the study group). A similar pattern of
age-dependent sensitization to different allergens (includ-
ing fungi) was found in a desert environment, in a group
of children aged 3 to 17 years [29]. This suggests that age-
dependent sensitization to fungi, especially to Alternaria, is
not unique to desert climatic conditions, but might be sim-
ilar in milder and more humid climates.

Fungal Exposure and Association with Clinical 
Manifestation of Asthma
Interest in the role of sensitization to fungi is increasing
since it was found that sensitization to fungi is associated
with asthma and also with different manifestations and
severity of asthma. In a cross-sectional study in European
countries, the frequency of sensitization to fungi was associ-
ated with severity of asthma [3]. These observations are in
accordance with several observations consistently showing
that sensitization to Alternaria and (if measured) Cladospo-
rium are most strongly associated with different parameters
of severity of asthma, which is not found for sensitization
to grass, tree, ragweed, pollen, or cat [3]. In a similar study
in Australia, indoor exposure to fungi (measured as ergos-
terol levels) appeared to be a risk factor for sensitization
and current asthma [30], but not exposure to HDMs. Asso-
ciations for fungal sensitization and asthma have been
found for (severe) asthma (in children) [26,31–33], life-
threatening asthma (adults) [34], death from asthma [35],
and visits to emergency rooms [36] (in children) [37]. Fur-
thermore, airway hyperresponsiveness, wheeze, and bron-
chodilator use in children was associated with increasing
exposure to Alternaria spores [38]. The association of fungal
sensitization with asthma, often found in children, is in
accordance with the age-dependent distribution of IgE to
fungi, showing maximal sensitization in children [28].
However, although sensitization to fungi shows signifi-
cantly lower values in older aged groups, sensitization to

fungi in adult populations is still associated with life-threat-
ening asthma [34].

The large numbers of spores of Cladosporium generally
found in the environment can explain its frequency of
sensitization. However, the similarity in frequency of sensi-
tization to Alternaria and Cladosporium in atopic patients
and the strong association of severe asthma with sensiti-
zation to Alternaria are in contrast to the lower number of
spores found in the air and the large-size spores (20–60
mm) of Alternaria, which predicts limited deposition in
lower airways. The weak causal relationship between expo-
sure to fungal spores and clinical manifestation of asthma
might be explained by sudden changes of fungal spores in
short time intervals (2 hours), called spore plumes [39],
and our lack of knowledge of the amount of dead mass of
fungal allergens in the air.

Mucosal Airway Defense Against Fungal 
Spores: Interactive Role of Innate and Cognate 
Immune Response
Fungal biomass that is deposited on the airway wall is elimi-
nated by the combined action of innate recognition by com-
plement and surfactant proteins that facilitate phagocytosis
by alveolar macrophages. Additionally, secretory immunoglo-
bulin A (S-IgA) prevents contact with the epithelial cell layer
and allows transport on the epithelial lining fluid (ELF) by
coordinated ciliary movement to the oropharyngeal cavity
[2]. In healthy airways, this transport will generally remove
particles impacted in the larger airways in approximately 4
hours, before germination of fungal spores can occur [9].
Smaller-sized spores can reach the lower airways (Aspergillus
and Penicillium) and can be removed in 12 to 24 hours.

Interaction with Epithelial Cell Surface
Spores that are deposited in large quantities and allergens
from dead fungal mass might reach the epithelial cell surface
and activate epithelial cells. Epithelial cells are equipped with
various receptors, such as Toll-like receptors (TLR), that can
recognize surface structures of microorganisms, the so-called
pathogen-associated molecular patterns (PAMP) [1,40].
Although the TLR family has been extensively studied for
defense against bacteria and viruses, early studies on TLRs
indicated a defensive role against fungi [41], which is sup-
ported by more recent animal models [42•,43,44•]. Activa-
tion of TLR is followed by activation of nuclear factor (NF)-κB
and mitogen-activated protein (MAP)-kinase [45]. In addi-
tion to activation by TLRs, proteolytic components released
by fungi can interact with the epithelial cell surface by dis-
ruption of cellular junctional contacts and activation of so-
called protease-activated receptors (PAR) that will induce the
production of cytokines and prostaglandin (PG)E2 [46,47].
Fungal extracts have shown differences in their capacity to
cause protease-dependent disruption of cellular contacts and
release chemokines. Extracts of Alternaria were more active in
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desquamation and proteinase-dependent activation of epi-
thelial cells, whereas Cladosporium did not show desqua-
mation and much less activation [48]. It has been proposed
that proteases present in inhaled allergens (including fungi)
affecting epithelial cellular contacts might facilitate passage of
allergens through the epithelial barrier [49,50]. Activation of
TLRs and PARs on epithelial cells, followed by facilitated
transport of allergens and production of cytokines and
growth factors, might be involved in increased sensitization to
(fungal) allergens and inflammatory response and remodel-
ing of the airways [46,50,51]. In a recent animal model, the
inhalation of alkaline serine proteinase from Aspergillus fumig-
atus showed a synergistic effect on Asp-f-2–induced inflam-
matory response [52].

The severe asthmatic attacks as found in allergic bron-
chopulmonary aspergillosis (ABPA) can be ascribed to the
specific capacity of this opportunistic fungus to overcome
the innate defense by binding to the epithelial surface and
initiating a damaging inflammatory response in the airways
[2]. One of the factors that might promote the survival of
Aspergillus in the airways is the production of proteolytic
enzymes that can cleave matrix proteins such as elastin and
collagen [53]. A recombinant alkaline serine proteinase of
A. fumigatus (ALP) added to airway epithelial cells induced
cytokine production, showing an activation phase followed
by inactivation of the epithelial cells below basal cytokine
production (Fig. 2). This characteristic activation and inact-
ivation of airway epithelial cells is similar to the effects of
collagen-growth cultures of A. fumigatus, containing large
quantities of proteolytic enzymes [54]. Such silencing of
chemokine production by epithelial cells, which is not
found with extracts of Alternaria and Cladosporium, might be
important for hampering successful detection and killing by

phagocytic cells. The increased survival of A. fumigatus in air-
way tissue might explain the strong immune responses and
eosinophilic inflammatory response found in ABPA [48].

Genes Related to Atopy and/or Airway 
Reactivity and Susceptibility for Fungus-
induced Asthma
During the past decade, the role of atopy as a cause of asthma
has been debated. Although early-life exposure to HDMs and
cats appears to be related to sensitization, the relation with
the development of asthma is still unclear [55]. Inconsistent
associations between asthma and atopy have been reported,
and other etiologic factors underlying the development of
asthma were suggested [56,57]. These epidemiologic data are
in keeping with recent studies of application of allergen to
the airways, indicating that the atopic status of asthmatic and
rhinitis patients does not by itself explain the response to
allergen. It has been proposed that other factors, such as
increased airway reactivity or pre-existing airway injury, are
additional mechanisms underlying asthmatic reactions to
allergens [58••,59••]. These observations support current
models of asthma theorizing that epithelial cells might show
structural abnormalities [60–63]. Damage to the epithelial
cell layer by inhaled allergens might induce enhanced pro-
duction of cytokines and growth factors [64,65], thereby
increasing inflammatory responses and remodeling of air-
way wall structures [66,67], finally resulting in enhanced sen-
sitivity of the airways [50,60,61].

Current research on the genetics of asthma indicates two
types of genetic predisposition—genes related to formation
of IgE and genes related to development of AHR—which
interact to determine the final phenotype of atopic asthma.

Figure 2. Interleukin (IL)-8 production by 
A549 epithelial cells incubated with alkaline 
protease (ALP) from Aspergillus fumigatus. 
A549 cells were incubated with increasing 
concentrations of ALP and IL-8 measured by 
enzyme-linked immunosorbent assay [48]. 
Zero values indicate spontaneous production 
of IL-8 in the absence of fungal protease. 
Negative values indicate inhibition of 
spontaneous production of protein. Asterisks 
indicate a significant increase of production of 
cytokine, and # indicates increasing 
desquamation of A549 cells. (ALP concentra-
tions provided by Prof. Dr. M. Monod.)
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Genome-wide studies have shown the presence of a variety of
chromosomal regions that determine the propensity for total
IgE and/or specific IgE antibody formation against environ-
mental allergens [68]. In addition to chromosomal regions
that show linkage to either IgE and/or AHR, polymorphisms
of candidate genes for IgE and/or asthma have been identi-
fied (interleukin [IL]-18, cytotoxic T-lymphocyte antigen
[CTLA]-4, IL-13, IL-4R) [68–71]. Other genes determine
AHR, which is an important condition in asthma [72,73].
Recently, genetic determinants have been identified in asth-
matic patients that are specifically associated with airway
reactivity and not with atopy [74••,75]. Modified functions
of proteins, receptors, cytokines, and enzymes, as outcomes
of polymorphism of genes, might interact with each other
and determine the final outcome of the immunologic
response, airway reactivity, and severity of the asthmatic
response. Figure 3 is a “simplified” model that describes how
various genes underlying AHR (cumulative blocks in column
1) might be associated with increasing risk for (nonatopic)
asthma (y axis). This group might include patients with, for
example, fog- and/or exercise-induced asthma (patients with
severe corticosteroid-resistant asthma are not included). The
second column shows patients with accumulating influence
of genes for atopy (cumulative blocks in second column) that
might be associated with increasing risk for allergen-induced
asthma (y axis). Hereditary combination of both genes for
AHR and atopy (column 3) might act in an additive and/or
synergistic way [76], which might promote the condition for
severe asthma. Within this model, the starting-points for
allergen-induced asthmatic responses are indicated for
HDMs, fungi, and A. fumigatus–induced ABPA (arrows, Fig.

3). The proteases present in HDMs (especially the cysteine
proteinase Der p1) are most potent in breaching the resis-
tance of the epithelial cell layer, facilitating the Th2-type
immune response to HDM allergens. Therefore, the associa-
tion of sensitization to HDMs and asthma will be found in
the full range from mild to severe asthma. Fungal asthma is
induced by high exposure to allergen, and the proteases
involved are less active. Therefore, fungus-induced asthma is
found in patients with a high susceptibility of airways for
environmental stimuli, which is determined by more cumu-
lative interactions of genes for AHR and/or atopy (hatched
area in column 3, Fig. 3). This model might explain why fun-
gus-induced asthma is mainly found and associated with
more severe asthma. Additionally, ABPA is found in the
group with the highest susceptibility, determined by genes
that predispose to both severe airway reactivity and IgE for-
mation (upper part of column 3, Fig. 3). The group of patients
with cystic fibrosis (with a strongly impaired innate defense
of the airways) and genetic predisposition for atopy (eg, HLA-
DR restrictions) seems to be the most susceptible group for
ABPA [77].

Conclusions
Fungus-induced sensitization shows an age-dependent dis-
tribution, with the highest sensitization in children aged 7
to 8 years, and lower sensitization at increasing age. This pat-
tern of sensitization is in keeping with clinical findings,
describing precipitation of severe asthmatic episodes in chil-
dren associated with sensitization to fungi (Alternaria). It is
argued that numbers of spores are not similar to exposure to

Figure 3. Genetic susceptibility for asthma; 
influence of fungi. This theoretical model 
describes the cumulating influence of genes that 
are associated with airway hyperresponsiveness 
(AHR), atopy, or the combination of AHR and 
atopy on the risk for developing asthma. In 
column 1, ADAM33 is indicated as one of the 
several genes that are associated with AHR. The 
cumulative influence of genes related to atopy 
on asthma is shown in column 2. Only some of 
the many (candidate) genes have been 
indicated. Limited combinations of genes for 
atopy might result in sensitization without 
manifestation of asthma, whereas a larger 
number of genes might increase the chance for 
atopic asthma. Column 3 shows the combined 
effect of genes for both AHR and atopy. This 
combination increases the risk for asthma 
considerably, by additive and synergistic 
interactions. As explained in the text, HDM-
induced asthma is found in the entire range 
from weak to severe asthma, whereas fungus-
induced asthma is associated with more severe 
asthma (dark shaded area). Allergic broncho-
pulmonary aspergillosis (ABPA) is found in the 
group with most severe asthma (upper part of 
column 3). CTLA—cytotoxic T-lymphocyte anti-
gen; HDM—house dust mite; IL—interleukin.
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fungal biomass and that more information on this subject is
needed to explain differences between spore counts and cor-
responding sensitization. A possible procedure for quantify-
ing exposure to fungal allergens is described. A mechanism
of interaction between the innate immune defense and fun-
gal antigens is described. The activation of TLRs and PARs by
cell-wall components and proteases will facilitate the pas-
sage of fungal allergens through the epithelial cell layer, ini-
tiating an (Th2-type) immune response and inducing the
release of proinflammatory cytokines. In allergic asthmatic
patients, the interaction of epithelial cells with environmen-
tal components is abnormal and might result in an altered
response characterized by a Th2-type response (IgE) and an
inflammatory response characterized by eosinophils and
Th2-type lymphocytes. Because quantities of allergens
released by fungal spores are limited and the activity of the
serine proteases is less aggressive (compared with cysteine
proteases in HDM), expression of fungus-induced asthma is
associated with more severe asthma. It is argued that multi-
ple predispositions for genes determining for both AHR and
atopy will be found in those with severe asthma, thereby
increasing the chance for fungus-induced asthma.
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