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Introduction
Nasal polyposis (NP) is thought to be a multifactorial
disease of the nasal mucosa, which is characterized
clinically by the presence of edematous masses in the nasal
and paranasal cavities that result in nasal obstruction, loss
of sense of smell, postnasal drip, headache, and sleep dis-
orders. More recent evidence suggests that NP can lead to a
greater impairment in the quality of life of afflicted indi-
viduals than of patients with perennial allergic rhinitis [1].

Epidemiologic studies have demonstrated that the
prevalence of NP ranges from 1% to 4% in the general
population, although this may be much higher in a
subgroup of patients with comorbid asthma [2,3]. NP also
frequently develops in patients with other respiratory
conditions, such as chronic rhinitis or sinusitis, aspirin
intolerance, cystic fibrosis, and primary ciliary dyskinesia,
in which airway mucosal disease is widespread. However, it
has been suggested that the predominant type of polyps,

which cover 80% to 90% of polyp disease in Europe and
the United States, are bilateral, eosinophilic, and
frequently linked to asthma and aspirin intolerance [4].
Although nasal polyps respond well to treatment with
systemic and topical corticosteroids, currently there are no
medical or surgical interventions that guarantee a complete
cure. Furthermore, management of patients with severe NP
is often unsatisfactory, and made more difficult as a conse-
quence of a high recurrence rate.

The precise mechanisms underlying the pathogenesis
of NP are not clearly understood and are compounded by
the fact that there is lack of a widely accepted classification,
which includes both clinical history and histology to
differentiate between the various forms of NP. Recurrent
infections, rupture of the epithelium and production of
granulation tissue, inhaled or food allergens, T-cell distur-
bances, and aerodynamic factors have all been suggested to
play a role in the pathogenesis of nasal polyps [5]. Studies
have failed to show an increased prevalence of NP in
patients with atopy or allergic disorders, compared with
the general population [6]. Some studies have demon-
strated that the development of nasal polyps seems higher
in patients with nonallergic rhinitis and nonallergic
asthma, compared with their allergic counterparts [7], and
symptoms and eosinophilic inflammation in seasonal
allergic patients are not necessarily influenced by the
season [8]. Other studies have demonstrated that tissue
immunoglobulin E (IgE) concentrations are increased in
NP, irrespective of skin test positivity, suggesting the possi-
bility of local IgE production [9].

Histologic examination of polyp tissue has demon-
strated that a damaged epithelium, a thickened basement
membrane, chronic inflammation, and reduced numbers
of vessels and glands with virtually no nerves in the stoma
are prominent features of polyps [4]. The inflammation in
polyps is primarily comprised of mast cells, lymphocytes,
neutrophils, and eosinophils, of which eosinophils are the
most abundant cell type and present in the vast majority of
bilateral nasal polyps.

Mediators Influencing 
Eosinophilic Inflammation
Because of the prominence of eosinophilic inflammation
associated with the majority of nasal polyps (Fig. 1) and the
potential of eosinophils to elicit tissue damage and subse-
quent remodeling, it is likely that a better understanding of
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the mechanisms underlying the migration, activation, and
maintenance of eosinophils in nasal polyp tissue will be a
key to understanding the etiology and pathogenesis of nasal
polyps. Several studies have demonstrated that a variety of
cytokines, chemokines, and adhesion molecules play
important roles in eosinophil function.

Cytokines
A review of the cytokines that can modulate the function of
eosinophils has shown that these include interleukins (IL)-
1α, IL-3, IL-4, IL-5, IL-10, granulocyte-macrophage colony-
stimulating factor (GM-CSF), transforming growth factor
(TGF)-β, and tumor necrosis factor (TNF)-α [10]. IL-3, IL-5,
and GM-CSF regulate the differentiation, growth, and survival
of eosinophils, and are effective eosinophil primers for activa-
tion by other agonists. Although some studies of TNF-α have
demonstrated that it can also enhance eosinophil survival in
vitro, this cytokine and IL-1 have been more extensively inves-
tigated for their ability to modulate the expression of several
endothelial and epithelial cell adhesion molecules, necessary
for intertissue trafficking of the eosinophils [11]. Similarly, IL-
4 has also been shown to increase the expression of vascular
cell adhesion molecule-1 (VCAM-1) on endothelial cells [12].
In contrast, studies of IL-10 and TGF-β have demonstrated
that these cytokines may downregulate eosinophilic inflam-
mation, because they can either inhibit the synthesis or abro-
gate the eosinophil survival-prolonging effects of IL-3, IL-5,
and GM-CSF, thus inducing their apoptosis [13].

The biologic role of TGF-β, however, is more complex
and its effects on structural cells, such as fibroblasts, are
thought to be important especially in the regulation of fibro-
sis and tissue remodeling [14]. TGF-β is also a key regulator
in the maintenance of the immunologic homeostasis
because of its significant anti-inflammatory and immuno-
suppressive properties. Similarly, although in vitro studies
have suggested that IL-4 may also possess potentially anti-
inflammatory properties, this cytokine is thought to be
important in allergic disease, due to its key role in the expres-
sion and synthesis of IgE and IgE receptors [15].

In spite of the influence of a large array of cytokines
affecting the activity of eosinophils, these studies collec-
tively suggest that IL-5 is likely to be one of the most
important mediators that influence eosinophils, because
of its specificity as an eosinophilopoietic factor [16], and
its synergism with eotaxin in mobilizing bone marrow
eosinophils into the circulation, resulting in their recruit-
ment and accumulation in vivo [17]. IL-5 also acts syner-
gistically with TNF-α  to enhance eosinophil activation
(degranulation) and induces expression of intercellular
adhesion molecule-1 (ICAM-1) on the eosinophil surface
membrane [18].

Chemokines
The chemokines affecting leukocytes have recently been
reviewed extensively [19]; it has been demonstrated that
RANTES (regulated upon activation in normal T cells
expressed and secreted), eotaxin, macrophage inflammatory
protein, monocytes chemotactic protein (MCP), and
myeloid progenitor inhibitory factor increase eosinophil
chemotaxis. Of these chemokines, RANTES and eotaxin are
of particular significance. Studies of RANTES have demon-
strated that in addition to chemotaxis, this mediator also
induces transendothelial migration of eosinophils and leads
to activation of eosinophils, resulting in the release of cyto-
toxic agents such as superoxide and eosinophilic cationic
protein (ECP) [20,21]. Similarly, eotaxin has also been
shown to activate eosinophils, but unlike RANTES and other
chemokines affecting eosinophil activity, eotaxin is particu-
larly selective for eosinophils [22].

Cell adhesion molecules
A review of the mechanisms underlying active mobiliza-
tion of eosinophils into the airways has demonstrated that
this involves a variety of adhesion molecules expressed on
both the eosinophils and endothelial cells, and include
members of the immunoglobulin superfamily (eg, VCAM-
1, ICAM-1), β1 and β2 integrins (eg, very late antigen
appearing antigen [VLA]-4 or α4β1; CD11a/CD18 or αLβ2),
and selectins (eg, E-selectin, P-selectin) [23]. It has been
suggested that interactions between VLA-4 and VCAM-1,
and between CD11a/CD18 and ICAM-1, respectively,
expressed on eosinophils and cytokine-activated endo-
thelial cells in the bone marrow and the airways, are of
particular importance for transendothelial migration of
eosinophils. The interaction between VLA-4 and VCAM-1
may also modify the activation and effector functions of
eosinophils by modifying the activation state of the β2
integrins expressed on eosinophils [24].

Studies in Nasal Polyps
Cytokines
A large body of studies have demonstrated that several eosi-
nophilic mediators are present in nasal polyp tissue, and that
different cell types generate these mediators. Early studies by
Denburg et al. [25] demonstrated that conditioned medium

Figure 1. EG2-stained nasal polyp showing a subepithelial eosino-
philic inflammation. (Original magnification, 100×).
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derived from cultured human nasal polyp epithelial
scrapings contained potent eosinophil colony-stimulating
activities and an IL-3-like activity, suggesting that the accu-
mulation of eosinophils in polyps may be a result of in situ
growth and differentiation of progenitors stimulated by solu-
ble hematopoietic factors derived from mucosal cell popula-
tions. Subsequent studies by this group and others have
shown that nasal polyp epithelial cell-conditioned medium
contains greater quantities of GM-CSF, G-CSF, and IL-6 than
conditioned medium obtained from normal nasal epithelial
cell cultures [26]. Investigation of nasal polyp tissue has also
indicated that there is increased expression of GM-CSF, at
both the mRNA and protein levels, and that a number of cell
types, including epithelial cells, fibroblasts, monocytes, and
eosinophils, are involved in the synthesis of this cytokine
[27–29].

Hamilos et al. [30] have investigated polyp tissue sam-
ples from patients with allergic or nonallergic chronic
hyperplastic sinusitis with nasal polyposis (CHS/NP) and
nasal turbinate biopsy specimens from normal control
patients by in situ hybridization. They found that patients
with allergic CHS/NP had significantly higher tissue densi-
ties of GM-CSF, IL-3, IL-4, and IL-5 transcripts compared
with normal controls. In contrast, patients with nonallergic
CHS/NP had significantly higher tissue densities of GM-
CSF, IL-3, and interferon (IFN)-γ transcripts. From these
results, the authors concluded that distinct mechanisms of
eosinophilia existed in patients with allergic versus nonal-
lergic CHS/NP, and that in the nonallergic patients, eosino-
philia was unlikely to be influenced by IL-4 and IL-5.

For our own studies, we selected patients with bilateral
NP, based on nasal endoscopic examination, and excluded
chronic sinusitis patients, based on histologic and media-
tor protein pattern, as described in a recent review [31].
Furthermore, we investigated primarily cytokine protein
concentrations in polyp tissue homogenates in order to
circumvent any difficulties in interpretation of the find-
ings, which could result from compartmental differences
in cell numbers. In the first study, we investigated protein
concentrations of different cytokines and chemokines in
polyps from 23 patients and turbinate tissue from 18
healthy individuals [32]. This study demonstrated that IL-
6, IL-8, IL-10, Gro-α, RANTES, and TNF-α proteins were
present in greater quantities in polyp tissue compared with
control turbinate tissue, although the differences were not
statistically significant. In contrast to findings reported
before, IL-3 was not detectable, and GM-CSF was found in
only a small number of polyps and control turbinate sam-
ples. The most striking features of our study, however, were
that: 1) IL-5 was found in 18 of 23 nasal polyps, compared
with only one of 18 turbinate tissues from healthy controls
(Fig. 2); 2) the concentration of this cytokine was indepen-
dent of the atopic status of the patient; and 3) the highest
concentration of IL-5 was found in subjects with asthma
and aspirin sensitivity.

Immunohistochemical analysis of polyp tissue also
demonstrated that about 70% of the large numbers of IL-5-
positive cells were eosinophils, suggesting a possible auto-
crine role for IL-5 in the activation of eosinophils. We have
also demonstrated that there is a strong correlation

Figure 2. A and B, Comparison of interleukin (IL)-5 concentrations in inferior turbinates (controls) and nasal polyp tissue of atopic, 
nonatopic, asthmatic, and nonasthmatic patients. This Box-and-whisker plot represents the median and the 10th, 25th, 75th, 
and 90th percentiles. Statistical analyses performed by the Mann Whitney two-tailed test for unpaired comparisons. 
*P < 0.05; ***P < 0.001. NS—not significant.
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between concentrations of IL-5 protein and ECP [33••], a
marker of eosinophil activation, and that treatment of
eosinophil-infiltrated polyp tissue with neutralizing anti-
IL-5 monoclonal antibody, but not anti-IL-3 or anti-GM-
CSF monoclonal antibodies in vitro, resulted in eosinophil
apoptosis and decreased tissue eosinophilia [34••]. In
contrast, unilateral antrochoanal polyps demonstrated a
marked paucity of eosinophils and IL-5 [35]. Collectively,
our studies suggest that increased production of IL-5 is
likely to influence the predominance and activation of
eosinophils in nasal polyps.

The finding of a lack of difference in the amounts of
cytokines detected in polyps from allergic or nonallergic
patients is in accordance with recent studies, which have
investigated either the expression of cytokine mRNA in
nasal polyp tissue, or studied the production of cytokines
by local cells using the Elispot technique. Ming et al. [36]
evaluated the expression of mRNAs for IL-4, IL-5, and IFN-
γ in nasal polyps and turbinate specimens from patients
with and without allergic rhinitis, and found no significant
difference in the expression of any cytokine mRNA due to
allergy. More recently, this group has extended their studies
to compare gene expression for IL-1β, IL-6, IL-8, and TGF-β
in nasal polyp tissues of patients undergoing polypectomy
for nasal obstruction, and in normal turbinate tissues [37].
Southern blot analysis showed that there were no differ-
ences in the mean density ratios of any of the cytokine
bands noted in polyp tissues obtained from allergic or
nonallergic patients, thus confirming their previous find-
ings. Wagenmann et al. [38] evaluated the number of cells
expressing IL-4, IL-5, IL-12, or IFN-γ in allergic and nonal-
lergic polyps by the Elispot technique, and demonstrated
that there were no differences between the allergic versus
nonallergic polyps in this regard. Furthermore, these
authors demonstrated that both T helper 1 (Th1) and Th2
type cytokines were upregulated in eosinophilic NP,
irrespective of allergen skin test results.

The relation of tissue eosinophilia to polyp formation
remains largely unclear, whereas the expression of TGF-β1
and TGF-β2, predominantly by eosinophils, and their puta-
tive effects on fibroblast activity and pathogenesis of nasal
polyps have been suggested in several studies [14,31,39,40].
In an approach to study possible relationships between eosi-
nophilic inflammation and changes in extracellular tissue
components, we measured IL-5, eotaxin, ECP, TGF-β1, and
albumin in nasal tissue homogenates of NP patients, who
were either untreated or treated with oral glucocorticoster-
oids (GCS), and control subjects [41]. IL-5 was measurable in
most of the untreated NP, but was not detected in any of the
controls nor in the polyps of four of five patients treated with
oral GCS. The comparison between the untreated polyp
group and control group also showed significantly higher
concentrations of IL-5, eotaxin, ECP, and albumin, and
significantly lower concentrations of TGF-β1 in polyp super-
natants. In the oral GCS-treated group, IL-5, ECP, and albu-
min were significantly reduced, compared with untreated

nasal polyps, whereas TGF-β1 was increased. These observa-
tions suggest a deposition of albumin and other plasma pro-
teins as a possible pathogenic principle of polyp formation
and growth, which may be regulated by the subepithelial
eosinophilic inflammation.

Histomorphologic analysis of early- and late-stage
nasal polyps shows the presence of eosinophils, forming a
subepithelial cap over a pseudocyst area filled with
albumin, but not demonstrating signs of fibrosis [41]. The
breakdown of extracellular matrix proteins, which may be
mediated by metalloproteases, leads to the formation of
“empty” pseudocysts, and is a very interesting common
feature of NP histology awaiting further research. However,
IL-5 and TGF-β1 seem to represent cytokines with counter-
acting activities, with a low TGF-β protein concentration in
IL-5-driven NP. TGF-β1 is a potent fibrogenic cytokine that
stimulates extracellular matrix formation, acts as a
chemoattractant for fibroblasts, but largely inhibits the
growth and activity of invading inflammatory cells.

Alam et al. [13] demonstrated that TGF-β inhibits the
synthesis of IL-5, abrogates the survival-prolonging effect of
hematopoietins (eg, IL-5 and GM-CSF) on eosinophils, and
induces apoptosis. They suggested that there is a fine balance
between the productions of TGF-β and IL-5 by eosinophils
and that TGF-β may act as a homeostatic regulatory mecha-
nism that counteracts the action of IL-5 and programs cell
death. Other data showed that TGF-β in low concentrations
could induce eosinophil chemotaxis, whereas higher concen-
trations reduce eosinophil survival mediated by IL-5, IL-3,
and GM-CSF [42]. However, the major form of regulation of
TGF-β activity is by post-translational modifications, which
occur intracellularly and after the release of TGF-β into the
extracellular environment.

Transforming growth factor-β is released in a biologi-
cally inactive form termed the “small latent complex,” in
which the mature TGF-β molecule is noncovalently bound
to the latency-associated peptide. Another protein, termed
latent TGF-β binding protein (LTBP) may be covalently
coupled to the small latent complex, the resulting structure
being called the “large latent complex,” preventing TGF-β
binding to receptors. This process of extracellular post-
translational modification can influence the amount of
active TGF-β available at specific sites and under specific
conditions [43]. The presence of LTBP, for example, serves
to direct TGF-β to the extracellular matrix. Staining of nasal
polyp tissue shows that TGF-β1 is mainly bound to the
extracellular matrix, serving as a reservoir for latent TGF-β1,
where it awaits activation. Our data show that concentra-
tions of latent TGF-β are up to 100-fold higher than active
TGF-β. Thus, conditions are optimal for a severe eosino-
philic inflammation in NP, where high levels of IL-5 and
low concentrations of both latent and active forms of TGF-
β are present (Fig. 3).

As discussed earlier, early studies have demonstrated
that tissue IgE concentrations and the number of IgE-posi-
tive cells may be increased in NP, suggesting the possibility
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of local IgE production [9]. In order to determine whether
there is an association between total and specific IgE to a
variety of allergens and mediators of eosinophilic inflam-
mation in polyp tissue, we recently performed a study in
which homogenates of nasal tissues from 20 NP and 20
non-polyp subjects were analyzed [33••]. With reference
to findings in atopic dermatitis, IgE to Staphylococcus aureus
enterotoxins (SAEs) were also analyzed. This study demon-
strated that concentrations of IL-5, eotaxin, LTC4/D4/E4,
sCD23, ECP, and total IgE were significantly higher in NP
tissue, compared with non-polyp tissue, and findings for
all mediator concentrations were independent of skin
prick test results. Furthermore, IL-5, eotaxin, LTC4/D4/E4,
sCD23, ECP, and a number of eosinophils in NP tissue
were significantly correlated with tissue total IgE. A
detailed analysis of IgE indicated for the first time that
specific IgEs to SAEs were present in NP tissues and that
these were associated with severe local eosinophilic
inflammation and systemic airway disease. In those polyps
with specific IgEs to SAEs, a multiclonal-specific IgE forma-
tion to inhalant allergens, high levels of tissue total IgE,
and a high prevalence of asthma and aspirin sensitivity
were demonstrated. These studies suggest that SAEs possi-
bly act as superantigens through unconventional interac-
tion with the T-cell receptor, as has been shown for atopic
dermatitis [44••], and may be important in the pathogene-
sis of NP due to their potential role as disease modifiers.

Chemokines
Several recent studies have shown that nasal polyps also
express high levels of RANTES and eotaxin, the predomi-
nantly recognized eosinophil chemoattractants. Using
gene-specific primers in semiquantitative reverse tran-
scriptase-polymerase chain reaction, Bartels et al. [45]
showed that expression of eotaxin and RANTES mRNA, but
not MCP-3 mRNA, was elevated in nonatopic and atopic
nasal polyps, when compared with normal nasal mucosa.
Similarly, Jahnsen et al. [46] demonstrated that mRNA
expression for eotaxin, eotaxin-2, and MCP-4 was signifi-
cantly increased in nasal polyps, compared with turbinate
mucosa from the same patients. Moreover, expression of
eotaxin-2, the novel CCR3-specific chemokine, was found

to be the most prominent of the three chemokines investi-
gated. According to the data on cytokine proteins
measured in our studies [32,33••,41], it appears that
eotaxin, rather than RANTES, in cooperation with IL-5,
plays a key role in chemoattraction and activation of eosi-
nophils in NP tissue. This is in accordance with the find-
ings of a recent extensive study of about 950 nonallergic or
allergic polyps, which also suggested that nasal polyp eosi-
nophilic infiltration and activation may correlate mainly
with increased eotaxin gene expression, rather than with
RANTES expression. Tissue eosinophilia and nasal ECP
levels were significantly correlated with eotaxin mRNA, but
not RANTES mRNA expression [47].

Cell adhesion molecules
Compared with studies of cytokines and chemokines that
influence the activity of eosinophils in nasal polyps, similar
studies of cell adhesion molecules are relatively few. Early
studies by Symon et al. [48] demonstrated that ICAM-1, E-
selectin, and P-selectin were well expressed by nasal polyp
endothelium, whereas VCAM-1 expression was weak or
absent. Furthermore, monoclonal antibody against P-selectin,
but not monoclonal antibodies against E-selectin, L-selectin,
ICAM-1, VCAM-1, VLA-4, and lymphocyte function-associ-
ated antigen (LFA)-1, almost completely inhibited eosinophil
adhesion to nasal polyp endothelium, suggesting that P-
selectin was the most important adhesion molecule expressed
in nasal polyps for adhesion and infiltration of eosinophils.
Although P-selectin is likely to play a role in the adhesion of
eosinophils to nasal polyp endothelium, the finding that
monoclonal antibodies to neither ICAM-1, VCAM-1, VLA-4,
nor LFA-1 had any effect on eosinophil adhesion to the
endothelium is rather surprising and contrary to the findings
of a large number of studies [23].

An elegant study by Jahnsen et al. [], using three-color
immunofluorescence staining, has demonstrated that both
the number of eosinophils and the proportion of vessels
positive for VCAM-1 were significantly increased in the
nasal polyps of 15 patients, compared with the turbinate
mucosa of the same patients. More recent studies have con-
firmed the findings of this study and additionally
demonstrated that treatment with topical GCS decreases

Figure 3. A model of the current under-
standing of the pathophysiology of nasal 
polyposis and the impact of oral glucocorti-
costeroid (GCS) treatment. ECP—eosinophilic 
cationic protein; IL-5—interleukin-5; 
TGF—transforming growth factor.
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the density of eosinophils and expression of VCAM-1 in
polyps [50]. Similarly, studies of ICAM-1 have demon-
strated that this adhesion molecule is also expressed on
polyp endothelial cells and that treatment with topical
GCS decreases its level of expression.

Conclusions
Although we have not yet achieved a full understanding of
the precise mechanisms underlying the pathogenesis of NP,
recent insights have been acquired into the regulation of
eosinophil chemotaxis, activation, and survival, as well as
their possible link to gross histopathologic changes such as
pseudocyst formation. Tissue eosinophilia, plasma exuda-
tion, and extracellular matrix breakdown with consecutive
albumin retention are the most prominent pathologic
features of the majority of nasal polyps. Although a large
variety of mediators that influence the function and activity
of eosinophils have been detected in increased concentra-
tions in nasal polyps, compared with normal nasal turbinate
tissue, current evidence suggests that IL-5 and eotaxin interact
to orchestrate an intense eosinophilic inflammation. IL-5-
driven inflammation is likely to be further enhanced by
downregulation of TGF-β1, a cytokine that can potentially
counteract the effects of IL-5 and the breakdown of extra-
cellular matrix. However, the cytokine pattern in NP assumes
neither a Th1 nor Th2 type predominance, because IL-4, IL-5,
IL-12, and IFN-γ have all been shown to be upregulated in
the nasal polyp tissue. It is also not dictated by the atopic
status of an individual.

Our studies have demonstrated a strong, and most
probably local, upregulation of IgE synthesis, with the for-
mation of specific IgE to SAEs and a multiclonal IgE
response to inhalant allergens. Furthermore, specific IgEs
to SAEs in polyp tissue were related to a severe local
eosinophilic inflammation and to systemic airway diseases
such as asthma and aspirin sensitivity. Consequently, it is
possible that SAEs may act as superantigens and thus may
induce a multiclonal T- and B-lymphocyte stimulation,
with an additional activation of eosinophils, epithelial
cells, antigen-presenting cells, and macrophages.

Glucocorticosteroid treatment currently represents a
standard approach to NP disease, and has been shown to
downregulate several markers of eosinophilic inflamma-
tion as well as vascular leakage and albumin retention.
However, the understanding of NP pathophysiology
achieved from recent studies suggests that there may be
new targets for future therapy, including IL-5 in particular,
eotaxin, IgE, and Staphylococcus aureus colonization, each
of which may provide an effective means for the manage-
ment of NP.
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