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Abstract
Affected by unique topography, meteorological factors and high emission sources, it is crucial to have an in-depth under-
standing of the air pollution characteristics of Chengdu megacity. This research investigated the spatial evolution features of 
the six criteria pollutants in Chengdu from 2014 to 2020. The relationship between air pollutants and multi-meteorological 
factors also will be systematically elucidated. Together with the backward trajectory model, the potential source areas of 
PM2.5 and O3 were further simulated. The results revealed that there is spatial heterogeneity in the distribution of air pollu-
tion in Chengdu. Besides, the concentrations of PM2.5, PM10, SO2, NO2 and CO are only positively correlated with pressure. 
While, O3 only shows a negative correlation with relative humidity and pressure. Furthermore, regional transport is also one 
of the important contributing sources of PM2.5 and O3. This study can accurately grasp the status of regional air pollution, 
and provide accurate and feasible solutions for the collaborative reduction of air pollution in the Cheng-Yu area. Furthermore, 
it provides data references for exploring efficient air pollution control measures in complex terrain, and also accumulates 
some experience for the megacities of similar situations in the world.

Keywords  Atmospheric pollutant · Cheng-Yu Economic Circle · Spatial Heterogeneity · Multi-meteorological parameters · 
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Introduction

The world is currently facing the double burden of climate 
change and air pollution. Studies have proven that air pollu-
tion is one of the key causes of global and regional climate 
crisis, threatening the sustainable development of socio-
economic, human well-being and accelerating the pandemic 
with complex mechanisms (Fig. 1) (Åström, 2023; Liang 
et al. 2023a, b; Lei et al., 2022). The process of industriali-
zation and urbanization has promoted a sharp increase in 
fossil energy consumption and aggravated global air pollu-
tion (Fig. S1). Around 4.2 million premature deaths world-
wide are caused by air pollution each year (Gonzalez et al. 
2022). Currently, China’s air pollution presents the char-
acteristics of multiple pollution sources, superposition of 
multiple pollutants, and combination of urban and regional 
pollution (Table 1). Moreover, the top three CO2 emissions 
in 2020 are China, the United States and India, account-
ing for 30.93%, 13.86% and 7.19% of the global total car-
bon dioxide emissions respectively (Fig. S2). Coordinated 
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reduction of pollutants and carbon emissions is the funda-
mental guarantee for China to reach carbon neutrality by 
2060 (Dong et al. 2022; Li et al. 2023). In 2020, the propor-
tion of severe and above pollution day (1.2%) has improved 
significantly compared to 2015 (2.8%) (Azmi et al. 2023; 
Zhang et al. 2022a, b, c). However, the concentration of 
PM2.5 improves slowly, and the reduction of NOx emission 
is not significant. Moreover, O3 pollution is becoming more 
and more prominent, and the coordinated reduction of PM2.5 
and O3 has become a severe challenge.

The regions with the worst air pollution in China are 
mainly concentrated in the Beijing-Tianjin-Hebei region 
(BTH), the Pearl River Delta (PRD), the Yangtze River 
Delta (YRD), the Fenwei Plain (FWP), Jingjinji (JJJ) and 
the Sichuan basin (SCB) (Fig. 2) (Feng et al. 2023). Since 
the location of the SCB is unique worldwide, it provides an 
excellent platform for complex terrain air pollution investi-
gations. However, unlike other heavily polluted regions, air 
pollution in the SCB is not well understood. Based on the rel-
evant regulations of the Emergency Plan for Heavy Pollution 
Weather in Sichuan Province (revised in 2018), with eight or 
more cities reaching moderate and above levels of pollution 
as the standard, it was found that there were 21 regional air 
pollution processes in SCB during 2015–2018 (Table S1). 
Relevant literature has confirmed that severe air pollution 
frequently occurs in highly industrialized and urbanized 
cities with complex terrains, such as Beijing, Lanzhou and 
Chengdu in China (Fan et al. 2019; Meng et al., 2020)1.

As a megacity, Chengdu has a more arduous task of pre-
venting ecological and environmental risks, and the estab-
lishment of a long-term mechanism for normalized collabo-
rative governance still faces challenges (Fan et al. 2019). 
Although numerous research have been done in different 
regions of SCB in recent years, it is still lack of detailed 
and in-depth studies on Chengdu (Hou et al. 2022; Hu and 
Wang 2021; Tan et al. 2023). Moreover, most of the reported 
studies explore the short-term impacts and typical pollu-
tion events, and are limited to the data of a single pollutant 
at a few sites. Only few studies have explored the spatial 
variation characteristics of pollutants at multiple sites over 
a long period of time. Therefore, the results obtained by 
these studies may not conclusive and could lack of spatial 
contrast. Nevertheless, there is a lack of detailed discussion 
of the variation characteristics of multiple meteorological 
parameters at multiple stations and their impact mechanisms 
with multiple pollutants in previous studies. In addition, the 
trajectory clustering model, Potential Source Contribution 
Function (PSCF) model and Concentration Weighted Trajec-
tory (CWT) models are effective tools for exploring regional 
pollution transport (Berriban et al. 2022; Cao et al. 2023), 
but they are rarely used in SCB regions, especially in the 
Chengdu megacity. Extensive research has revealed that 
even for the same research subjects, there may be significant 
bias in the results due to differences in research parameters 
and methods (Liu et al. 2021). Therefore, it is difficult for 
some existing studies to accurately characterize the long-
term pollution status of Chengdu megacity.

Through the different research methods and models, 
a more detailed analysis of air pollution in megacities 
from the perspectives of spatial distribution, meteoro-
logical influence factors, and regional transmission can 
accurately grasp the status of regional air pollution, and 
provide reference for traceability of pollution sources and 
more accurate trend prediction. Besides, this research 
can provide new methods and data references for explor-
ing efficient air pollution control measures in complex 
topography, and also accumulate some experience in the 
regional joint prevention of megacities in similar situa-
tions in the world. Using the long-term monitoring data 
pollutants in Chengdu from 2014 to 2020, the spatial 
fluctuation characteristics of the six criteria pollutants 
(PM2.5, PM10, NO2, SO2, O3 and CO) were comprehen-
sively investigated. The annual, seasonal and monthly 
spatiotemporal evolution of seven meteorological factors 
was then systematically elucidated. Furthermore, a com-
prehensive and detailed analysis of the effects of multi-
meteorological parameters on the air pollutants also were 
explored. Finally, combined with the cluster analysis, 
PSCF model and the CWT method, the potential source 
areas of PM2.5 and O3 in 2020 were further quantitatively 
simulated from different season.

Fig. 1   Links between air pollution, energy, climate and health

1  PSCF: Potential Source Contribution Function; CWT: Concentra-
tion Weighted Trajectory; IEA: International Energy Agency; BTH: 
Beijing-Tianjin-Hebei region; YRD:Yangtze River Delta; PRD: Pearl 
River Delta; FWP: Fenwei Plain; JJJ: Jingjinji; SCB:Sichuan Basin; 
VOCs: Volatile Organic Compounds; WHO, 2021AQGs: World 
Health Organization, Global Air Quality Guidelines; TEM: Tem-
perature; PRS: Pressure; RHU: Relative Humidity; PRE: Precipita-
tion; GST: Ground Surface Temperature; SSD: Sunshine Duration; 
WPSCF: Weighted Potential Source Contribution Function; WCWT: 
Weighted Concentration Weighted Trajectory.
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Methodology

Study area

Surrounded by mountains, the Chengdu megacity (30° 
05' N-31° 26' N, 102° 54' E-104° 53' E) is located on the 
western edge of the SCB, with a total area of 14,605 km2 
(larger than Shanghai, Tianjin megacities) (Chen et al. 
2022a, b, c; Deng et al. 2019) (Fig. 3a). Compared with 
2010, in 2020, its GDP, urbanization rate, population and 
car ownership have increased by 200%, 19.8%, 49.04% 
and 200%, respectively (Fig. 4). By the end of 2021, the 
resident population had reached 21.19 million, the urbani-
zation rate had reached about 79.5%, the total value of 
regional power generation was 1.99 billion and the number 
of motor vehicles was about 6.26 million (National Bureau 
of Statistics of China 2022). The industry is mainly char-
acterized by automobiles, coal-fired power plants, building 
materials, machinery, food, etc. (Zhang et al. 2018; Wang 
et al. 2018a, b). In addition, the terrain of this area is of 
high in the west and low in the east, with a height differ-
ence of 4,966 m, and the terrain is relatively closed (Ning 

et al. 2019; Yang et al. 2020). The altitude in this area is 
averagely 750 m, with the lowest altitude of 359 m. Due to 
the huge vertical height difference, unique landform types 
of plains (40.1%), hills (27.6%) and mountains (32.3%) are 
formed in this area.

Data collection

The six criteria pollutants in this study are mainly based 
on the data from eight state-controlled monitoring sta-
tions in Chengdu (Fig. 3b). Besides, seven surface mete-
orological parameters (Win, Temperature (TEM), Ground 
Surface Temperature (GST), Relative Humidity (RHU), 
Precipitation (PRE), Pressure (PRS), Sunshine Duration 
(SSD)) mainly come from 13 meteorological stations 
(Fig. 3b). Besides, the analysis data also refers to third-
party sources, such as China air quality platform (http://​
www.​aqist​udy.​cn/). Daily meteorological data mainly 
refer Chengdu Meteorological Monitoring Database 
(http://​data.​cma.​cn/). Besides, the Geospatial Data Cloud 
(https://​www.​gsclo​ud.​cn), Sichuan and Chengdu Statis-
tical Yearbook (http://m.​chdst​ats.​gov.​cn/) also referred 

Table 1   Evolution of air pollution in China

1980–1990 1990–2000 2000- Ref

Main source of pollution Coal burning, industrial Coal burning, industry, dust Coal combustion, industry, 
motor vehicles, dust

(Song et al. 2022a, b; Xu 
et al. 2020; Zhang et al. 
2017)Main pollutants SO2, Total solid particles, 

PM10

SO2, TSP, NOx, PM10 SO2, PM10, PM2.5, NOx, 
VOCs, NH3, CO, O3

Major air pollution issues Coal burning Coal burning, particulate 
matter and acid rain

Coal burning, haze, acid 
rain, photochemical pol-
lution, toxic and harmful 
substances

Air pollution scale local local + regional Local + Regional + Global

Fig. 2   The locations of the five 
urban agglomerations in China

http://www.aqistudy.cn/
http://www.aqistudy.cn/
http://data.cma.cn/
https://www.gscloud.cn
http://m.chdstats.gov.cn/
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to obtaining geographic information data and socio-
economic data. Also, meteorological data obtained from 
the National Center for Environmental Prediction of the 
United States (ftp://​arlftp.​arlhq.​noaa.​gov/​pub) are used 
for backward trajectory model. In addition, the parameter 
settings in the backward trajectory model are shown in 
Table 2 (Bai et al. 2021a, b; Berriban et al. 2022).

Analysis methods

Correlation analysis  As a non-parametric test method, the Spear-
man rank correlation coefficient is mainly used to present the rela-
tionship between variables (Gao et al. 2016; Tarasov et al. 2018). 
When there is no repeated data and one variable is a strictly mono-
tonic function of another variable, the Spearman rank correla-
tion coefficient is equal to + 1 or -1, which is called the complete 
Spearman rank correlation of variables (Liu et al. 2023; Qi et al. 
2023; Xu et al. 2022). When all rank values are integers, the rank 
correlation coefficient can be calculated by the formula Eq. 1.

(1)rs = 1 −
6
∑

d2
i

n
�

n2 − 1
�

di is the rank difference between the two variables in each 
set of observations, n is the total number of paired samples. 
This study uses Spearman’s correlation analysis to clarify 
the relationship between meteorological indicators and air 
pollutant indicators in order to understand the strength of 
the correlation between variables and focus on controlling 
pollutants that have a greater impact on air quality.

Interpolation techniques  Spatial interpolation is a method of 
converting discrete point measurement data into a continuous 
data surface and comparing it with other spatial distribution pat-
terns. The most commonly used methods of spatial interpolation 
include Inverse Distance Weighting (IDW) interpolation, Kriging 
interpolation, Spline function method, etc. (Kumar et al. 2020; 
Lotfata 2022; Pinto et al. 2020). Among them, Kriging is a promi-
nent interpolation technique and the most commonly used spatial 
interpolation algorithm. Kriging interpolation is more accurate 
than other interpolation methods. By considering spatial autocor-
relation and the weight of data points, this method can generate a 
more accurate spatial prediction model. In addition, this method 
not only considers the numerical value of the data point, but also 
the spatial correlation of the variable. Finally, Kriging interpola-
tion can select different variogram models according to different 
data distribution and autocorrelation patterns, which is highly 

Fig. 3   (a) The location of Chengdu and (b) the topography and monitoring station of Chengdu

Fig. 4   Area and population and 
GDP in division of Chengdu in 
2020 ( Tan et al. 2023; Zhang 
et al. 2022a, b, c; Zhu et al. 
2020)

ftp://arlftp.arlhq.noaa.gov/pub
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flexible (Shukla et al. 2020; Yang & Hu 2018). Kriging is a geo-
statistical technique that is an interpolation method for unbiased 
optimal estimation of variables within a limited area (hukla et al., 
2020; Yang & Hu 2018). In the kriging method, it is assumed 
that the joint probability distribution of the entire research space 
is stationary, and uniform in all directions. In this method, (x, y) 
set as the coordinates of a certain space data point and z(x, y) 
represents its value. For z0 = z

(

x0, y0
)

 , the Kriging interpolation 
formula is shown in (Eq. 2) (Beauchamp et al. 2018; Kumar et al. 
2022; Lotfata 2022).

Since the Kriging method is unbiased and has the small-
est variance, the undetermined weight coefficient 
wi(i = 1,2,… , n) of the unbiased condition satisfies the 
relational expression (Eq. 3):

When there is no bias and the kriging variance is the 
smallest, the variance group of undetermined weight coef-
ficients wi can be obtained (Eq. 4). ẑ0 represents the esti-
mation value at the point 

(

x0, y0
)

 , zi(1 ≤ i ≤ n) represents 
the observation value of n points near of the 

(

x0, y0
)

 , wi 
represents the weight coefficient of the observation value 
zi(1 ≤ i ≤ n) and the relative point 

(

x0, y0
)

 . C
(

xi, yi
)

 is the 
covariance function of zi and zj.

Backward trajectory clustering  Due to the spatial similar-
ity of air mass trajectories, the backward trajectory clus-
tering method can group all trajectories and calculate the 
spatial dissimilarity (SPVAR) and total spatial difference 
(TSV) of each trajectory from the clustered average trajec-
tory (Foy et al. 2021; Li et al. 2017a, b). Then, according to 
the relationship between TSV and n, the number of clusters 
is judged, and air mass trajectories reaching at the receiving 

(2)ẑ0 =

n
∑

i=1

wizi

(3)
n
∑

i=1

Wi = 1

(4)
�

∑n

i=1
wiC

�

xi, xj
�

+ � = C
�

x0, xj
�

, (j = 1,2,… , n)
∑n

i
wi = 1

point of the model are grouped and clustered (Sasmita et al. 
2022). The SPVAR of each cluster is expressed as Eq 0.5:

Trajectory clustering is mainly calculated by two clus-
tering methods, angular distance and Euclidean distance 
(Cao et al. 2020). This study adopts the Euclidean distance 
method, and the principle of grouping and clustering is to 
make the difference in moving speed and direction between 
the trajectories in the group extremely small, and at the 
same time, the difference between groups is maximized. 
The Euclidean distance between two trajectories within a 
particular cluster is defined as Eq 0.6 (Li et al. 2017a, b; 
Sen et al. 2017). X1

(

Y1
)

 and X2

(

Y2
)

 is the trajectory 1 and 2.

PSCF model  The proportion of pollution trajectories and the 
distribution of potential contributing source areas of grid 
cells to high pollutant loads at receptor sites can be found 
through PSCF values. The high value area of PSCF is the 
main area of high pollutant concentration (Stojić & Stanišić, 
2017). In PSCF model, Chengdu (30.66°N, 104.10°E) was 
set as the starting point and the simulation start altitude is 
set to 500 m (Deng et al. 2020; Kaskaoutis et al. 2019). The 
thresholds of PM2.5 and O3 in the model are set at 75 μg/m3 
and 160 μg/m3, respectively (Chen et al. 2022a, b, c; Zhang 
et al. 2021a, b). Finally, the grid cover area is set within 
the range of 25.83–43.13°N and 75.40–111.59°E, and grid 
cells of 1° × 1° were contained in the study. PSCF model 
divides the research area into i × j grids, and nij is mean the 
number of all trajectories passing through the grid (i, j) , mij is 
the number of pollution trajectories, PSCFij (the occurrence 
probability of pollution track in grid (i, j)) is expressed an Eq 
0.7 (Bai et al. 2021a, b; Berriban et al. 2022).

Besides, Wij (weight factor) is used to calculate PSCF to reduce 
uncertainty (Zhang et al. 2022a, b, c; Zhou et al. 2023). By count-
ing the number of all trajectory nodes and the total number of 
grids, the average number of nodes per grid is obtained, which is 
defined as nave , then the calculation formula of:

(5)SPVAR =

x
∑

i=1

Di

(6)d12 =

√

((

X1(i) − X2(i)
2 +

(

Y1(i) − Y2(i)
2
)

(7)PSCFij =
mij

nij

(8)Wij =

1.00,
(

nij > 3nave
)

0.70,
(

1.5nave < nij ≤ 3nave
)

0.42,
(

nave < nij ≤ 1.5nave
)

0.2,
(

nij ≤ nave
)

Table 2   2014–2020 backward trajectory model parameters

Parameter Parameter settings

Direction of trajectory Backward
Trajectory running time 24 h
Trajectory interval time 1 h
Height 500mAGL
Threshold value of PM2.5 pollution day 75 μg/m3

Threshold value of O3 pollution day 160 μg/m3
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The PSCF value after adding the weight can be expressed 
as Eq 0.9:

CWT model  The study area set in the CWT model calcula-
tion almost covers the entire airflow transport path, with a 
resolution of 1.0° × 1.0°. In addition, the threshold settings 
for PM2.5 and O3 in the CWT model are consistent with 
those in PSCF. The weighted concentration of each grid cell 
is Cij (Eq 0.10) (Bai et al. 2021a, b; Cao et al. 2023):

In the formula, i and m represent the trajectory index and the 
total number of trajectories, respectively. Cl is the corresponding 
pollutant concentration when the trajectory l passes through the 
grid unit (i, j) , and �ijl is the trajectory in the grid unit (i, j) Dura-
tion of stay. The same weight factor Wij as PSCF were used in 
the study to reduce the uncertainty of CWT. A cell with a higher 
Weighted Concentration Weighted Trajectory (WCWT) value 
indicates a greater contribution to the pollutant concentration 
(Cao et al. 2023; Tian et al. 2022) (Eq 0.11).

Results and discussion

Spatial and temporal heterogeneity of pollutants

Spatial heterogeneity of pollutants

Concentrations of air pollutants are not always at a steady level, 
but is characterized by multiple temporal and spatial scales. In 
2014, the areas with high average concentration of PM2.5 were 
mainly concentrated in the central urban area, while the low-value 
region were distributed in Dujiangyan (Fig. S3). In addition, the 
central region (Wuhouqu, Jinjiang and Shuangliu etc.) is a high 
CO value area. This finding is similar to those of Kuang et al., 
(2018), they pointed out that lots of automobiles and industrial 
enterprises in the central area of Chengdu are the reasons for the 
higher average CO concentration. On the contrary, the high-value 
areas of O3 are mainly concentrated in Dujiangyan and Peng-
zhou, while the central urban areas are relatively low. In 2015, 
the pollutants PM2.5, PM10, NO2 and CO all gradually decreased 
from the central urban area to the east and west, and the low-
value areas all appeared in Dujiangyan (Fig. S4). While, the 
distribution characteristics of SO2 and O3 concentration values 

(9)WPSCFij = Wij × PSCFij = Wij ×
mij

nij

(10)Cij =

∑m

l=1
Cl�ijl

∑m

l=1
�ijl

(11)Cij =
Wij

∑m

l=1
�ijl

m
�

l=1

Cl�ijl

are characterized by lower values in the central urban area and 
higher values in the northwest direction. In addition, the SO2 
concentration is higher in the northwest, mainly because there 
are a large number of industries and power plants in these areas 
(Kuang et al., 2018). The high-concentration area of O3 presents a 
zonal distribution in the northwest direction and is mainly caused 
by motor vehicle emissions in the central urban region, and in the 
northern region the impact of industry on O3 is more important.

Compared with 2014, the PM2.5 concentration in 2016 has 
improved to a certain extent, and the value in most areas is higher 
than 53.6 μg/m3 (Fig. S5). In addition, compared with 2015, the 
area with high NO2 and O3 concentration showed an expand-
ing trend. It may be due to the substantial increase in VOCs 
emissions in industrialized areas, which facilitated the reaction 
with NOx (Kuang et al., 2018). Zhou et al., (2021) identified that 
OVOCs emitted from wood-based panels, furniture manufactur-
ing, pharmaceutical industries and automobile manufacturing 
accounted for more than 50% of Chengdu. Therefore, controlling 
the emission of VOC in the manufacturing industry is the key to 
improving the O3 concentration. In 2017, the high-value areas 
of PM2.5 and PM10 has shown a trend of shrinking compared 
with 2014–2016 (Fig. S6). However, the overall pollution is still 
relatively serious, and the central urban area is still a key area 
for emission reduction. Air pollutants have serious impacts on 
human health, and the lethal effects are mainly manifested in 
total mortality, respiratory diseases, cardiovascular diseases and 
lung cancer (Alexeeff et al. 2022; Dimitriou et al. 2022). There-
fore, it is particularly necessary to reduce pollutant emissions.

Except for O3, the concentration values of other pollutants 
show a decreasing trend in 2018 (Fig. S7). In total, about 98.0% 
of the region’s PM2.5 concentration values failed to reach the 
limit of CAAQS Grade II. The areas with the highest concen-
tration are Wuhou, Jinjiang, Shuangliu and Qingyang, which is 
10 times higher than the WHO, 2021AQGs standard. Xu et al. 
(2024) pointed out that PM2.5 pollution is a major environmental 
risk factor that can bring about huge disease burden and eco-
nomic losses (Xu et al. 2024). Song et al., (2022a, b) emphasized 
that the formation of secondary aerosols (43.4%) in the winter 
of 2018 was the main cause of the high concentration of PM2.5. 
The central urban area is also a heavily polluted area of PM10, 
which is consistent with the observations of Qi et al., (2022) and 
Luo et al., (2020). Numerous studies have shown that air par-
ticulate matter is one of the main causes of mortality, lung and 
cardiovascular complications, and its long-term effects on the 
human body are more serious than short-term effects (Alexeeff 
et al. 2022; Liu et al. 2020a, b; Xu et al. 2024). Therefore, con-
trolling particulate matter has great health benefits. Overall, in 
2019 each pollutant showed a certain downward trend compared 
with 2018, but the distribution characteristics were basically the 
same (Fig. S8). NO2 is still the key object of pollutant emission 
reduction. The research of Qi et al., (2022) also emphasized that 
the rapid development of urbanization in Chengdu-Chongqing 
region led to the gradual increase of motor vehicles, which is 
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one of the main contributor of NO2. About 98.0% of the regions 
have O3 concentrations exceeding the limit of WHO, 2021AQGs 
standards. This result was similar to the findings of Chen et al., 
(2022a, b, c), Which also underscore that vehicle exhaust and 
solvent utilization contributed more to O3 production. O3 is pro-
duced by photochemical reactions of precursors such as NOx 
and VOCs, so the O3 concentration depends largely on the VOC/
NOx value.

In 2020, except for SO2 and O3, the distribution characteristics 
of other pollutants are generally larger in the central urban area 
(Fig. 5). The areas with high PM2.5 values are distributed in the 
northwest of the central urban region, and gradually decrease 
eastward and westward. The concentration of NO2 is higher 
in the south of the central urban area, and gradually decreases 
eastward and westward from this center. This may be due to the 
high urbanization and high motor vehicle emissions in the central 

Fig. 5   Spatial variations of six pollutants in 2020
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region. The average value of O3 has increased slightly, and the 
average value in 2020 is 169 μg/m3, which is lower in the central 
region and relatively higher in the new cities in the eastern and 
western suburbs. It is intriguing that, compared with 2019, during 
the lockdown of COVID-19 in 2020, except for O3 showing a 
slight increase trend, the concentration values of other pollutants 
decreased significantly, which may be due to the reduction in 
emissions, rather than due to the meteorological conditions with 
a large range (Gao et al. 2023; Konstantinoudis et al. 2021; Xia 
et al. 2022). Overall, all pollutants in each region showed a 
decrease trend from 2014 to 2020, except for the O3 concentra-
tion which showed a certain fluctuation and growth. The spatial 
patterns of pollutants (PM2.5, PM10, CO, NO2) all show higher 
concentrations in the central region. This may be due to frequent 
human activities and high emissions from industrial and vehicles 
in the central urban area (Tan et al. 2023; Zhu et al. 2019). While, 
O3 and SO2 showed a relatively low distribution pattern in the 
central urban area. Overall, the air pollution in Chengdu from 
2014 to 2020 showed the characteristics of both high PM2.5 and 
O3 concentrations. This is generally similar to the findings of the 
Qi et al., (2022) and Tan et al., (2023), which emphasized that 

high concentrations of PM and O3 are closely related to dense 
traffic flow and basin topography. In addition, existing studies 
have shown that PM2.5 and O3 are the main pollutants in most 
cities. High concentrations of PM2.5 and O3 may pose a huge 
threat to public health and are closely related to premature death 
(Gómez González et al. 2023; Liu et al. 2022). Some studies 
have also shown that strategies to reduce PM2.5 concentrations 
may change the NOx-VOC ratio, thereby, adversely affecting the 
control of O3 (Liang et al. 2021; Xu et al. 2023). Therefore, it is 
particularly important to further explore the complex relation-
ship, sources and health effects of PM2.5 and O3.

Temporal variation characteristics of pollutants

Based on the spatial distribution characteristics, it can be 
concluded that the pollutant concentration in Chengdu 
showed a downward trend from 2014 to 2020, and the 
air quality has been significantly improved. The daily 
concentration variation characteristics of six pollutants 
in 2014 and 2020 are shown in Fig. 6 and Fig. 7. It can be 
seen that the pollutant concentration values in 2014 were 

Fig. 6   Temporal variations of 
six pollutants in 2014

Fig. 7   Temporal variations of 
six pollutants in 2020
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significantly higher than those in 2020, which is obvi-
ously related to the epidemic control measures in 2020 
(Bashir et al. 2020; Qi et al. 2022). Among them, SO2, 
CO, NO2 and PM2.5 decreased more significantly, but 
the concentrations of O3 and PM2.5 were still high. It can 
be seen from the figure that the particle concentration 
values are higher in autumn and winter, while the O3 con-
centration values are higher in summer. This is consistent 
with the research results of Lu et al., (2022a, b), that is, 
PM2.5 shows a "U"-shaped change trend, while O3 shows 
an inverted "U"-shaped variation characteristic. High 
concentrations of O3 can lead to the formation of photo-
chemical smog pollution, and long-term exposure to high 
concentrations of O3 will not only harm human health, 
but also have an adverse effect on plant growth and crop 
yields (Chen et al. 2022a, b, c; Wang et al. 2022a, b). 
Therefore, in winter, the control of precursors such as 
SO2, NH3 and primary PM2.5 should be strengthened in 
a coordinated manner to achieve coordinated prevention 
and control of PM2.5 and O3. In addition, the atmospheric 
environment is already in the transition stage from pri-
mary pollution to secondary pollution. While control-
ling primary pollution, it is necessary to prevent the 
occurrence of secondary pollution (Liang et al. 2023a, 
b; Mostafa et al. 2021; Zhang et al. 2023).

Influence of meteorological parameters on the air 
pollutants

Variation characteristics of meteorological factors

Wind speed and sunshine duration  Wind affects the dif-
fusion and transportation of air pollutants, and plays a 
prominent role in the spatial distribution of air pollution. 
Chengdu is located in the SCB, with low wind speed all 
year round. The annual average wind speed between 2014 

and 2020 is 1.0 m/s, 1.1 m/s, 1.3 m/s, 1.27 m/s, 1.35 m/s, 
1.29 m/s, 1.27 m/s, respectively, all lower than 1.4 m /s. 
Overall, there are seasonal differences in wind speed dur-
ing the study period, with larger values appearing in spring 
and summer (Fig. 8), and the highest values appearing in 
April-August (Fig. S9). Besides, a notable characteristic of 
the climate in Chengdu is cloudy with short sunshine hours. 
During the study period, the average annual sunshine dura-
tion was 1,038 h, and the average annual sunshine duration 
in 2019 was the lowest (857 h). Obvious seasonal differences 
can be found in the sunshine hours, with the largest values in 
spring and summer every year. The longest sunshine time in 
each year is mainly concentrated in April-August (Fig. 9).

Relative humidity and precipitation  Fluctuations in rela-
tive humidity can affect atmospheric stability and lead to 
changes in pollutant concentrations. There are some differ-
ences in the average relative humidity and minimum relative 
humidity of various meteorological stations in Chengdu. The 
average relative humidity is between 68% and 88.6%, and 
most sites are higher than 70% (Fig. 10). The annual average 
relative humidity is 79.6%, and the minimum value is about 
54.4%. The relative humidity shows seasonal variations, 
which are relatively high in autumn and winter and generally 
low in spring (Fig. S10). The seasonal heterogeneity of rela-
tive humidity is also one of the main bases for explaining the 
seasonal variation of pollutants. In addition, the maximum 
relative humidity is concentrated in September to December, 
all higher than 80%, and the minimum value occurs in Feb-
ruary to April in most years. Precipitation is also one of the 
main parameters affecting the concentration of atmospheric 
pollutants, and wet deposition can clean the atmospheric 
pollutants (Jia et al. 2019; Wang et al. 2016). During 2014–
2020, the precipitation at each station was inconsistent, and 
the precipitation was relatively high at Dujiangyan station 
and Pujiang station (Fig. 11). There are obvious differences 
in precipitation in different seasons, and the overall trend is 
“inverted U shape” (Fig. S11). Summer precipitation is obvi-
ously higher than other seasons, and winter is the lowest. 
The precipitation is mainly concentrated in July and August, 
and the precipitation in November, December, January and 
February is relatively small (Fig. S12).

Temperature, ground surface temperature and pres‑
sure  The transport and distribution of regional air pol-
lutants are obviously affected by temperature. Higher 
temperature can enhance the thermodynamic conditions 
of the atmosphere, intensify the turbulent exchange of the 
atmosphere, and promote the vertical diffusion and hori-
zontal transport of the atmosphere (Li et al. 2021; Zhan 
et al. 2019). From 2014 to 2020, the average temperature of 
each station is basically the same, about 17 °C (Fig. S13). 

Fig. 8   Seasonal Wind speed
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The daily maximum temperature values at each site were 
lower than 25 °C, and the minimum temperature fluctuated 
between 12.5 °C and 15 °C. The annual average temperature 
is around 16.4 °C to 17.6 °C, with the highest value in sum-
mer and the lowest in winter (Fig. 12). The average monthly 
temperature in each year presents an inverted “U-shaped” 
change pattern. The highest average temperature appears 
in July and August, and the extreme minimum temperature 
appears in January, which is -6.7 °C.

From 2014 to 2020, the annual changes of GST are rela-
tively stable, and the annual average is about 17 °C. In addi-
tion, GST showed an inverted “U-shaped” seasonal variation 
in each year (Fig. S14). The monthly variation trend of GST 
in each year is similar, showing an inverted “U shape”. The 
average maximum GST occurs in July and August and the 
maximum GST occurs in May–August (Fig. 13). In gen-
eral, the PRS annual value fluctuation of range is 946 hPa-
956  hPa. High atmospheric pressure values are mainly 
concentrated in winter and lowest in summer. The monthly 
trends of each year from 20014 to 2020 are consistent, show-
ing a “U-shaped” trend, with the maximum values concen-
trated in January, February and December, and the minimum 
values appearing in June and July (Fig. S15).

Relationship between PM pollutants and meteorological 
factors

The relationship between meteorological factors and PM 
concentration is not a simple linear relationship, and each 
meteorological factor has different correlations with air qual-
ity conditions. It can be seen from Table 3 that among the 
meteorological parameters, only PRS is positively correlated 
with the concentrations of PM2.5 and PM10. Wind is a mete-
orological parameter closely related to the level of air pollu-
tion, and it plays a positive role in the dilution and transport 

of air pollutants (Flores et al. 2020; Peng et al. 2022; Zhan 
et al. 2019). It is clear that that wind is negatively correlated 
with PM2.5 and PM10, and the correlation coefficients are 
-0.445 and -0.427, respectively (Table 3). Furthermore, a 
significant negative correlation between wind speed and PM 
was also observed in summer, indicating that higher wind 
speed can accelerate the dilution of PM, thereby reducing 
PM concentration (Fig. 14). On the contrary, the static and 
steady wind will increase the mass concentration of PM. 
Besides, PM2.5 and PM10 had a significant negative correla-
tion with air temperature, with correlation coefficients of 
-0.730 and -0.697, respectively, indicating that high tem-
perature is also conducive to reducing PM concentration. 
Relevant studies have shown that one of the main reasons for 
the serious air pollution in the Chengdu Plain in winter is the 
high frequency of temperature inversions in winter and the 
weak intensity of cold air, which makes it difficult for pollut-
ants to diffuse in the basin (Kong et al. 2020). High relative 
humidity is conducive to the secondary transformation of 
precursors and the retention of atmospheric particulate mat-
ter in the air, thereby promoting the chemical transforma-
tion and hygroscopic growth of aerosols (Kong et al. 2020). 
The findings of Fan et al.(2021) also found that the ratio of 
PM2.5/PM10 tends to be higher in southern Chinese cities 
due to higher relative humidity in winter. Kong et al.(2020) 
found that secondary aerosol is an important source of PM2.5 
in Chengdu, which is sensitive to meteorological factors.

In the absence of precipitation, relative humidity is 
generally positively correlated with PM2.5 concentrations 
(Fan et al. 2021; Li et al. 2019a, b). There was a nega-
tive correlation between PM and RHU (PM2.5:R = -0.257, 
PM10:R = -0.334). The correlation is extremely strong in 
summer, indicating that relative humidity has the most sig-
nificant effect on PM in summer. Between 2014 and 2020, 
PM2.5 and PM10 showed a negative correlation with PRE 
(PM2.5:R = -0.505, PM10:R = -0.521), indicating that rainfall 

Fig. 9   Monthly SSD



Air Quality, Atmosphere & Health	

Fig. 10   RHU in the station
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can reduce the concentration of PM. The increase in pre-
cipitation accelerates the wet removal of pollutants, which 
in turn reduces the concentration of pollutants (Yang et al. 
2019a, b). Most of the rainfall in Chengdu is concentrated 
in summer, when the concentration of PM is the lowest 
(Huang et al. 2015; Liu et al. 2018). The correlation coeffi-
cients between PRE and PM2.5 and PM10 in summer reached 
-0.598 and -0.669, respectively. Furthermore, PM concentra-
tion was also affected by SSD, showing a negative correla-
tion between them (PM2.5:R = -0.375, PM10:R = -0.332). The 
higher the SSD, the higher the temperature will be, which 
is more conducive to the secondary conversion of PM. The 
fluctuation of PM concentration is opposite to that of GST 
(Fig. 14), and there is a significant negative correlation 
between them (PM2.5:R = -0.724, PM10:R = -0.668). Over-
all, particulate matter was only positively correlated with 
PRS (PM2.5:R = 0.654, PM10:R = 0.638), indicating that an 
increase in air pressure would promote an increase in PM 
concentration. The downward airflow generated by high 
pressure can inhibit the upward movement of PM, leading to 
particle accumulation, which is more obvious in winter. In 
general, weather conditions such as strong wind, high tem-
perature, and low humidity can promote the dilution and dif-
fusion of particulate matter, which is promote the reduction 
of particulate matter concentration.

Relationship between gaseous pollutants 
and meteorological factors

Wind facilitates the dispersion and transport of pollutants. It 
can be observed that SO2, NO2, and CO all illustrated nega-
tive correlations with wind speed, and the correlation coef-
ficients are -0.412, -0.401 and -0.475, respectively (Table 4). 
However, there was a significant positive correlation between 
O3 and wind speed (R = 0.624). The possible reason is that 
higher wind speed can dilute PM and enhance solar radia-
tion, thus accelerating the formation of O3 (Romshoo et al. 
2021; Yang et al. 2020; Zhang et al. 2015). SO2, CO and NO2 
were only positively correlated with PRS, and showed differ-
ent negative correlations with other meteorological factors 
(Table 4). Furthermore, it can be observed that O3 is only 
negatively correlated with RHU and PRS. In addition, the 
concentration of SO2, NO2 and CO is relatively low when 
the TEM is high, while the fluctuation of O3 is basically con-
sistent with the TEM and presents an “inverted U-shape” 
(Fig. 15). This is consistent with the correlation shown in 
Table 4, SO2, NO2 and CO have different negative corre-
lations with TEM, and the correlation is: CO > NO2 > SO2. 
However, a strong positive correlation was observed between 
O3 and TEM (R = 0.827), studies also shown that high tem-
peratures are one of the factors leading to severe ozone 

Fig. 11   Annual PRE

Fig. 12   Monthly TEM
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Fig. 13   Monthly GST between 2014 and 2020
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pollution (Qiao et al. 2021; Yang et al. 2020). The photo-
chemical reaction rate in the troposphere is significantly 
accelerated by high temperature, which promotes the con-
version rate between O3 and precursors, thereby generating 
abundant O3 (Kong et al. 2020; Kuang et al., 2018).

Existing research has emphasized that pollutants tend 
to accumulate under conditions of high relative humid-
ity and promote various secondary processes, further 
exacerbating regional air pollution (Li et al. 2022a, b; 
Ma et al. 2022). The gaseous pollutants showed different 

Table 3   Correlation between 
PM and meteorological factors 
in Chengdu

Pollutants WIN TEM RHU PRE SSD GST PRS

Yearly
  PM2.5 -0.445 -0.730 -0.257 -0.505 -0.375 -0.724 0.654
  PM10 -0.427 -0.697 -0.334 -0.521 -0.332 -0.688 0.638
  WIN 0.370 -0.117 0.322 0.496 0.405 -0.538
  TEM 0.017 0.638 0.619 0.996 -0.930
  RHU 0.282 -0.439 -0.048 0.091
  PRE 0.379 0.610 -0.661
  SSD 0.665 -0.668
  GST -0.938

Spring
  PM2.5 0.075 0.142 -0.413 -0.040 -0.461 -0.039 0.146
  PM10 -0.011 0.239 -0.4600 -0.030 -0.394 0.055 0.086
  WIN -0.226 0.593 0.492 -0.560 -0.477 -0.076
  TEM -0.394 0.217 0.569 0.909 -0.727
  RHU 0.731 -0.423 -0.610 -0.273
  PRE -0.363 -0.143 -0.765
  SSD 0.807 -0.238
  GST -0.507

Summer
  PM2.5 -0.622 0.024 -0.810 -0.598 -0.042 -0.267 0.268
  PM10 -0.691 -0.035 -0.859 -0.669 -0.044 -0.240 0.278
  WIN 0.094 0.716 0.710 0.244 0.208 0.160
  TEM 0.169 0.050 0.117 0.168 -0.128
  RHU 0.551 0.373 0.499 -0.528
  PRE -0.100 -0.234 0.178
  SSD 0.899 -0.142
  GST -0.373

Autumn
  PM2.5 -0.131 0.694 -0.588 -0.106 0.492 0.647 -0.729
  PM10 -0.179 0.736 -0.633 -0.099 0.505 0.685 -0.764
  WIN -0.638 0.451 0.011 -0.284 -0.567 0.294
  TEM -0.678 -0.009 0.331 0.969 -0.717
  RHU -0.031 -0.391 -0.486 0.509
  PRE -0.827 -0.005 0.534
  SSD 0.256 -0.788
  GST -0.711

Winter
  PM2.5 -0.317 -0.055 -0.718 -0.130 -0.305 -0.246 0.653
  PM10 -0.258 -0.032 -0.680 0.028 -0.322 -0.241 0.711
  WIN -0.762 -0.113 0.199 0.576 -0.555 -0.405
  TEM 0.383 0.298 -0.155 0.932 0.514
  RHU 0.273 0.149 0.352 -0.172
  PRE 0.589 0.342 0.428
  SSD 0.097 -0.022
  GST 0.352
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negative correlations with RHU. Besides, SO2, NO2 and 
CO displayed different negative correlations with PRE, 
and the correlation was NO2 > CO > SO2. However, a 
positive correlation can be observed between O3 and PRE 
(R = 0.457), indicating that precipitation was beneficial 
to the accumulation of O3. O3 is also greatly affected by 
SSD and shows a strong positive correlation (R = 0.819). 
Because the sun’s ultraviolet radiation is strong when 
there is sufficient sunshine, it is very conducive to the 
photochemical reaction to generate O3. In winter, solar 
radiation is significantly weakened, and the scattering 
and absorption of high-concentration particulate matter 
slows down the production of O3 (Kuang et al., 2018; 
Lu et al. 2022a, b). In addition, the significant nega-
tive correlations can be found between sunshine duration 
and pollutants SO2, NO2, and CO. In winter, except for 
O3, other pollutants’ concentration in this region is rela-
tively high. SO2, NO2 and CO all expressed a significant 
negative correlation with GST, and there were seasonal 
differences in the correlation. On the contrary, it can 
be found that O3 has a strong positive correlation with 
GST (R = 0.863), which is consistent with the change 
trend shown in Fig. 15. This indicates that the increase 
in temperature is beneficial to the formation of O3. It 
can be observed that the concentrations of SO2, NO2 and 
CO are only positively correlated with PRS (Table 4). 
While, O3 showed a strong negative correlation with 
PRS (R = -0.894). Under low pressure conditions, it is 
easy to form a static and stable weather pattern, which in 
turn leads to a surg in regional O3 pollutants (Yang et al. 
2020). Overall, O3 concentrations were only significantly 
negatively correlated with RHU and PRS. In addition, 
the reduction rate of VOC and NOx was proved to be the 
main way to reduce O3 and PM2.5 emissions in Chengdu 
(Kuang et al., 2018).

Pollution trajectory and potential source analysis

Back trajectory cluster analysis

Cluster analysis can not be done by only derive different 
classes of trajectories, but also provide valuable informa-
tion for identifying the history of air masses and air pol-
lution in specific regions (Berriban et al. 2022; Yu et al. 
2019). According to the track direction and transport area 
distribution, the trajectories of air masses in 2020 were 
divided into different clusters in the four seasons (Fig. 16). 
In spring, air mass trajectories are clustered into seven cat-
egories, among which cluster C2 has the longest trajectory, 
accounting for 9.22%. Clusters C1, C5, and C6 are all from 
the northeast of Chengdu, accounting for 14.85%, 13.67% 
and 10.45%, respectively. Cluster C3 has a shorter track 
length but the largest proportion (30.61%). In summer, the 
trajectories are clustered into four categories, among which 
cluster C2 has the fastest transport speed, accounting for 
18.98%, mainly from the northeast direction of the acceptor 
point. The one with the shortest track length is cluster C3, 
accounting for the largest proportion (33.06%). Cluster C1 
is mainly transported in Chongqing and Guiyang, account-
ing for 26.20%. In addition, shorter air masses indicate that 
the air mass moves slowly and is prone to accumulation of 
pollutants (Berriban et al. 2022; Zhan et al. 2019). Clus-
ter C2 is the largest among the six types of trajectories in 
autumn, accounting for 25.57%. The longest trajectory is 
cluster C6, which mainly comes from the southwest direc-
tion of Xi’an. Cluster C3 has the shortest trajectory length, 
indicating that the air mass moves slowly and the pollutants 
are mainly emitted locally. Most of the trajectories in autumn 
originated from the north and northeast (Xi’an, Lanzhou, 
Chongqing). In winter, the trajectory cluster C2 accounted 
for 28.05%, with the longest trajectory length. It shows that 

Fig. 14   The relationship 
between PM (PM10, PM2.5) and 
meteorological factors
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the long-distance transportation in winter mainly comes 
from Xi’an, Lanzhou. The track length of Cluster C3 is the 
shortest, indicating that the air mass transportation speed is 
the slowest, and it is mainly local emissions.

Seasonal PSCF analysis of PM2.5 and O3

Areas with higher WPSCF values have a higher probabil-
ity of passing pollution trajectories, that is, the trajectories 

Table 4   Correlation between 
gaseous pollutants and 
meteorological factors in 
Chengdu

Pollutants WIN TEM RHU PRE SSD GST PRS

Yearly
  SO2 -0.412 -0.299 -0.354 -0.286 -0.182 -0.303 0.309
  NO2 -0.401 -0.548 -0.276 -0.478 -0.276 -0.546 0.559
  CO -0.475 -0.614 -0.153 -0.381 -0.408 -0.625 0.568
  O3 0.624 0.827 -0.389 0.457 0.819 0.863 -0.894

Spring
  SO2 0.107 -0.056 -0.372 -0.165 -0.529 -0.210 0.393
  NO2 0.415 0.088 -0.121 0.126 -0.522 -0.182 0.150
  CO 0.154 0.087 -0.130 0.247 -0.617 -0.192 -0.001
  O3 -0.455 0.746 -0.460 -0.245 0.964 0.914 -0.382

Summer
  SO2 -0.648 0.094 -0.682 -0.684 0.224 0.024 0.100
  NO2 -0.722 -0.122 -0.690 -0.742 0.062 -0.090 -0.031
  CO -0.627 0.259 0.262 -0.108 0.576 0.736 -0.072
  O3 0.028 0.224 0.262 -0.108 0.576 0.736 -0.072

Autumn
  SO2 -0.384 0.854 -0.667 -0.006 0.407 0.797 -0.685
  NO2 -0.386 0.809 -0.445 -0.029 0.340 0.804 -0.609
  CO -0.267 0.787 -0.719 0.051 0.409 0.720 -0.712
  O3 0.128 -0.061 0.350 -0.295 0.312 0.013 -0.150

Winter
  SO2 -0.253 0.057 -0.748 0.046 -0.190 -0.077 0.763
  NO2 -0.232 -0.050 -0.486 0.052 -0.463 -0.326 0.662
  CO -0.399 0.205 0.203 -0.228 0.004 -0.553 -0.405
  O3 0.323 -0.578 0.203 -0.228 0.004 -0.553 -0.835

Fig. 15   The relationship 
between gaseous pollutants and 
meteorological factors
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passing through this area are the main transport paths that 
affect the concentrations of PM2.5 and O3 (Gogikar & Tyagi 
2016; Zhou et al. 2023). Through the analysis, it can be 
observed that the concentration of PM2.5 in each hour in 
the summer of 2020 is lower than 75 μg/m3 and the hourly 
average concentration of O3 in autumn and winter is lower 
than 160 μg/m3. To deeply and quantitatively explore the 
potential source areas of PM2.5 and O3 in theses seasons, 
the thresholds of PM2.5 and O3 in these seasons were set 
at 35 μg/m3 and 100 μg/m3, respectively (GB3095-2012). 
From the PSCF simulation results, it can be observed that 
the potential source distribution regions of PM2.5 and O3 are 
different in different seasons. This is mainly due to signifi-
cant differences in air flow in different seasons. However, 
the overall distribution of potential source regions is basi-
cally consistent with the trajectory transport distribution of 
air masses.

The potential sources of PM2.5 in 2020 have obvious 
seasonal differences, in which the largest WPSCF value 
appear in winter, and the smallest value occurs in spring 
and summer (Fig. 17). In spring, the potential sources of 
PM2.5 are generally concentrated in the east of Chengdu 
and the southwest of Xi’an, and the WPSCF values in these 
areas are all lower than 0.4. The concentration of PM2.5 in 
summer is lower than 75 μg/m3. Figure 17 (b) shows the 
potential source areas where PM2.5 is higher than 35 μg/
m3 but lower than 75 μg/m3, and the main contributing 

sources are located in the east of Chengdu and the south-
west of Chongqing. Local sources dominate in autumn, and 
the potential source areas of PM2.5 are mostly concentrated 
in the east and northeast of Chengdu. In winter, PM2.5 is 
affected by regional transport in addition to local contribut-
ing sources. The northeastern part of Lanzhou is the main 
source of contribution, and the WPSCF value is greater than 
0.6. In addition, the eastern of Chengdu, the southwestern of 
Chongqing, and the northern part of Guiyang are the main 
potential sources of O3 in the spring and summer (Fig. S16). 
The WPSCF value in spring is higher in the southwestern 
part of Chongqing (0.5 < WPSCF < 0.7), indicating that this 
area contributes more to O3 in spring. The areas with higher 
WPSCF values in summer are distributed in the northwest 
of Guiyang, but the overall WPSCF values in summer are 
lower than 0.4. There is no area with O3 concentration higher 
than 160 μg/m3 in autumn and winter, but there are some 
potential source areas higher than 100 μg/m3 in the central 
and eastern part of Chengdu (WPSCF < 0.2), indicating that 
O3 concentration is lower in autumn and winter.

Seasonal CWT analysis of PM2.5 and O3

CWT model has the advantage of being able to distin-
guish between regions of high and moderate PM2.5 and 
O3 concentration. The potential source areas reflected 
by CWT are more abundant than the PSCF simulation 

Fig. 16   Seasonal trajectory cluster in 2020. Note: The gray lines in the figure represent the backward trajectory distribution of external air 
masses in different seasons
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results (Li et al. 2017a, b). Overall, the CWT simula-
tion in 2020 is basically consistent with the PSCF model 
results, and the potential sources area of PM2.5 were 
found in the north of Chengdu and southwest of Chong-
qing (Fig. 18). However, the potential influence area of 
the CWT model is larger than that of the WPSCF distri-
bution. The WCWT value was the largest in winter, and 
the values in all regions were lower in spring and sum-
mer. In autumn, the eastern part of Chengdu is the main 
potential source area, but the WCWT value of the whole 
potential source area is between 10 μg/m3 and 50 μg/m3. 
In winter, the WCWT value is larger (higher than 100 μg/
m3) in the southeast of Lanzhou, indicating that regional 
transport has a significant impact on the distribution of 
PM2.5. For O3, there are also seasonal differences in the 
distribution of CWT simulation results in 2020, with 
wider distribution areas in spring and summer (Fig. S17). 
The WCWT value in spring is higher than 100 μg/m3 in 
most parts of southern Chongqing, indicating that this 
region is a source of high concentration of O3. In sum-
mer, the high O3 concentration source area appears in the 
border area between western Chongqing and Chengdu. 
The distribution area of WCWT in autumn and winter is 
relatively concentrated. The WCWT values in autumn are 
mainly distributed in the northeast of Chengdu, south-
west of Xi’an, west of Chongqing and southeast of Lan-
zhou. The distribution area of winter simulation results is 
also small, mainly in the north of Chengdu and the south 

of Lanzhou, and the WCWT value is less than 50 μg/m3. 
High concentrations of O3 will also accelerate the for-
mation of pollutants such as particulate matter, thereby, 
increasing the frequency and intensity of severe pollution 
weather. Therefore, PM2.5 and O3 pollution prevention 
and control measures must be spatially and temporally 
differentiated.

Conclusions

Scientific emission reduction in complex terrain areas 
under the goal of coordinated environmental and climate 
governance is challenging. In this research, the spatial 
fluctuation characteristics of the six criteria pollutants 
were investigated, also the relationship between the air 
pollutants and meteorological factors are explored in 
detail. And through the backward trajectory model the 
transmission paths and contribution of potential sources 
of PM2.5 and O3 in Chengdu in 2020 were analyzed. The 
conclusions and recommendations are as follows:

(1)	 The spatial patterns of pollutants (PM2.5, PM10, NO2, 
CO) all show higher concentrations in the central 
region. While, O3 and SO2 showed a relatively low 
spatial pattern in the central urban area. Overall, air 
pollution in Chengdu (2014–2020) was characterized 
by both high PM2.5 and O3 concentrations.

Fig. 17   Source region of PM2.5 identified by PSCF in four seasons of 2020
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(2)	 Concentrations of pollutants (PM2.5, PM10, NO2, SO2, 
CO and NO2) only showed positive correlation with 
PRS, and displayed a negatively correlated with other 
meteorological elements. While, O3 is only signifi-
cantly negatively correlated with RHU (R = -0.389) 
and PRS (R = -0.894).

(3)	 Significant seasonal differences can be observed in 
the regional transport paths of pollutants (PM2.5 and 
O3) in 2020. In addition, these pollutants concen-
tration are not only affected by local source emis-
sions, but regional transport (Chongqing, Lhasa, 
Lanzhou, Xi’an, Guiyang and other cities) is also 
an important source of contribution. Besides, the 
high-concentration contribution source areas of 
PM2.5 and O3 mainly appear in winter and summer 
respectively, and the contribution source areas are 
centralized in Chengdu and its surrounding areas 
(SCB) and cities.

In general, methods such as kriging interpolation and back-
ward trajectory models, can reflect more specific information on 
the spatial distribution characteristics of pollutants and potential 
source areas, and better represent the spatial heterogeneity of 
pollutants. Therefore, regional pollution prevention and control 
cannot be a "one-size-fits-all" approach. It requires a detailed 
analysis of regional distribution characteristics, and dynamic and 
coordinated emission reduction across the entire region based 

on time, area, grade, and category differences to improve the 
effectiveness of pollution control. Strengthen the management 
of key industries in the region, screen enterprises with good 
emission reduction effects and implement refined management 
and control, focusing on controlling emissions from transporta-
tion, construction, industry, etc. In addition, the results of the 
study show that in autumn and winter, the focus should be on 
reducing PM2.5 emissions, especially in the central urban area; in 
summer, more attention should be paid to reducing O3 pollution 
in surrounding counties and districts. Accurately quantifying 
the nonlinear relationship between precursors (such as NOx, 
NH3 and VOCs) and PM2.5 and O3 is the key to achieving coor-
dinated prevention and control of pollutants, which will bring 
greater environmental and health benefits. Therefore, the main 
focus should be on the coordinated reduction of PM2.5 and O3 
emissions, detailed analysis of heavy pollution incidents, and 
promotion of coordinated reduction of multiple pollutants. It 
also is necessary to continue to study the interaction mechanism 
of extreme weather, climate change, urbanization and pollutants. 
At the same time, the effectiveness evaluation of measures and 
policies is also crucial to improving air quality.

Finally, the impact of pollutant exposure on health should be 
further quantitatively evaluated to promote the positive health 
benefits of pollution prevention and control. Local Environment 
Agency Plans should also be developed as an integrated man-
agement plan to assess, prioritize and provide solutions to local 
environmental issues related to the air pollution and encourage 

Fig.18   Spatial distributions of WCWT values for PM2.5 in four seasons of 2020
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stakeholders to work together to preserve and protect their local 
environment.
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