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Abstract
This study investigates benzene and toluene concentrations in Delhi and National Capital Region (NCR), India, assessing 
health risks and impacts on air quality, focusing on their role in ozone formation. Data from 56 monitoring stations identified 
18 locations where benzene levels exceed the national safe limit, primarily due to traffic emissions and seasonal variations. 
Benzene concentrations peaked at 15.06 µg/m3 in Loni, Ghaziabad, during winter. Seasonal analysis indicated higher benzene 
levels during winter and post-monsoon periods due to lower planetary boundary layer heights (PBLHs) trapping pollutants 
near the ground. Health risk assessments revealed probable cancer risks for residents, with children facing higher risks than 
adults. Using the Ozone Formation Potential (OFP) metric and Maximum Incremental Reactivity (MIR) coefficients of 
0.72 for benzene and 4.0 for toluene, the study predicted OFP values for various hotspots. Toluene's significant contribution 
to ozone formation was evident, with the highest concentration observed at Charkhi Dadri, Haryana (29.65 ± 2.26 µg/m3), 
surpassing the WHO’s air quality guidelines of 120 µg/m3, and the highest benzene concentration at Loni (7.3 ± 0.8 µg/
m3). Toluene/benzene ratio and principal component analysis identified automobiles and industrial activities as significant 
pollution sources. The study underscores the urgent need for stricter emission controls, cleaner fuels, and improved urban 
planning to reduce these pollutant's negative impacts on the environment. Elevated VOC levels and associated health risks 
necessitate immediate action to protect public health and improve air quality in Delhi NCR. These results emphasize critical 
need for interventions to address benzene and toluene pollution comprehensively.
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Introduction

Benzene and toluene are volatile organic compounds 
(VOCs) that significantly threaten human health and the 
environment. These compounds, part of the BTEX group 
(benzene, toluene, ethylbenzene, and xylene), contribute 
to poor air quality and adverse health outcomes. They 
play an important role in the formation of ground-level 
ozone, a secondary pollutant that poses risks to respiratory 
health, particularly in the summer when high temperatures 
increase ozone levels (Petrus et al. 2024; Zawacki et al. 
2018). Additionally, they contribute to the formation of 
secondary organic aerosols (Henze et al., 2008), affecting 
climate (Zhu et al. 2022). Major human factors include 
vehicular emissions, petroleum refineries gasoline evapo-
ration, fuel combustion, solvent use, and gas system leaks. 
Tobacco smoke and solid waste breakdown also emit these 
VOCs (Caselli et al. 2010). Benzene and toluene are haz-
ardous air pollutants as classified by US Clean Air Act 
of 1990, in terms of its carcinogenicity and mutagenic-
ity. Among them, benzene is considered the most toxic, 
earning a Group 1 human carcinogen classification by the 
International Agency for Research on Cancer and a Class 
A human carcinogen designation by the US Environmental 
Protection Agency. Long-term exposure to benzene can 
cause serious health problems, including various types of 
leukaemia, anaemia, genetic mutations, blood disorders, 
multiple cancers, reproductive issues, and damage to the 
kidneys, liver, and central nervous system. Short-term 
exposure to benzene and toluene can result in eye, nose, 
and throat irritation, fatigue, respiratory difficulties, lung 
damage, dizziness, memory loss, and a range of respira-
tory symptoms. Chronic exposure may also have detrimen-
tal effects on maternal health and infant development (Kim 
et al. 2009; IARC 2002; USEPA 1997, 1998). To compute 
the harmful impacts researchers often compute, Hazard 
Quotient (HQ), and Lifetime Cancer Risk (LTCR). HQ is 
used to gauge non-cancerous health effects from a particu-
lar substance by comparing the exposure level to a Refer-
ence Dose (RfD), which is the maximum daily amount of a 
substance that can be taken over a lifetime without signifi-
cant risk. Expressed as a probability, it reflects the chance 
of developing cancer over a lifetime due to exposure, con-
sidering factors like substance potency, exposure duration, 
and route. In India, the levels of anthropogenic VOCs in 
the atmosphere have become a significant concern, par-
ticularly in urban areas with heavy traffic and industrial 
activities. Studies show that the amount of VOCs often 
exceeds the safe limits, contributing to air pollution and 
posing health risks to the population (Rizwan et al. 2013). 
Additionally, studies have shown that post-harvest burning 
of agricultural residue of paddy fields leads to significant 

contribution to ambient levels of benzenoids in the North-
west Indo Gangetic Plains of India (Chandra & Sinha 
2016). In Delhi NCR, where air pollution is a pressing 
issue, volatile organic compounds (VOCs) such as ben-
zene and toluene pose significant challenges. The rapid 
pace of urbanization and industrial expansion has only 
served to amplify the emission of these deleterious sub-
stances, predominantly stemming from vehicular exhaust, 
industrial processes, and combustion activities (Kermani 
et al. 2021; Mehta et al. 2020). The impact of BTEX in the 
context of atmospheric chemistry and public health is sig-
nificant; yet, within the Indian regulatory guidelines, only 
benzene is subject to an annual threshold limit as per the 
National Ambient Air Quality Standards (NAAQS). Apart 
from benzene, there are no established protocols for the 
quantification of ambient VOC levels. However, the Cen-
tral Pollution Control Board (CPCB) is progressing in this 
field and has set an annual limit of 5 μg/m3 for benzene 
(CPCB 2009). While, BTEX pollutants are recognized for 
their health hazards, research into their precise concentra-
tions and impacts in India is insufficient, primarily due to 
the focus on larger cities (Ramírez et al. 2012). In India, 
previous studies on air pollution have mostly focused on 
parts of Delhi (Garg et al. 2018; Singh et al. 2016, Kumar 
et al. 2014) neglecting the entire NCR region, a key fac-
tor in the area's overall pollution. Delhi, a landlocked city 
surrounded by high-rise buildings of Gurugram, Noida, 
and other parts of NCR, traps pollutants, leading to severe 
pollution events. The poor ventilation coefficient during 
winter exacerbates the city's air quality issues, indicat-
ing a high pollution potential (Saha et al. 2019; Iyer and 
Raj 2013). This research addresses this gap by covering 
the entire Delhi NCR region, known for its high pollu-
tion levels, and aims to improve air quality management 
strategies like the Graded Response Action Plan, crucial 
during winter and post-monsoon seasons. The study meas-
ures benzene and toluene levels, identifies their sources, 
examines their roles in ozone formation, and assesses both 
cancerous and non-cancerous health risks for residents and 
commuters in the region.

Methodology

Site selection and analysis

The study area consists of entire Delhi and National Capital 
Region (NCR) of India, spanning from coordinates 28.4020° 
N, 76.8260° E, which includes 62.52% of urban, and 37.48% 
of rural sections of Haryana, Uttar Pradesh, and Rajasthan. 
Regions under Haryana and Uttar Pradesh are fast growing 
areas of the NCR and are about 275 m above the mean sea 
level, surround Delhi on three sides. The NCR region is a 
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part of the Indo-Gangetic Plain (IGP), and has an area of 
55,083 km2 and a population of 46 million with density of 
population as 1,105 persons per square kilometre which is 
too high compared to the national levels (National Capital 
Region Planning Board 2016). The study analysed data from 
56 continuous monitoring stations across the National Capi-
tal Region of Delhi. After refining the dataset by excluding 
zero values, outliers, and duplicates, the analysis focused on 
10 stations in Haryana, 7 in Uttar Pradesh, 2 in Rajasthan, 
and 26 in Delhi. Details of these stations along with demog-
raphy details of NCR is shown in Fig. 1 and Table 1. The 
area's dynamic weather patterns, characterized by mild win-
ters (December-February; 5–10 °C), semi-arid climate with 
hot summers (March–May; 40–48 °C), monsoon season 
(June–August) with heavy rainfall, and the post-monsoon 
season (September–November) (Praveen et al. 2020). The 

winds change direction seasonally, blowing from the south-
west in summer and from the northwest in winter (Shukla 
et al. 2020). These unique weather patterns, combined with 
strategic geographical features, provide an excellent oppor-
tunity to study less-known cancer-causing chemicals in the 
air and their impacts. The region is a hub for commerce, 
transportation, industry, and some agriculture, with sig-
nificant pollution coming from vehicles, factories, services, 
and construction. On regular workdays, many vehicles com-
mute between the NCR and Delhi, influencing the area's 
dynamics.

This study investigates hourly data for two-years, from 
January 2022 to January 2024, encompassing continuous 
data for 24 months (730 days) with 24 readings per day 
per CAAQMS station, for VOCs (benzene and toluene), as 
well as NO2, NO, and O3. The data collection has adhered 

Fig. 1   Study area map showing 
Delhi NCR CPCB continuous 
air quality monitoring stations

Table 1   Continuous Air Quality Monitoring Stations across Delhi NCR

Delhi NCR Location Area (Km2) Population 
(in thou-
sands)

Sites with CAAQMS

Haryana 25,327 11,031 Bhiwani, Sonipat, Charkhi Dadri, Faridabad, Gurugram, Jind, Karnal, Palwal, Rohtak, 
Panipat

Uttar Pradesh (UP) 14,826 14,576 Noida, Ghaziabad, Anand vihar (Hapur), Meerut, Muzzafarnagar, Bulandsher, Baghpat
Rajasthan 13,447 3,674 Alwar, Bharatpur
Delhi 1,483 16,788 Rohini, Anand Vihar, Sirifort, Chandni chowk, Dwarka Sector 8, IBHAS Dilshad Garden, 

Shadipur, JNU stadium, Pusa, KS shooting range, Major DC std, Sri Aurbindo Marg, 
Mandir Marg, Najafgarh, Narela, NSIT Dwarka, Okhla, Patparganj, Ashok Vihar, Punjabi 
Bagh, RK Puram, Sonia Vihar, Vivek Vihar, Wazirpur, Mundka, Nehru Nagar
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to the guidelines of the Central Pollution Control Board 
(CPCB) and the U.S. Environmental Protection Agency 
(EPA). A variety of measurement techniques were utilized, 
including gas chromatography with a photoionization 
detector (GC-PID) for VOCs, chemiluminescence for NO2 
and NO, and ultraviolet (UV) photometry for O3. Meteoro-
logical information was obtained from the CPCB’s data-
base, and the planetary boundary layer height (PBLH) data 
was acquired from the Modern-Era Retrospective analy-
sis for Research and Applications, Version 2 (MERRA-2) 
with a resolution of 0.5 × 0.625° for the years 2022 and 
2023. The objective was to identify variations in the ben-
zene and toluene concentrations during rush hours, defined 
as 9:00 AM to 11:00 AM, and the low traffic hours, from 
2:00 PM to 4:00 PM, to understand the impact of vehicular 
flow on pollutant levels.

Assessment of health risks

To evaluate the health risk assessments, LTCR and 
HQ have been computed according to USEPA methodol-
ogy and Zhang et al. (2015). The LTCR calculation begins 
with determining the daily exposure (E) in mg/kg/day 
using the Eq. (1):

where,
C = benzene concentration in ambient air (mg/m3),
IRa = respiratory rate (0.83m3 h−1 for adults, 0.87m3h−1 

for children; Zhang et al. 2015).
DA = duration of exposure (8 h/day) (Indian working 

hours; as per Ministry of Labour & Employment, Govern-
ment of India 2023).

BW = body weight (65 kg for adults, 36 kg for children 
as per USEPA, 2009).

The calculated value of daily exposure (E) has been 
employed in the Eq. (2), to estimate.

the LTCR,

where, SF = Slope Factor (2.9 × 10–2 mg/kg/day−1), as classi-
fied by the EPA Cancer classification and stated in the Risk 
Assessment Information System.

Similarly, the hazard quotient (HQ) has also been esti-
mated through Eq. (3)

where,
CY = average daily concentration,
RfD = BTEX inhalation reference dose i.e., 0.003, 5, 1, 

and 0.1 mg/m3, respectively according to ATSDR 2005.

(1)E = (C x IRa x DA)∕BW

(2)LTCR = E x SF

(3)HQ = CY∕RfD

Potential for ozone formation

The ozone formation potential (OFP) has been computed 
using Carter’s 1994 methodology which considers the maxi-
mum incremental reactivity (MIR) to measure this reactivity. 
The MIR indicates the amount of ozone (in grams) produced 
for each gram of VOC that initiates the VOC–NOx reaction. 
It measures a compound’s contribution to ozone production 
in the atmosphere (Carter 1990, 1994, 2010; Hoque et al. 
2008). The MIR value for toluene is 4.02, and for benzene, it 
is 0.79. The OFP calculation involves multiplying the VOC 
concentration by its MIR value (Tiwari et al. 2010).

Results and discussion

Hotspot areas

The analysis of data from 56 monitoring stations across 
Delhi NCR revealed that 18 locations are hotspots for ben-
zene, a known carcinogen, with levels surpassing the NAAQ 
standard of 5 µg/m3 annually. The monthly hotspot data is 
catalogued in Table 2, with consistent hotspots including 
Anand Vihar, Chandni Chowk, Shadipur, Siri fort, NSIT 
Dwarka, and Okhla from Delhi; Charkhi Dadri, Gwal 
Pahadi, Jind, Karnal, Palwal, Panipat, Sector 11 Faridabad, 
Sector 51 Gurgaon, Vikas Sadan Gurgaon from Haryana; 
and Loni, Muzaffarnagar, and Sector 125 Noida from Uttar 
Pradesh. These findings highlight the urgent need for inter-
ventions to control benzene pollution and safeguard public 
health in these areas. Similar to the European Commission's 
progressive measures, which set a benzene limit of 5 µg/
m3 in 2000, reduced it to below 1 µg/m3 in 2006, and suc-
cessfully achieved undetectable levels of benzene in the 
air by 2010. Similarly, in the context of NCR, these strate-
gies should prioritize reducing benzene exposure through 
enhanced monitoring, rigorous regulatory measures, and 
widespread community awareness initiatives.

Effect of meteorology on levels of benzene

Figure 2 illustrates the seasonal changes in the planetary 
boundary layer (PBL) and wind patterns that influence ben-
zene levels across various locations in Delhi NCR. Benzene 
concentrations peak at an average of 15.06 µg/m3 in the Loni 
area of Ghaziabad, Uttar Pradesh. During the winter (PBL 
height: 376 m) and post-monsoon (PBL height: 438 m) sea-
sons, the maps show a higher prevalence of orange and red 
dots, indicating benzene concentrations above 5 and 10 µg/
m3. The lower PBL height and colder air during these sea-
sons trap benzene at ground level due to inversion, prevent-
ing its dispersion (Hosseinpour et al. 2024). In contrast, the 
summer and monsoon seasons exhibit fewer or no red dots 
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Fig. 2   Effect of PBL and wind direction on study area (a). Winters (DJF) (b). Summers (MAM) (c). Monsoon (JJA) (d). Post monsoon (SON)
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on the map. The higher PBL and increased wind speeds dur-
ing these seasons promote dispersion of benzene. This is 
primarily due to a higher ventilation coefficient in summer 
and monsoon compared to post-monsoon and winter. How-
ever, high benzene concentrations can still occur in sum-
mer if emissions are high and wind speeds are low. This is 
observed in the Loni area, which is heavily industrialized 
and experiences significant vehicular pollution. Similar high 
summer benzene levels are noted in Sector 51 in Gurgaon 
and Sector 125 in Noida, primarily due to vehicular pollu-
tion. According to the Delhi Statistical Handbook (2023), 
there are 12 million registered vehicles in the region, with 
3.38 million being private cars. Semi-urban areas such as 
Panipat, Charkhi Dadri, and Palwal also show high benzene 
concentrations, attributed to agricultural transport (trac-
tors, trucks), vehicular pollution, and industrial activities, 

including oil refineries. The absence of strict threshold limit 
rules for high-polluting industries and the non-application 
of BSVI vehicle standards in these cities, which are slightly 
distant from Delhi, contribute to elevated benzene levels in 
these areas. Additionally, during winter, wind direction pre-
dominantly towards the north and northeast contributes to 
pollution accumulation in these hotspot areas within Delhi 
NCR. The plot supports the data in Table 2, which shows 
that the highest pollution hotspots occur primarily during 
the post-monsoon and winter seasons.

Variations in the levels of benzene and toluene during 
rush hours (peak office time) and off-peak hours (non-rush) 
are shown in Fig. 3 (a, b). It can be seen that the average of 
benzene and toluene in the peak period is between 2.44–7.56 
and 2.5–29.15 µg/m3 respectively. The concentration range 
during off peak hours (non-rush hours) is 1.62–6.98, and 

Fig. 3   Rush and non-rush hours 
concentrations of benzene and 
toluene at Hotspot areas
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2.31–26.11 µg/m3 respectively. The benzene content in the 
peak period is 0.08–0.5 times that in the non-rush hours. 
The ratio of gasoline peak hours (rush) to off peak (non-
rush) hours is highest in Muzaffarnagar, UP, an important 
Indian city for sugar, steel and paper industries. Likewise, 
the toluene content at the peak time is 0.19–0.08 times that 
of the off-peak hours. The ratio of toluene peak to off peak 
hours with the highest activity is at Vikas Sadan, Gurugram, 
Haryana, indication of high vehicular pollution. The results 
indicate that toluene concentrations are consistently higher 
than benzene at various locations. This is primarily due to 
the broader range of sources for toluene, such as vehicular 
emissions, industrial activities, and the production of paints, 
paint thinners, adhesives, and chemical intermediates. In 
contrast, benzene mainly originates from vehicular emis-
sions (particularly from petrol and diesel engines) and indus-
trial processes like oil refineries and chemical manufactur-
ing. Toluene, with no specific emission limits set by national 
authorities, exhibits a shorter atmospheric lifetime due to 
higher reactivity, whereas benzene, less reactive, persists 
longer in the atmosphere (Cui et al. 2022). This persistence 
contributes to sustained high pollutant levels during both 
peak and off-peak hours in urban hotspots, highlighting the 
need for targeted emission control strategies to mitigate their 
environmental and health impacts effectively.

Toluene to benzene ratio and factor analysis

This study used toluene/benzene ratios and principal com-
ponent analysis (PCA) to determine the possible sources of 
these compounds in the ambient air. The T/B ratio varies 
among sources due to their unique chemical profiles (Do 
et al. 2011; Liu et al. 2009; Gros et al. 2007; Hellen et al. 
2003). For instance, gasoline emissions are characterized 
by a higher T/B ratio than those from industrial activities 
The study focused on the T/B ratio, particularly in areas 
identified as pollution hotspots, and presented the findings in 

Fig. 4. A T/B ratio nearing one suggests emissions primar-
ily from vehicular traffic, with higher ratios observed closer 
to emission sources (Garg et al. 2019; Rad et al. 2014). 
The T/B ratio ranged from 0.59 to 8.17, with the lowest at 
Sector 125, Noida, and the highest at Anand Vihar, Delhi. 
The elevated T/B ratio at Anand Vihar points to significant 
vehicular emissions, likely from the numerous diesel buses 
operating out of the interstate bus terminal, with toluene 
being the predominant Volatile Organic Compound (VOC) 
emitted by diesel engines (Kim and Choi  2020). The T/B 
ratios reported in this study align with those from other 
international studies, indicating similar vehicular pollution 
sources. For example, T/B ratios of 3.6 in Hanoi, 6.9 in Bel-
gium, and 2.3 in Ethiopia were reported, underscoring the 
global prevalence of vehicular emissions as a primary source 
of toluene and benzene (Stewart et al. 2021).

Principal Component Analysis (PCA) was applied to 
identify the primary sources of air pollution, following the 
methodology outlined by Cruz et al. (2020). Factor Analysis 
(FA) was used to organize the data into a correlation matrix, 
which facilitated a clearer understanding of the contribut-
ing factors. Factors were considered statistically significant 
if they had eigenvalues exceeding 1.00 and factor scores 
above 0.5. Using XLSTAT software, PCA was performed 
to determine the factor loadings for the three most polluted 
sites identified as hotspots.

As shown in Table 3, the results of the PCA indicated 
that three factors explained 65.72% of the total variance 
in the data. The first factor alone accounted for 30.45% of 
this variance and is strongly associated with high levels of 
toluene, benzene, and NO2 at Vikas Sadan, Gurugram, with 
loadings greater than 0.72. Notably, even higher loadings for 
toluene and benzene were observed at Loni Ghaziabad and 
Sirifort, Delhi, exceeding 0.92. The highest loading value, 
0.929, was recorded for benzene and toluene at Loni Gha-
ziabad. This indicates that both vehicular traffic and indus-
trial activities significantly contribute to air pollution at this 

Fig. 4   Toluene to benzene ratio 
at hotspot areas
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site. The presence of small- and large-scale manufacturing 
industries upwind from the city, combined with import and 
export activities involving light and heavy transportation, 
the proximity of the Dadri thermal power plant, and nearby 
petrol and diesel fueling stations, all result in elevated ben-
zene and toluene concentrations in the area. (Behnami et al. 
2023). Conversely, at Sirifort Road, Delhi, and Vikas Sadan, 
Gurugram, the presence of NO2 along with benzene and tol-
uene implicates that vehicular emissions are a major source 
of pollution. The study also indicates a correlation between 
NO2 and ozone levels across different sites. At Vikas Sadan, 
a high concentration of NO2 correlates with a lower ozone 
concentration, as evidenced by a factor loading of 0.623. 
Conversely, at Sirifort and Loni, lower NO2 levels are asso-
ciated with higher ozone concentrations. This suggests that 
in these areas, NO2 rapidly transforms into ozone due to 
its short atmospheric lifespan. Additionally, the presence 
of high benzene and toluene concentrations contributes to 
ozone formation through reactions with NO2. The appropri-
ate benzene to toluene ratios at these sites indicate signifi-
cant ozone pollution in conjunction with benzene and tolu-
ene, whereas Vikas Sadan, Gurugram, is primarily affected 
by NO2 pollution, along with benzene and toluene presence.

Carcinogenic and non‑carcinogenic risk assessment

This investigation assessed the potential health risks posed 
by benzene, aiming to understand the persistent outcomes 
of being exposed to benzene, which may result in cancer 
and a range of other negative health impacts on individuals 
(Mohammadi et al. 2020). The study computed the average 
daily exposure levels (E) (mg/kg/day) to inhaled benzene 
in two different groups (adults and children). The assumed 
exposure duration was 08 h/day for adults and children 
both (USEPA 1998, 2010, Masih et al. 2016). The LTCR’s 
acceptable threshold for both adults and children stands at 
1 × 10–6, following USEPA guidelines, while the WHO’s 
threshold is 1 × 10–5. According to Sexton et al. (2007), 
the cancer risk is divided into three levels. Definitive risk: 
LTCR exceeds 1.0 × 10–4, Probable risk: LTCR ranges 
between 1 × 10–5 and 1 × 10–4, and Possible risk: LTCR 
falls between 1 × 10–6 and 1 × 10–5. The findings revealed 

that, the maximum average daily exposure levels for adults 
were 2.41 × 10–3, 2.51 × 10–3, and 2.27 × 10–3 mg/kg per day 
for 1–8 AM, 8–16 PM, and 16–24 AM respectively at Loni 
area of Ghaziabad respectively. While children had aver-
age daily exposure levels of 1.27 × 10–3, 1.14 × 10–3, and 
1.20 × 10–3 mg/kg/day for 1–8 AM, 8–16 PM, and 16–24 
AM respectively at Loni area of Ghaziabad respectively. The 
LTCR values (cancer risk) for both adults & children ranged 
from 3.30 × 10–5 to 6.98 × 10–5, exceeding the USEPA guide-
lines limit (1 × 10–6) and the World Health Organization 
limit (1 × 10–5). The study determined that individuals liv-
ing in hotspot areas are likely at probable risk of cancer 
due to benzene exposure. It was observed that the Lifetime 
Cancer Risk (LTCR) was higher for children than for adults 
across all hotspot areas and at all times, especially in the 
morning (1–8 am) and evening to night hours (16–24 pm), 
as illustrated in Fig. 5. The elevated risk observed in children 
could be due to their smaller body mass relative to adults, 
which leads to a higher relative exposure when considering 
the dose per body weight, as exposure is inversely related 
to body weight.

The Hazard Quotient (HQ), commonly referred as non-
cancer risk index, provides an estimate of the likelihood of 
developing non-cancerous health problems due to air pol-
lutants. HQ values greater than 1 indicate that continuing 
exposure can lead to cardiovascular, and respiratory illness, 
while values below 1 are considered acceptable (Baberi et al. 
2022; Dehghani et al. 2018; Garg et al. 2018; Zhang et al. 
2012). The study found that non-carcinogenic risks such as 
dizziness, weakness, fatigue, nausea, and irritation of the 
eyes, skin, and respiratory tract due to benzene exposure 
remained significantly high (above 1) for the population in 
all hotspot areas, as shown in Fig. 6. The maximum HQ 
value i.e., 3.93 for benzene exposure was found at Loni, 
Ghaziabad, and the minimum was found at NSIT Dwarka, 
Delhi i.e., 1.37. These results suggest that the long-term ben-
zene concentrations in the study area are associated with an 
increased danger of developing cardiovascular and respira-
tory diseases. This research concluded that the individual 
HQ values for benzene, were above the acceptable limits, 
indicating a risk of non-cancerous illness from inhalation 
exposure. The study identifies high LTCR and HQ values 

Table 3   PCA of pollutants & 
met parameters at top three 
hotspot areas

Factor Loadings Vikas Sadan, Gurugram Sirifort, Delhi Loni, Ghaziabad

F1 F2 F3 F1 F2 F3 F1 F2

Toluene 0.78 -0.10 0.94 0.92 -0.13
Benzene 0.76 0.13 0.92 0.92
NO2 0.72 0.21 -0.55 0.55 0.12 -0.78
O3 0.28 0.62 0.26 0.16 0.83 0.11 0.14 0.74
WS 0.94 -0.23 0.29 0.66 -0.17 0.77
WD -0.14 0.82 -0.23 -0.54 0.51
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Fig. 5   Life time cancer risk 
(LTCR) at hotspot areas dur-
ing different time intervals for 
adults (a) and children (b)

(a)

(b)

Fig. 6   Hazard Quotient (HQ) 
of benzene & toluene at hotspot 
areas
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of benzene raising concern for the population, particularly 
children during all the time in a day.

Ozone production potential of benzene & toluene

The study examines the role of volatile organic compounds 
(VOCs) in O3 production through photochemical reactions. 
Ozone Formation Potential (OFP) is a metric used to esti-
mate the capability of VOCs to produce ozone in the urban 
atmosphere. This research predicted the OFP for various 
hotspots in the Delhi NCR region, presenting the findings 
in a Table 4. The Maximum Incremental Reactivity (MIR) 
coefficients for benzene and toluene are 0.72 and 4.00, 
respectively, which suggests that toluene is a more signifi-
cant contributor to ozone formation. However, the Ozone 
Formation Potential (OFP) is not solely influenced by the 
Maximum Incremental Reactivity (MIR) coefficient; the 
actual concentration levels of Volatile Organic Compounds 
(VOCs) in the ambient air also plays a significant role.

Elevated concentrations of volatile organic compounds 
(VOCs) can lead to an increase in secondary aerosol forma-
tion (Goel et al. 2024). The average OFP values for benzene 
and toluene in the hotspot areas are detailed in the Table 4, 
with the highest toluene concentration at Charkhi Dadri, 
Haryana (29.65 ± 2.26 µg/m3), followed by Karnal (Hary-
ana) and the highest benzene concentration at Loni Ghazi-
abad (7.3 ± 0.8 µg/m3) followed by Sector 51, Gurugram. 
The trend of toluene exceeding benzene was consistent 

across all hotspots except for Sector 125, Noida. The total 
OFP levels were particularly high at Charkhi Dadri, surpass-
ing the World Health Organization’s air quality guidelines 
of 120 μg/m3. The findings indicate that toluene contributes 
significantly to ozone formation, which is consistent with 
similar studies conducted in other cities (Shan et al. 2023; 
Feng et al. 2018). Ozone is recognized as a harmful air pol-
lutant due to its various adverse effects on human health, 
including respiratory issues and the potential to reduce lung 
capacity (Holm and Balmes 2022; Pinthong et al. 2022). 
High OFP levels could result in a range of respiratory symp-
toms and have been linked to premature deaths in studies 
around the world (Wu et al. 2022; Kim et al. 2020).

The ozone formation potential (OFP) of NO, NO₂, ben-
zene, and toluene was also analyzed across different time 
intervals: 0–8 am, 9–16 pm, and 17–23 pm. The data indicate 
that nighttime chemistry involving NO and benzene con-
tributes to ozone formation as shown in Fig. 7. As sunlight 
increases in the morning, the formation of ozone is primar-
ily driven by NO, followed by benzene, toluene, and NO₂. 
NO₂ rapidly photolyzes in sunlight (wavelength ≥ 343 nm) 
to produce NO and atomic oxygen, which then reacts with 
O₂ to form ozone (Kaushik and Das 2023; Berezina et al. 
2020; Han et al. 2011).

During the evening (6–7 pm), the chemistry shifts, and 
NO becomes more prominent in forming ozone. VOCs act 
as catalysts for ozone formation during the morning and 
afternoon under UV-A radiation. However, in the evening, 

Table 4   Ozone formation 
Potential of Benzene & Toluene 
at different areas of Delhi NCR 
(Hotspots)

Hotspot Areas Benzene Toluene Total OFP (µg/m3)

MEAN SD OFP MEAN SD OFP

Anand vihar, Delhi 2.53 0.55 1.82 20.80 6.36 83.20 85.02
Chandni chowk, Delhi 1.31 0.09 0.94 4.90 0.72 19.60 20.54
Charkhi dadri, HRY 3.95 0.51 2.84 29.65 2.26 118.60 121.44
Gwal pahadi, GGN 4.08 0.41 2.94 22.90 1.50 91.60 94.54
Jind, HRY 5.51 0.91 3.97 8.54 0.87 34.16 38.13
Karnal, HRY 5.64 0.34 4.06 26.97 1.75 107.88 111.94
Loni GZB 7.30 0.80 5.26 9.37 0.95 37.48 42.74
Mujaffarnagar, UP 4.05 0.57 2.92 12.48 2.06 49.92 52.84
NSIT Dwarka 3.36 0.77 2.42 9.84 3.14 39.36 41.78
Okhla, Delhi 3.73 0.83 2.69 25.36 7.08 101.44 104.13
Palwal, HRY 4.70 0.67 3.38 14.73 1.84 58.92 62.30
Panipat, HRY 4.57 0.43 3.29 14.01 0.99 56.04 59.33
Sector 11 FBD 3.10 0.46 2.23 24.10 2.28 96.40 98.63
Sector 125, Noida 4.61 0.78 3.32 2.73 0.46 10.92 14.24
Sector 51, GGN 6.64 1.36 4.78 19.96 3.03 79.84 84.62
Shadipur, Delhi 4.10 1.05 2.95 9.22 2.13 36.88 39.83
Sirifort, Delhi 5.25 0.80 3.78 28.54 5.06 114.16 117.94
Vikas sadan, GGN 5.47 0.93 3.94 8.68 3.05 34.72 38.66
min 1.31 0.09 0.94 2.73 0.46 10.92 14.24
max 7.30 1.36 5.26 29.65 7.08 118.60 121.44
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Fig. 7   Ozone formation percentage of NO, NO2, benzene and toluene
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reduced UV-A radiation leads to higher VOC concentrations 
and lower ozone levels (Lefohn et al. 2018). In areas with 
high NO emissions, ozone formation is limited due to NOx 
titration, where NO breaks down ozone into O and O₂. Thus, 
ozone levels depend on the transport of NO₂ and VOCs to 
areas with optimal concentration ratios and sufficient sun-
light for ozone production.

Conclusion

This study comprehensively assessed benzene and toluene 
emissions in Delhi NCR, their health risks, and their con-
tribution to ozone formation. It identified eighteen hotspot 
areas across Delhi, Haryana, and Uttar Pradesh where ben-
zene levels exceeded the national safe limit of 5 μg/m3. Sea-
sonal and meteorological influences, such as lower planetary 
boundary layer (PBL) height and wind speeds during winter 
and post-monsoon seasons, contributed to higher benzene 
levels due to pollutant trapping, with traffic emissions being 
a major source, especially during rush hours. Health risk 
assessments indicated that benzene exposure pose signifi-
cant risks for residents in these hotspot areas, exceeding rec-
ommended limits. The non-cancerous health risk (HQ) for 
benzene was also above 1, indicating potential respiratory 
and cardiovascular issues, with children at higher risk due to 
lower body weight. Toluene was identified as a more signifi-
cant contributor to ozone formation compared to benzene, 
owing to its higher Maximum Incremental Reactivity (MIR) 
value. Elevated VOC concentrations, particularly toluene, 
led to high Ozone Formation Potential (OFP) levels, exceed-
ing WHO air quality guidelines in some areas and posing a 
risk for respiratory problems. Overall, the study highlights 
the concerning levels of benzene and toluene in Delhi NCR 
and their detrimental impact on public health and air quality. 
It underscores the need for stricter emission control meas-
ures, the promotion of cleaner fuels and technologies, and 
strategic urban planning to mitigate these issues. Further 
research is recommended to explore additional mitigation 
strategies and to assess the effectiveness of existing control 
measures.
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