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Abstract
Traffic-related urban air pollution is a pressing concern in Tehran, Iran, with severe health implications. This study aimed 
to create a dynamic spatiotemporal model to predict changes in urban traffic-related air pollution in Tehran using a land use 
regression (LUR) model. Two datasets were employed to model the spatiotemporal distribution of gaseous traffic-related 
pollutants—sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO). The first dataset incorporated remote 
sensing data, including land surface temperature (LST), the normalized difference vegetation index (NDVI), apparent ther-
mal inertia (ATI), population density, altitude, land use, road density, road length, and distance to highways. The second 
dataset excluded remote sensing data, relying solely on population density, altitude, land use, road density, road length, and 
distance to highways. The LUR model was constructed using both datasets at three different buffer distances: 250, 500, and 
1000 m. Evaluation based on the R2 index revealed that the 1000-m buffer distance achieved the highest accuracy. Without 
remote sensing data, R2 values for CO, NO2, and SO2 pollutants were respectively spring (0.77, 0.79, 0.51), summer (0.59, 
0.71, 0.59), and winter (0.41, 0.52, 0.59). With remote sensing data, R2 values were respectively spring (0.82, 0.84, 0.74), 
summer (0.72, 0.87, 0.62), and winter (0.53, 0.59, 0.72). Incorporating remote sensing data notably improved the accuracy 
of modeling CO, NO2, and SO2 during all three seasons. The central, southern, and southeastern regions of Tehran consist-
ently exhibited the highest pollutant concentrations throughout the year, while the northern areas maintained comparatively 
better air quality.
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Introduction

Owing to the persistence of pollutants in the air, in recent 
years, air quality has suffered a crisis all over the world 
(Shogrkhodaei et al. 2021). One of the important environ-
mental issues in large and dense Asian cities is poor air qual-
ity (Shi et al. 2021). Air pollution is a complex combination 
of fine particles and gases (Amini et al. 2019), which causes 
damage to the health of humans and other living organisms 
(Kim et al. 2015). Gas, liquid, and solid phase pollutants are 
among the environmental pollutants that reduce air quality 
and maintain clean air for present and future life (Xiang 
et al. 2022). Gaseous pollutants adversely affect people’s 
respiratory health more than PM10 or PM2.5 (Xu et al. 2022). 
Gaseous pollutants such as SO2, NO2, and CO are emitted 
mainly from burning fossil fuels in industries and by vehicle 
engines (Agarwal and Aggarwal 2023).

 *	 Amanollah Fathnia 
	 a_fathnia@razi.ac.ir

	 Seyedeh Zeinab Shogrkhodaei 
	 zeinab.shogrkhodaei@gmail.com

	 Sirous Hashemi Dareh Badami 
	 siroushashemi62@gmail.com

1	 Department of Geography, Faculty of Literature 
and Humanities, Razi University, Kermanshah, Iran

2	 Department of Computer Science & Engineering 
and Convergence Engineering for Intelligent Drone, 
XR Research Center, Sejong University, Seoul, 
Republic of Korea

3	 Department of Geography, Faculty of Literature 
and Humanities, University of Tehran, Tehran, Iran

4	 UNESCO Chair of Aflaj Studies, Archaeohydrology, 
University of Nizwa, Nizwa, Oman

http://crossmark.crossref.org/dialog/?doi=10.1007/s11869-023-01456-4&domain=pdf


440	 Air Quality, Atmosphere & Health (2024) 17:439–454

1 3

Rapid urbanization has caused several environmental 
problems, including increased levels of air pollution that 
hurt human health and the global climate (Malik et al. 2019). 
The Middle East’s urban population expanded from 35% in 
1960 to 65% in 2015, greatly above the global average of 
55%, according to the World Bank (El Kenawy et al. 2021). 
According to the report of the World Health Organization, 
air pollution caused the death of 2.4 million people world-
wide in 2016, of which 91% were in low- and middle-income 
countries (Chen et al. 2020). According to the results of 
epidemiologic research, the death rate is higher in cities with 
severe air pollution. This statistic shows lower rates of death 
in cities with lower air pollution levels (Amini et al. 2014). 
Vulnerability to urban air pollution can cause cardiovascular 
illness, acute respiratory ailments (such as asthma), malig-
nant tumors, and mortality (Fritsch and Behm 2021; Bertaz-
zon et al. 2015; Dirgawati et al. 2015; Saucy et al. 2018). 
Although air pollution in affluent cities has decreased over 
time, it remains a major concern for people’s health and the 
environment in developing countries (Wang et al. 2013). 
The increased use of fossil fuels in transportation, commer-
cial activities, industrial centers, traffic, and heating equip-
ment are just a few of the causes of declining air quality in 
large cities (Shogrkhodaei et al. 2021). The importance of 
air pollution modeling grows every day because of the ris-
ing concentrations of pollutants in the air and the resulting 
harm to people’s health and the environment (Sahsuvaroglu 
et al. 2006). Air pollution in Asia is one of the biggest chal-
lenges in the region because environmental performance 
does not match economic progress or environmental devel-
opment (Atash 2007). Cities such as Tehran and Mashhad 
are among the most polluted cities in Iran due to industrial 
centers and heavy urban traffic (Miri et al. 2016).Tehran 
is considered one of the largest cities in West Asia, which 
consumes about 20% of the country’s energy and faces acute 
air quality problems.

Air pollution modeling is a useful method for estimating 
and predicting pollutants as well as assessing their impacts 
(Rybarczyk and Zalakeviciute 2018). Several methods are 
commonly used to model air pollution, including dispersion 
and interpolation models, machine learning (ML), and land 
use regression (LUR) models (Ryan and LeMasters 2007). 
To estimate air pollution concentrations, dispersion mod-
els are based on deterministic equations that require precise 
information on the source, topography, diffusion, and chemi-
cal and physical properties of pollutants (Klompmaker et al. 
2021; Morley and Gulliver 2018). Interpolation-based meth-
ods (such as kriging) based on deterministic and stochastic 
geostatistical techniques are commonly used at regional and 
national sizes. Furthermore, these approaches do not take 
into account geography or localized patterns, making them 
incapable of detecting small-scale spatial changes (Wang 
et al. 2013). These models cannot fully analyze geographical 

variations on small scales when the number of air pollution 
monitoring stations is minimal (Jerrett et al. 2005; Luo et al. 
2021).

Machine learning models (such as random forests, artifi-
cial neural networks) must be configured and are displayed 
as black boxes, which necessitates extensive understanding 
of algorithms as well as evaluation of prediction perfor-
mance (Fritsch and Behm 2021). The LUR model describes 
variations in urban air pollution on a local scale (Tularam 
et al. 2021). The LUR model is a location-based technique 
for modeling numerous air contaminants spatiotemporally 
and spatially (Amini et al. 2014).This model predicts and 
spatially distributes pollutants in a certain location by utiliz-
ing a geographic information system (GIS) and a regression 
function between pollutant concentration and a set of land 
use factors (Dong et al. 2021). This model is then applied to 
areas where pollutant concentrations have not been observed 
(Klompmaker et al. 2021). The LUR model’s merits include 
high-resolution prediction of air pollutant concentrations 
(Wang et al. 2013), simple and rapid performance when 
compared to dispersion models and interpolation approaches 
(Dons et al. 2014), and its cost-effectiveness (Wang et al. 
2013; Meng et al. 2015). Among the studies that have been 
done in the field of air pollution monitoring using the LUR 
model in Iran, we can mention the study of Taghavi-Shahri 
et al. (2020), which used the LUR model and D-STEM (dis-
tributed space–time expectation maximization) software to 
predict the concentration of particulate matter (PM2.5) paid 
in Tehran. Their findings demonstrated that D-STEM is 
a helpful tool for LUR modeling, particularly for models 
where monitoring stations are missing a substantial amount 
of data. Hassanpour Matikolaei et al. (2019) used the LUR 
model to predict the concentration of CO, NO2, and PM2.5 
pollutants in Tehran, and the results of their research were 
satisfactory. So far, the LUR model has been used to predict 
particulate matter (Karimi and Shokrinezhad 2021; Miri 
et al. 2019; Zhang et al. 2018; Zheng et al. 2022; Sanchez 
et al. 2018), NO2 (Xu et al. 2019; Weissert et al. 2018; Saucy 
et al. 2018; Knibbs et al. 2018), CO (Hassanpour Matikolaei 
et al. 2019), and SO2 (Son et al. 2018).

The LUR model is affected by the number and location 
of air pollution monitoring stations, which is an obstacle to 
conducting air pollution studies using the LUR model (Dong 
et al. 2021). One of the limitations primarily observed in the 
studies conducted in Asia and underdeveloped countries is 
the low number of air pollution monitoring stations, which 
limits the possibility of showing the distribution of air pol-
lution with high accuracy (Amini et al. 2014). Ground-based 
observations serve as the fundamental infrastructure for 
determining air quality by providing essential data on pollut-
ant concentrations and their variations over space and time. 
These observations are crucial in measuring air pollution 
levels and play a pivotal role in the functioning of models 
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and remote sensing techniques. While spaceborne remote 
sensing and modeling approaches are valuable tools, they 
are often utilized alongside ground-based observations to 
complement and fill gaps in coverage. Several studies have 
emphasized the significance of ground-based observations 
in air quality monitoring and research. For example, Viana 
et al. (2015) highlighted the importance of robust ground-
based datasets in understanding pollutant emissions, evalu-
ating exposure levels, and formulating effective air quality 
management strategies. Similarly, Motlagh et al. (2020) 
underscored the role of ground-based measurements in 
assessing the spatial distribution of air pollutants, identify-
ing pollution sources, and validating remote sensing obser-
vations. Furthermore, Lin et al. (2020) stressed the need 
for comprehensive ground-based monitoring networks to 
capture local-scale variations, validate satellite data, and 
improve air quality modeling accuracy. These studies collec-
tively emphasize that ground-based observations are vital for 
reliable air quality assessments. Ground monitoring stations 
provide high-quality data with detailed spatial and temporal 
resolution, enabling the identification of pollution hotspots, 
the evaluation of human exposure levels, and the assess-
ment of pollution control measures. Additionally, ground-
based measurements help validate and refine remote sensing 
data, ensuring accurate spatial mapping and regional-scale 
assessments. While spaceborne remote sensing and mod-
eling techniques offer valuable insights, they often rely on 
ground-based observations for calibration and validation. 
Ground monitoring data provide ground truth measure-
ments for satellite-based observations and assist in identi-
fying biases and uncertainties in remote sensing products. 
Moreover, ground-based measurements help address limita-
tions in spatial coverage, particularly in areas where satellite 
observations may be limited due to cloud cover or other 
atmospheric conditions. Some studies that have faced limi-
tations in pollution monitoring stations have used variables 
such as vegetation about pollutants to increase the quality 
of the model (Wu et al. 2017). Remote sensing can retrieve 
information about the media. Remote sensing is a valuable 
tool for monitoring and temporally managing phenomena 
on earth (Shogrkhodaei et al. 2021). GIS-based methods 
to study the spatial distribution of air pollutants are widely 
used to convert point data to surface data (Mozumder et al. 
2013).

In this study, we recognize the foundational role of 
ground-based observations in air quality monitoring and 
analysis. Our aim is to integrate both ground-based and 
remote sensing data to develop a comprehensive understand-
ing of air quality patterns and trends in Tehran Metropo-
lis. By leveraging these datasets together, we enhance our 
ability to assess air pollution levels, identify contributing 
factors, and provide valuable information for policymakers, 
scientists, and future research efforts. By emphasizing the 

importance of ground-based observations and their comple-
mentary relationship with spaceborne remote sensing and 
modeling techniques, we establish a comprehensive and 
robust approach to air quality monitoring and analysis. In 
this study, we employed the LUR model to predict the lev-
els of gaseous pollutants (specifically SO2, NO2, and CO) 
in Tehran by utilizing remote sensing data, including the 
normalized difference vegetation index (NDVI), land surface 
temperature (LST), and thermal inertia (ATI). This study 
is innovative in two ways: (1) spatiotemporal modeling of 
three gaseous pollutants at the same time using remote sens-
ing variables and comparing it to the scenario when remote 
sensing data is not used and (2) implementation of the LUR 
model in Tehran using remote sensing data.

Materials and methods

Methodology

This investigation was carried out in five steps. The first 
phase was the creation of a spatial database of SO2, NO2, 
and CO pollutants; environmental variables (altitude, land 
use, population density, and transportation); and remote 
sensing (NDVI, LST, and ATI). In the second stage, the val-
ues of all parameters were determined in buffers (250, 500, 
and 1000 m) built around the pollution monitoring sites. The 
multivariate linear regression model was generated in IBM 
SPSS 19 software in two modes: (1) using remote sensing 
data and (2) without remote sensing data for each parameter 
in the third phase. The correctness of the buffers was tested 
using the R2 statistic in the fourth stage. In the next step, the 
mode selected for modeling was applied to the entire study 
area using ArcGIS10.2 software and regression coefficients. 
In the last step, R2 and root-mean-square error (RMSE) coef-
ficients were used to evaluate the modeling in the whole 
study area.

The study area

Tehran, Iran’s capital, is located at 51 17′ and 51 33′ east 
longitude and 35 36′ and 35 44′ north latitude, with an aver-
age elevation of 1200 m above sea level and an area of more 
than 700 km2. Tehran has a population of approximately 9 
million people, according to the 2017 census (Fuladlu and 
Altan 2021). The Alborz Mountains, which trap air pollut-
ants, are one of the causes of Tehran’s air pollution. These 
conditions, which are associated with a temperature inver-
sion during the winter seasons, enhance the concentration 
of pollutants (Motlagh et al. 2021). Additional causes, such 
as pollution from manufacturing, motorized transportation, 
and the usage of fossil fuels, have harmed Tehran’s air qual-
ity (Razavi-Termeh et al. 2021). The research area in Iran 
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and the locations of 22 air pollution monitoring stations are 
depicted in Fig. 1.

Materials

Air pollution data

In this research, three gaseous pollutants (SO2, NO2, and 
CO) were used to model air pollution. SO2, NO2, and CO 
pollutant data from 22 pollution measurement stations using 
Tehran Air Quality Control Company (http://​airnow.​tehran.​
ir/) were used in this study. Data on air pollution have been 
prepared as a daily average for the winter, summer, and 
spring seasons of 2018. Table 1 shows the average pollutant 
concentrations in the three seasons of spring, summer, and 
winter. Figure 2 also depicts the graph of all three param-
eters. The utilization of air pollutant concentrations in this 
study involved the acquisition of data from two esteemed 
governmental agencies operating in Iran: the Air Quality 
Control Company (AQCC) and the Department of Environ-
ment (DoE). These agencies play a pivotal role in moni-
toring and reporting air pollution levels, furnishing meas-
urements encompassing various temporal resolutions, such 
as hourly averages, daily averages, monthly averages, and 
annual averages. With a specific focus on three key gase-
ous pollutants, namely CO in parts per million (ppm), NO2 
in parts per billion (ppb), and SO2 in ppb, we procured the 
requisite concentration data from these agencies.

Environmental and demographic variables

In this study, land use data, traffic, and population density 
are used as environmental and demographic data. The data 
used in this study are similar to the studies of Wang et al. 
(2013) and Hoek et al. (2008). The criteria used and their 
characteristics are shown in Fig. 3 and Table 4.

Land use  Land use and population are important factors 
affecting the concentration and intensity of air pollutants 
in urban areas (Kramer 2013). Impervious surfaces, such 
as those in residential, industrial, administrative, commer-
cial, and transportation areas, increase air pollution, while 
green spaces and water bodies can reduce it by absorbing 
and removing pollutants (Huang et al. 2021). In this study, 
land use was analyzed using nine categories provided by 
Tehran Municipality (https://​www.​tehran.​ir), and Arc GIS 
10.2 software was used to calculate the values of each land 
use within the desired buffers.

Population  Population density is also a crucial factor, as 
densely populated areas with more buildings and motor 
vehicles tend to emit more pollutants related to urban traffic 
(Dirgawati et al. 2015). Population density data for 2017 
Tehran was obtained from the Statistics Organization of Iran 
(https://​www.​amar.​org.​ir), and population density was cal-
culated using Eq. 1, which divides the number of people by 
the area of each block (measured in km2):

The area of each block is expressed in km2.

Traffic  Emissions from motor vehicles are the primary 
source of air pollution in urban areas (Gonzales et al. 2012). 

(1)Population density =
Number of people

Area

Fig. 1   Location of air pollution monitoring stations in Tehran

Table 1   The average concentration of pollutants in three seasons: 
spring, summer, and winter

Pollutants Spring Summer Winter

CO 2.24 ppm 2.41 ppm 2.57 ppm
NO2 44.92 ppb 50.27 ppb 60.86 ppb
SO2 6.08 ppb 6.12 ppb 7.35 ppb

Fig. 2   The graph of changes in CO, NO2, and SO2 parameters in 
three seasons: spring, summer, and winter

http://airnow.tehran.ir/
http://airnow.tehran.ir/
https://www.tehran.ir
https://www.amar.org.ir
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Fig. 3   Map of criteria used in the study
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An increase in traffic volume causes an increase in the num-
ber of vehicles and ultimately increases the emission of air 
pollutants (Han and Naeher 2006). Urban traffic data are 
usually either unavailable or difficult to obtain. In some cit-
ies, this information (traffic count) is available only for a 
small number of streets and mainly on main roads. To solve 
this problem, it is usually possible to use road density data 
(Hoek et al. 2008). In this study, owing to the limitations in 
accessing traffic intensity data, in addition to using alterna-
tive variables such as street density, variables such as road 
length and distance to highways were used to increase accu-
racy in modeling. Open street map (OSM) (https://​www.​
opens​treet​map.​org) was used to prepare the road map in 
2017 of Tehran city. Density and Euclidean distance anal-
yses were used in ArcGIS 10.2 software to prepare these 
criteria.

Remote sensing data

Remote sensing data in this study include LST, NDVI, ATI, 
and DEM (Fig. 3). Studies such as Wong et al. (2021) intro-
duced the use of the NDVI, while Alvarez-Mendoza et al. 
(2019) and Zeng et al. (2022) investigated LST and ATI. 
Luminati et al. (2021) employed remote sensing data, spe-
cifically NDVI and LST, to model air pollution. Ryu et al. 
(2019) utilized NDVI as an indicator of live vegetation 
cover and reduction factor in their LUR model for mod-
eling NO2 in South Korea, demonstrating that higher NDVI 
values correspond to decreased NO2 concentrations. Tian 
et al. (2019) found that urban areas exhibit higher LST 
values than suburban areas, while lower NDVI values are 
observed in urban areas due to the prevalence of impervious 
surfaces in central urban areas. Zheng et al. (2017) reported 
a significant positive correlation (R = 0.67, 0.69, 0.49, 0.46, 
0.47) between LST and various pollutants, including PM2.5, 
PM10, SO2, NO2, and CO. Their study also revealed that 
areas with lower NDVI and higher LST are associated with 
higher concentrations of these pollutants. Parameters such 

as LST, NDVI, and ATI were derived from the integration 
of MODIS (Terra-Aqua) sensor products with an 8-day 
and 16-day time resolution and a 1-km spatial resolution 
and Landsat-8 Enhanced Thematic Mapper Plus (ETM +) 
with a 30-m spatial resolution. MODIS Conversion Toolkit 
(MCTK) plugin was installed on ENVI 5.3 software to make 
necessary corrections. This plugin can identify and read all 
MODIS products. It also determines the required corrections 
automatically. In this study, the corrections made include 
ground reference, determining the coordinate system, and 
geometric corrections according to the type of product. To 
extract LST using Landsat-8 satellite, atmospheric and radi-
ometric corrections were first performed in ENVI 5.3 soft-
ware. Then, the reflectance of red and near-infrared bands 
was used to calculate NDVI, and radiation was calculated 
based on it. Then, the radiation of the thermal bands and 
then the brightness temperature of the thermal bands were 
calculated. Then, LST was calculated. To increase the spatial 
resolution, MODIS and Landsat-8 images were merged and 
averaged. To extract NDVI, 8- and 16-day images of MODIS 
sensor products (Terra-Aqua) were first prepared. Then, the 
necessary corrections were applied to the image using the 
MCTK plugin. Also, ENVI 5.3 software was used to extract 
NDVI using Landsat-8 satellite images (OLI and TIRS sen-
sors) with a time resolution of 1 month. To automatically 
calculate NDVI in this software, the NDVI option was used 
in the Transform section. In the next step, to provide a better 
spatial resolution of the NDVI obtained from the MODIS 
sensor, OLI and TIRS sensors were combined in Arc GIS 
10.2 software (Amiri et al. 2009). The US Geological Survey 
(USGS)website (https://​www.​usgs.​gov/) was used to obtain 
the satellite imagery required for this study in April, July, 
August, January, and February 2018. The characteristics of 
the images used are shown in Table 2. ENVI 5.3 software 
was used to prepare these data. Finally, all the images were 
downscaling in pixels of 30 * 30 m and used in the modeling 
process. The data relating to ATI was also prepared from 
16-day and 8-day daily and nightly images from the MODIS 

Fig. 3   (continued)

https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.usgs.gov/
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sensor. The steps of their preparation are the same as the 
LST product of this sensor.

Land surface temperature (LST)  The conversion of vegetated 
surfaces into impervious surfaces increases the tempera-
ture of the Earth’s surface, which has many environmental 
effects. In addition, these changes affect the rate of evapora-
tion, wind turbulence, and absorption of solar radiation and 
cause changes in visibility in atmospheric conditions near 
the surface of cities (Feizizadeh and Blaschke 2013). There 
is a positive correlation between the concentration of urban 
pollutants and LST (Zheng et al. 2017; Weng and Yang 
2006). Retrieving the Earth’s surface temperature requires 
obtaining the Earth’s Radiant Power (LSE). NDVI threshold-
ing method was used to calculate LSE (Rajeshwari and Mani 
2014). In this method, LSE is extracted using the informa-
tion collected in visible and near-infrared bands of the OLI 
sensor (Estimation of Reflectance and Vegetation Indices) 
and the technique proposed by Jiménez-Muñoz and Sobrino 
(2008). LST retrieval was performed using the separate win-
dow (SW) algorithm. This method is calculated using two 
thermal bands, usually located in the atmospheric window 
between 10 and 12 microns (Jiménez-Muñoz et al. 2014). 
Table 3 shows the coefficients used in the separate window 
algorithm. The SW algorithm based on the mathematical 
structure proposed by Sobrino et al. (1997) and applied to 
sensors by Jiménez-Muñoz and Sobrino (2008) was used 
according to E. 2:

(2)
Ts = Ti + c

1
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Ti − Tj
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+ c
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+ c

6
w
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Ti and Tj are the brightness temperature of the bands used 
in the algorithm, � the average radiant energy of the two 
bands � = 0.5 ( �i + �j), ∆ε the difference in the radiant power 
of the two bands ∆ε = (�i − �j), W is the amount of atmos-
pheric water vapor content (grams per square centimeter), 
and C0 to C6 are SW coefficients determined from simulated 
data.

Normalized difference vegetation index (NDVI)  Using solar 
absorption and selective reflection, vegetation can control 
environmental conditions and energy exchanges and act as 
an influential factor in air pollution control and an absorber 
of NOx and SO2 (Zheng et al. 2017). The NDVI can be cal-
culated based on the relationship between energy absorption 
by chlorophyll in the red band and increased energy reflec-
tion in the near-infrared band for healthy vegetation (Lenney 
et al. 1996). NDVI is calculated according to Eq. 3:

�NIR is the reflection of the near-infrared band (band 5), and 
�RED is the reflection of the red band (band 4).

Apparent thermal inertia (ATI)  Thermal inertia is the degree 
of acceleration required to bring the temperature of a body 
close to its surroundings or to reach a balanced state. Ther-
mal inertia depends on absorption, specific heat, thermal 
conductivity, dimensions, and other factors (Price 1985). 
Objects with high thermal inertia need a longer time to reach 
thermal equilibrium with their surroundings, but things with 
low thermal inertia quickly reach equilibrium with their sur-
roundings. ATI parameter was calculated using night and 
day LST data from MODIS and land surface albedo obtained 
from Landsat-8 using Eq. 4 (Price 1985):

where ATI is the apparent thermal inertia, Tsday and Tsnight are 
the daytime and nighttime surface temperatures of the Earth. 
To calculate the ATI, it is necessary to calculate the albedo 
value of the surface. Several algorithms were presented by 
Liang (2005) to extract albedo in broadband sensors by 
combining different bands by matching the corresponding 
OLI bands with ETM + sensor bands. The algorithm used 
to retrieve the OLI sensor albedo from ETM + bands was 
used from Eq. 5:

(3)NDVI =
�NIR − �RED

�NIR + �RED

(4)ATI =
1 − Albedo

TSday − TSnight

Table 2   Number and time of images used in the model

Number of images Date Satellite/sensor

5 2018 Jan 01 Landsat-8 
Enhanced The-
matic Mapper 
Plus (ETM +)

2018 Feb 02
2018 Apr 20
2018 Jul 25
2018 Aug 26

10, 20 April 2018 MODIS (Terra-
Aqua) (8-day 
and 16-day 
Images)

July 2018
August 2018
January 2018
February 2018

Table 3   Values of the 
coefficients used in the separate 
window algorithm

Coefficient C0 C1 C2 C3 C4 C5 C6

Value  − 0.268 1.378 0.183 54.3  − 2.238  − 129.2 16.4
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where a
2
 , a

4
 , a

5
 , a

6
 , and a

7
 are the ground surface reflectance 

in bands two, four, five, six, and seven of the OLI sensor, 
respectively.

Altitude  The altitude criterion was prepared from the digi-
tal elevation model (DEM) of advanced spaceborne thermal 
emission and reflection radiometer (ASTER) images with 
a spatial resolution of 30 * 30 m in Google Earth Engine 
(GEE) (https://​earth​engine.​google.​com/).

Methods

Analysis of buffers

To calculate the values of influential variables (land use, 
altitude, population density, street density, road length, dis-
tance to highways, ATI, LST, and NDVI) on air pollutants, 
buffers of sizes 250, 500, and 1000 were created around each 
pollution measurement station using ArcGIS 10.2 (Table 4).
The selection of the size of the buffers is influenced by the 
pollutant dispersion patterns (Beelen et al. 2013), which 
include measures between the most miniature (250 m) and 
the largest (1000 m) (Fig. 4). Depending on the size of the 
area and the number of monitoring stations, buffers of 5000, 
3000, and 2000 m have been considered in some studies 
(Meng et al. 2015).

(5)
�short = 0.365�

2
+ 0.130�

4
+ 0.373�

5
+ 0.085�

6
+ 0.072�

7
− 0.0018

LUR model

The LUR model is a statistical method that describes the 
relationship between the concentrations measured at air 
pollution monitoring stations and the influential variables 
(Amini et al. 2014). The LUR model was first introduced by 
Briggs et al. (1997) (Beelen et al. 2013). In this study, the 
LUR model was used to model urban air pollution related to 
traffic using multivariate linear regression equations. Then, 
the resulting equation is used to predict the concentrations 
in the locations that are not measured based on these predic-
tion variables. The linear regression model is calculated with 
Eq. 6 (Fritsch and Behm 2021):

(6)yi = �
0
+
∑

k
�ikXik + �i

Table 4   Characteristics of data 
and buffers used in this study

Category Variable description Unit Buffer radius (m)

Land use Residential m2 250, 500, 1000
Transportation m2 250, 500, 1000
Agriculture m2 250, 500, 1000
Barren m2 250, 500, 1000
Green Space m2 250, 500, 1000
Industrial m2 250, 500, 1000
Military m2 250, 500, 1000
Trade official m2 250, 500, 1000
Utility m2 250, 500, 1000

DEM Digital elevation model m 250, 500, 1000
Roads Distance to nearest major road km 250, 500, 1000

Length of roads (all) km 250, 500, 1000
Road density(all) km 250, 500, 1000

Population Population density (Number) 250, 500, 1000
Satellite data NDVI  − 1 to + 1 250, 500, 1000

LST Kelvin 250, 500, 1000
ATI Kelvin 250, 500, 1000

Fig. 4   Display of buffers used in the study

https://earthengine.google.com/
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In this equation, yi is the interpolated weight at position 
i, the value of �

0
 is the width from the origin, �ik is equal to 

K the local parameter at ith position, Xik represents the Kth 
independent variable at ith position, and n represents the 
previous position (Bertazzon et al. 2015; Henderson et al. 
2007).

Model assessment

The LUR model was evaluated using the R2 and RMSE. 
The R2 statistic is related to the ratio of the variance of the 
dependent variable that can be predicted by the independent 
variables (Saunders et al. 2012). The R2 index is calculated 
according to Eq. 7:

In this equation, yi is the observed value of sample i, y 
is the mean of yi , and ŷi is the predicted value of sample i. 
The closer the R2 value is to 1, the better the model’s perfor-
mance (Dong et al. 2021).

Results

Performance of the LUR models

The study conducted a comprehensive evaluation of the 
LUR models using two variants: with remote sensing param-
eters (NDVI, LST, and ATI) (with RS) and without remote 
sensing parameters (NDVI, LST, and ATI) (no RS), across 
three different buffers. The evaluation was conducted across 
three different buffers: 250 m, 500 m, and 1000 m. Table 5 
presents the R2 values for each pollutant and season, com-
paring the models with and without remote sensing param-
eters. Table 5 shows that in spring for CO, the R2 values 
increased from 0.68 (no RS) to 0.70 (with RS) at 250 m, 
0.72 to 0.77 at 500 m, and 0.77 to 0.82 at 1000 m. Similarly, 

(7)R2 =

∑n

i=1
(yi−ŷi)

∑n

i=1
(yi−y)

for NO2, the R2 values improved from 0.57 to 0.61 at 250 m, 
from 0.68 to 0.76 at 500 m, and from 0.79 to 0.84 at 1000 
m. For SO2, the R2 values rose from 0.33 to 0.38 at 250 m, 
from 0.39 to 0.51 at 500 m, and from 0.51 to 0.74 at 1000 
m. In the spring season, the incorporation of remote sensing 
parameters resulted in notable improvements in model per-
formance. In summer, the R2 values for CO increased from 
0.08 to 0.13 at 250 m, from 0.12 to 0.18 at 500 m, and from 
0.59 to 0.72 at 1000 m. For NO2, the R2 values improved 
from 0.65 to 0.71 at 250 m, 0.70 to 0.75 at 500 m, and 0.71 
to 0.87 at 1000 m. Regarding SO2, the R2 values rose from 
0.29 to 0.36 at 250 m, 0.37 to 0.46 at 500 m, and 0.59 to 
0.62 at 1000 m. During the summer season, the inclusion 
of remote sensing parameters yielded significant enhance-
ments in the LUR models. In the winter season, for CO, the 
R2 values increased from 0.18 to 0.27 at 250 m, from 0.25 
to 0.40 at 500 m, and from 0.41 to 0.53 at 1000 m. For NO2, 
the R2 values improved from 0.19 to 0.34 at 250 m, from 
0.31 to 0.51 at 500 m, and from 0.52 to 0.59 at 1000 m. 
Additionally, for SO2, the R2 values rose from 0.32 to 0.45 
at 250 m, from 0.39 to 0.53 at 500 m, and from 0.59 to 0.72 
at 1000 m. In the winter season, the impact of incorporat-
ing remote sensing parameters was evident in the improved 
performance of the LUR models. The numerical results pre-
sented in Table 5 demonstrate the positive impact of includ-
ing remote sensing parameters (NDVI, LST, and ATI) on the 
performance of the LUR. Consequently, the LUR model was 
calibrated based on the 1000-m buffer to ensure heightened 
accuracy in the predictions. To visually illustrate the impact 
of remote sensing data, Figs. 5 and 6 provide a comprehen-
sive comparison of the model predictions with and without 
the inclusion of remote sensing parameters for the three pol-
lutants across the three seasons. These figures reinforce the 
notion that integrating remote sensing parameters into the 
LUR model enhances its accuracy in predicting air pollutant 
concentrations. Overall, the results unequivocally suggest 
that the inclusion of remote sensing parameters, namely, 
NDVI, LST, and ATI, improves the accuracy of the LUR 
model. This finding holds true across different seasons and 

Table 5   The value of R2 in three 
buffers of 250, 500, and 1000 m 
in two cases: “no RS” without 
remote sensing indicators and 
“with RS” considering the 
selection of remote sensing 
indicators

R2 (250 m) R2 (500 m) R2 (1000 m)

No RS With RS No RS With RS No RS With RS

Spring CO 0.68 0.70 0.72 0.77 0.77 0.82
NO2 0.57 0.61 0.68 0.76 0.79 0.84
SO2 0.33 0.38 0.39 0.51 0.51 0.74

Summer CO 0.08 0.13 0.12 0.18 0.59 0.72
NO2 0.65 0.71 0.70 0.75 0.71 0.87
SO2 0.29 0.36 0.37 0.46 0.59 0.62

Winter CO 0.18 0.27 0.25 0.40 0.41 0.53
NO2 0.19 0.34 0.31 0.51 0.52 0.59
SO2 0.32 0.45 0.39 0.53 0.59 0.72
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is further supported by the selection of the optimal 1000 m 
buffer for the LUR model calibration. These results signify 
the valuable contribution of remote sensing data in enhanc-
ing the precision and reliability of air pollutant concentration 
predictions, providing valuable insights for environmental 
monitoring and decision-making processes.

Spatiotemporal maps of pollutant

Based on the spatiotemporal map presented in Fig. 7, it is 
observed that the maximum concentration of CO is seen 
during the winter (2.57 ppm), primarily in the center (roads), 
east, and southeast regions. During the summer, there is a 

decrease in CO concentrations in several northern and north-
west areas. The concentrations of NO2 are higher in the win-
ter (60.86 ppb) and have expanded to western locations that 
exhibited better conditions in the spring and summer. Simi-
larly, the highest concentrations of SO2 are observed in the 
winter (7.35 ppb), and its geographical changes align with 
those of CO and NO2. The presence of the Alborz mountain 
barriers and the west–east movement of the wind likely con-
tribute to higher pollutant concentrations in the central, east-
ern, southeastern, and southern areas of Tehran compared to 
the western and northern regions (Fuladlu and Altan 2021; 
Motlagh et al. 2021). This factor likely caused the pollutants 
to be trapped next to the Alborz Mountain.

Fig. 5   Predicted values of CO, NO2, and SO2 parameters without remote sensing data in spring, summer, and winter
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Discussion

This study aimed to model the spatiotemporal concentrations 
of SO2, NO2, and CO in Tehran using the LUR model by 
incorporating remote sensing variables and comparing them 
to a scenario where remote sensing data was not utilized. By 
integrating remote sensing variables, such as NDVI, LST, 
and ATI, into the modeling process, we were able to assess 
their impact on the accuracy and performance of the LUR 
models. The results clearly demonstrated that the inclusion 
of these remote sensing parameters significantly improved 
the models’ ability to predict air pollutant concentrations 
across different seasons. Notably, the 1000-m buffer consist-
ently exhibited the highest R2 values for spring (CO: 0.82, 

NO2: 0.84, SO2: 0.74), summer (CO: 0.72, NO2: 0.87, SO2: 
0.62), and winter (CO: 0.53, NO2: 0.59, SO2: 0.72), indi-
cating its suitability for achieving higher accuracy in the 
predictions.

Figures 5 and 6 provide a visual comparison between 
the predictions made with and without the incorporation of 
remote sensing data for the three pollutants across the three 
seasons. The observed differences in these comparisons 
further support our conclusion that integrating remote sens-
ing parameters enhances the accuracy of the LUR model in 
predicting air pollutant concentrations. Overall, our study 
highlights the significance of utilizing remote sensing data 
for modeling spatiotemporal variations in SO2, NO2, and CO 
concentrations. The inclusion of remote sensing variables 

Fig. 6   Predicted values of CO, NO2, and SO2 parameters using remote sensing data in spring, summer, and winter
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enables a more comprehensive understanding of the air qual-
ity dynamics in Tehran and enhances the reliability of the 
LUR model. This has important implications for environ-
mental monitoring and decision-making processes, provid-
ing valuable insights for policymakers and urban planners.

The spatial analysis of the LUR model output maps 
revealed notable variations in CO concentrations across 
different seasons. Specifically, higher CO concentrations 
were observed during winter compared to spring and sum-
mer. This can be attributed to factors such as incomplete 
fuel combustion due to air cooling, the functioning of vehi-
cle emission control systems, and specific climatic condi-
tions during this time of the year, which result in pollutant 
accumulation on the surface and an overall increase in air 
pollutant levels (Razavi-Termeh et al. 2021). The reduction 
of incoming radiation and the shallow boundary layer dur-
ing winter exacerbate the accumulation of pollutants near 
the Earth’s surface, intensifying air pollution (Zheng et al. 
2018). Regarding NO2 pollutants, their accumulation and 

spatial distribution were found to be most prominent during 
winter compared to spring and summer, with the eastern and 
central regions exhibiting the highest concentrations. Pri-
mary sources of NO2 emissions include fuel combustion in 
power plants, vehicles, and heating systems (Matthaios et al. 
2019). Several factors contribute to the higher concentration 
of NO2 during winter, including the prolonged persistence of 
NOx, occurrence of inversion phenomena, increased green-
house gas levels in the atmosphere, and heightened use of 
heating devices (Zheng et al. 2018; Gonzales et al. 2012). 
Future studies should focus on investigating and analyzing 
the specific causes behind the elevated levels of NO2 during 
winter in comparison to summer and spring. In terms of SO2 
concentrations, they were observed to be highest during the 
winter season compared to other seasons. The spatial distri-
bution of SO2 closely resembled that of NO2 and CO, with 
higher concentrations along communication routes and inner 
city roads. Factors contributing to increased SO2 concentra-
tions during winter include higher fossil fuel consumption, 

Fig. 7   The spatiotemporal modeling map of CO, NO2, and SO2 pollutants
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longer atmospheric persistence of SO2 in cold seasons, emis-
sions from residential heating, and meteorological condi-
tions that promote reduced mixing depth and air stagnation 
(Li et al. 2022; Lee et al. 2011). Further investigation and 
analysis are warranted to explore the specific influences 
and dynamics underlying the elevated levels of SO2 during 
the winter season. By unraveling the seasonal patterns and 
spatial distributions of CO, NO2, and SO2 concentrations 
in Tehran, our study sheds light on the key factors driving 
air pollution in the region and provides insights for future 
research and mitigation strategies.

For the strengths of this study, we can mention the use 
of Landsat 8 satellite data (TIRS/OLI and ETM +) and 
Terra and Aqua satellites (MODIS instrument), which has 
increased the performance of the LUR model. R2 values 
were used in all cases for SO2 (spring: 0.74, summer: 0.62, 
winter: 0.72), NO2 (spring: 0.84, summer: 0.87, winter: 
0.59), and CO (spring: 0.82, summer: 0.72, winter: 0.53) 
increased. These results show the effectiveness of using 
remote sensing parameters.

The spatiotemporal modeling of air pollution carried out 
in this study significantly helps to understand more deeply 
the release of pollutants at the range level and more accurate 
planning for prevention and providing valuable solutions. 
Spatial modeling identifies areas prone to the accumulation 
of air pollutants, and temporal modeling emphasizes the 
greater importance of the season, which causes contami-
nants to persist longer in the atmosphere under the influence 
of environmental and other variables.

Among the limitations of this study, we can mention the 
low number of pollution measurement stations. Also, the 
incompleteness of the data of some stations during the study 
period caused the modeling accuracy to decrease. One of 
the critical factors in the concentration of atmospheric pol-
lutants is meteorological conditions and climate variables. 
These factors, directly and indirectly, affect air quality. But 
in this study, these critical factors were ignored due to the 
limited access to meteorological data. Due to the unavail-
ability of traffic data (one of the most critical factors of the 
LUR model) in this study, alternative variables such as road 
density, road length, and distance to highways were used. 
These alternative variables play an essential role in air pol-
lution modeling, but it should be noted that traffic count data 
is more critical than these alternative variables.

Conclusion

The incorporation of remote sensing data, including LST, 
the NDVI, and ATI, enhanced the accuracy of the LUR 
model in predicting SO2, NO2, and CO concentrations. The 
evaluation based on the R2 index revealed that the 1000-m 
buffer distance yielded the highest accuracy in predicting 

pollutant concentrations. The findings demonstrated that 
including remote sensing data improved the model’s perfor-
mance in all three seasons—spring, summer, and winter—
for CO, NO2, and SO2 parameters. Moreover, the spatial 
analysis highlighted that Tehran’s central, south, and south-
east regions consistently exhibited the highest concentrations 
of pollutants, while the northern areas generally experienced 
better air quality. The significance of predicting air qual-
ity in Tehran lies in addressing the severe pollution issues 
and the associated health risks. The findings of this study 
contribute to the existing knowledge by providing insights 
into the spatiotemporal patterns of urban traffic-related air 
pollution and emphasizing the importance of incorporating 
remote sensing data in dynamic modeling approaches. The 
results have implications for informed decision-making and 
policy development to mitigate air pollution and protect 
public health. Policymakers and stakeholders can utilize the 
findings to implement targeted measures and interventions 
to improve air quality in the identified high-concentration 
areas. The suggestions for future work are as follows: (1) 
Future research should utilize meteorological data affecting 
air pollution alongside other variables; (2) using actual traf-
fic count data can increase the power and accuracy of the 
model; (3) additional monitoring of air pollution parameters 
using satellite data, such as that provided by Sentinel-5, can 
improve the model’s precision when used in conjunction 
with data from monitoring stations.
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