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Abstract
Due to a paucity of human movement data, the traditional method for estimating pollution exposure is static: Exposure 
is based on place of residence. However, local air quality varies over both time and space. This study explores exposure 
measurement errors associated with ignoring human mobility and its impact on exposure-health effect estimates. Using a 
random forest classification model, this study examines the impact of a variety of factors on potential measurement errors 
in personal exposure to outdoor  PM2.5. Mobility data at the individual level was combined with hourly  PM2.5 surfaces at the 
neighborhood level to estimate and compare residence-based and mobility-based exposures for 100,784 Los Angeles County 
residents. The results show that exposure measurement errors increase for individuals with high mobility levels. Significant 
sociodemographic disparities are observed across different exposure classification groups. Exposures of low-income people 
who have high mobility and reside in polluted neighborhoods tend to be overestimated. In contrast, exposures of high-income 
people living in neighborhoods with cleaner air are likely to be underestimated. The result on the exposure-health effect sug-
gests that health risks of the socially disadvantaged after exposure to  PM2.5 is likely to be underestimated due to the exposure 
measurement error introduced by ignoring human mobility.
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Introduction

Personal air pollution exposures are very challenging to 
quantify accurately. Traditional approaches to quantifying 
exposure to outdoor air pollution assume that concentrations 
at the residential address are adequate surrogates of personal 
exposure to air pollution of outdoor origin (Bae et al. 2007; 
Bell and Ebisu 2012; Elliott and Smiley 2019; Houston et al. 
2004; Rowangould 2013). The underlying assumption is that 
individuals spend most of their time indoors at the residence 
(Klepeis et al. 2001) and that outdoor air pollution infil-
trates into the indoor environment where exposure occurs. 
However, given that people are mobile and their exposure to 
air pollution can occur in various locations, this static resi-
dential approach will inevitably introduce exposure meas-
urement error and potential bias in air pollution and health 

assessments, which may lead to ineffective public health 
policy interventions.

Measurement errors in air pollution exposure can come 
from several sources. Recent studies report that exposure 
measurement may be substantially biased low if not consid-
ering human mobility (Gurram et al. 2019; Lu 2021; Park 
and Kwan 2017; Tayarani and Rowangould 2020). Park and 
Kwan (2017) argue that the individual’s time-activity pat-
tern determines their exposure levels as personal exposure 
to air pollution occurs through dynamic spatiotemporal 
interactions between individuals and air pollutant distribu-
tion. Although people generally spend more time at home, 
the majority of their exposure occurs in other places (Park 
2020). For example, workers generally spend more time 
exposed in traffic during commuting. Overlooking human 
mobility will lead to inaccurate air pollution exposure 
measurements.

Beyond ignoring human mobility, spatiotemporal reso-
lution of air pollution surfaces or prediction models used 
is another important factor that may cause exposure meas-
urement error. Coarse resolution cannot reflect important 
spatial gradients (Clark et al. 2022; Korhonen et al. 2019; Li 
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et al. 2016). The spatial resolution of assigned air pollution 
concentrations in recent studies varied substantially, ranging 
from 0.25 to 10  km2 (Dewulf et al. 2016; Gurram et al. 2019; 
Park and Kwan 2017; Yu et al. 2020). The temporal resolu-
tion of outdoor  PM2.5 surfaces is another important factor, 
with several studies relying on daily, monthly, or annual 
averaged pollution models to estimate residential exposure 
(M. Nyhan et al. 2016; Pennington et al. 2017; Setton et al. 
2008). Greater temporal aggregation does not capture how 
concentrations vary over time. Evidence shows that personal 
exposure to outdoor air pollution tended to be overestimated 
at the residence and underestimated at daily activity spaces 
when daily, monthly, or annual average air pollution con-
centrations are used to estimate personal exposure (Dhondt 
et al. 2012).

Moreover, exposure measurement error will further dis-
tort the air pollution-health effect estimates (Basagaña et al. 
2013; S. Y. Kim et al. 2009; Samoli and Butland 2017; Sell-
ier et al. 2014), leading to biased estimates between expo-
sure and health outcome. Prior studies have documented the 
impact of potential exposure measurement errors on the air 
pollution-health relationship. Jerrett et al. (2005) show that 
inaccurate personal exposure measurements resulting from 
poorly spatially resolved air pollution prediction models may 
significantly impact the relationship between air pollution 
exposure and mortality. Inconsistent results in effect esti-
mates of  NO2 on newborns’ birthweight were obtained when 
different spatially resolved air pollution prediction models 
were used (Sellier et al. 2014). Another study presents that 
exposure measurement error might lead to bias of regression 
coefficients and to inflation of their variance when personal 
exposures assessed through air pollution prediction models 
with different spatial and temporal resolutions are used as 
explanatory variables in models for exposure-health esti-
mates (Basagaña et al. 2013).

Substantial effort has been invested in air pollution epi-
demiology research to develop statistical models to predict 
personal exposures at subjects’ locations in situations where 
measurements at the desired locations are not available. 
However, most existing air pollution epidemiology studies 
focus on the impact of air pollution prediction models on 
the exposure-health relationship (Basagaña et al. 2013; S. 
Y. Kim et al. 2009; Samoli and Butland 2017; Sellier et al. 
2014). Few studies have examined the effects of human 
mobility in exposure measurements on the association 
between air pollution exposure and health outcomes. Yu 
et al. (2020) find that people with higher mobility levels 
tend to have larger exposure measurement errors. Shareck 
et al. (2014) argue that unequally distributed features and 
resources across spaces may induce air pollution exposure 
disparities by constraining sites where people perform 
their everyday activities. For example, due to accessibil-
ity limitations, low-income groups usually travel shorter 

distances from their homes than their high-income counter-
parts (Morency et al. 2011; Vallée et al. 2010). Compared 
to whites, blacks and Latinos usually have lower mobility 
levels (Hu et al. 2020). Full-time employees tend to travel 
longer daily distances (Järv et al. 2015; Morency et al. 2011; 
Páez et al. 2010), whereas part-time employees and unem-
ployed people are more place-bound (Lu 2021; Vallée et al. 
2010). Little is known about how distinct travel behaviors 
and mobility patterns of different sociodemographic groups 
may influence their air pollution exposure levels. The impact 
of human mobility on the exposure-health effect is also less 
studied in previous research.

This study aims to examine the impact of human mobility 
in exposure measurement errors and health effects associated 
with air pollution and disentangle the complex relationship 
between sociodemographic variables and exposure meas-
urement errors. In this study, residence-based and mobility-
based  PM2.5 exposures for a sample of Los Angeles County 
residents on a typical weekday were estimated by coupling 
hourly 500 × 500m  PM2.5 surfaces at the neighborhood level 
and simulated daily mobility data at the individual level. The 
study samples were classified into three exposure groups 
based on differences between their residence- and mobility-
based  PM2.5 exposures: individuals with similar residence 
and mobility exposure, individuals whose exposures were 
overestimated, and individuals whose exposures were under-
estimated. Random forest classification models were used to 
examine the impacts of a series of mobility and sociodemo-
graphic variables on exposure classification results. Last, 
sensitivity analysis was conducted to examine the impact of 
human mobility on exposure-health effects across exposure 
classification groups and sociodemographic groups.

The remainder of the paper is organized as follows. The 
“Method” section presents the data and methods used in this 
study. The “Results” section summarizes the results. The 
“Discussion” section discusses the findings. Conclusions are 
presented in the “Conclusion” section.

Method

Study area

Los Angeles is well recognized for its notoriously severe 
air pollution problem as one of the US metropolitan regions 
with the highest level of particulate matter pollution 
(American Lung Association 2020). Los Angeles has the 
most developed highway system and the busiest traffic in 
the US  PM2.5 pollution, a primary air pollutant created by 
vehicles, which has been a serious public health problem in 
Los Angeles for decades. In Los Angeles,  PM2.5 concentra-
tions vary spatially and temporally, with the highest pol-
lution observed during peak hours and within core urban 
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areas (Lu et al. 2021). Los Angeles is, therefore, a good case 
study to examine variation in exposure levels across time 
and space taking daily travel patterns into account and test 
whether exposure patterns are related to sociodemographic 
population characteristics.

Data

PM2.5 pollution modeling

In this study, ground-level  PM2.5 concentrations were esti-
mated from our recently developed  PM2.5 model (Lu et al. 
2021). We have created an hourly, 0.25-km gridded  PM2.5 
model for Los Angeles County that incorporates low-cost 
air sensor data (i.e., PurpleAir) and machine learning tech-
niques. Ambient air pollution has been traditionally moni-
tored at regulatory stations at high instrumentation and 
maintenance costs. Sparse and uneven regulatory monitoring 
has a limited ability to reflect pollution details, especially 
in unmonitored areas. Dense deployment allows low-cost 
PurpleAir sensors to capture spatiotemporal variations of 
localized  PM2.5 concentrations at finer resolution than regu-
latory air quality stations (Bi et al. 2020; Lu et al. 2021; 
Mousavi and Wu 2021). A number of recent studies have 
used PurpleAir sensors to develop  PM2.5 modeling at fine 
spatiotemporal resolution (Bi et al. 2020; Lu et al. 2021; 
Mousavi and Wu 2021).

In this study, twenty-four hourly  PM2.5 concentration 
surfaces over the course of a typical weekday in 2019 were 
generated at a 500 m × 500 m grid level for Los Angeles 
County. A suite of spatiotemporal variables, including mete-
orological conditions, land use variables, and traffic counts, 
was integrated with the random forest method to estimate 
 PM2.5 concentration at the sub-daily and neighborhood 
level. Estimated  PM2.5 concentrations were then validated 
against measured  PM2.5 concentrations by the 10-fold cross-
validation method. The results showed that the PurpleAir-
based  PM2.5 prediction model could capture more than 90% 
of variations. A comprehensive description and validation 
results can be found in Lu et al. (2021).

Activity‑based travel demand modeling

Daily travel trajectories for 100,784 Los Angeles County 
residents were simulated using an activity-based travel 
demand model developed by the Southern California Asso-
ciation of Governments (SCAG) for an average weekday 
in 2019 (Pendyala et al. 2012; Ziemke et al. 2015). Ameri-
can Community Survey (ACS) 2003 and Census 2000 have 
been used to validate this SCAG simulated travel trajectory 
data. Validation results show that the SCAG activity-based 
travel demand model has a good performance in predicting 
“activity purpose-number” and mimicking corresponding 

population features at the individual level. According to the 
validation results, the majority of the synthetic population 
deviated less than 5% from the reference group in terms of 
demographic and socioeconomic characteristics (Pendyala 
et al. 2012).

The SCAG travel trajectory dataset contains 387,398 trip 
records for 100,784 Los Angeles County residents (approxi-
mately 10% of the total Los Angeles County population). 
Each trip record includes a personal ID, origin-destination 
pair of the trip, trip purpose, trip departure and arrival times-
tamps, trip duration, and travel mode. The personal ID is 
unique for each individual and is used to connect with syn-
thetic demographic features provided by the SCAG (Bhat 
et al. 2013; Lu 2021). The origin and destination of each 
trip are allocated to the geographic unit of the traffic analy-
sis zone (TAZ), whose size is similar to the census tract. 
The centroid of TAZ is assumed to be each trip’s origin or 
destination point.

However, the travel trajectory dataset lacks information 
on travel paths between the activity sites. This study used 
the OSMnx python package to estimate probable travel paths 
between two activity TAZs in the shortest path distance 
(Boeing 2017; Lu 2021).

Individual exposure assessment

Static and dynamic exposure assessment

The study region was subdivided into 0.25  km2 hexagon 
grids. As noted earlier, hourly  PM2.5 concentrations of each 
grid (twenty-four hours in total) were generated by utilizing 
the  PM2.5 model developed by Lu et al. (2021) for Wednes-
day, September 18, 2019. Due to limitations in computing 
resources,  PM2.5 concentrations are assumed to be constant 
during an hour within each hexagon grid. The hourly  PM2.5 
concentrations were spatially matched to each TAZ in com-
pliance with the travel trajectory data and averaged within 
each TAZ if multiple  PM2.5 hexagon grids locating in the 
same TAZ. Two types of individual  PM2.5 exposures were 
then assessed: (1) static  PM2.5 exposure at residence and (2) 
dynamic  PM2.5 exposure that considers individuals’ daily 
mobility patterns.

The individual static and dynamic exposures are esti-
mated as in Eqs. (1) and (2):

where PMh, t is  PM2.5 concentration in hour t at TAZ h, 
where individual i’s home is located. T denotes 24 h of a 

(1)Statici =

∑T

t=1
PMh,t

T

(2)Dynamici =

∑T

t=1

∑N

n=1
PMn,t ⋅ Pn

T
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day. PMn, t is  PM2.5 concentration in hour t at TAZ n, where 
individual i is located within hour t. N represents the total 
number of TAZs (microenvironments) individual i has 
stayed during hour t (N ≥ 1). Pn denotes the percentage of 
time during hour t that individual i stays in TAZ n.

Exposure classification based on exposure measurement 
error

Prior research has documented the occurrence of exposure 
misclassification when human mobility is not taken into 
account in exposure assessment (Guo et al. 2020; Yu et al. 
2020). Exposure of individuals who have high residence-
based exposures is likely to be reduced by their mobility, 
while exposure of individuals who have relatively low 
residence-based exposures is likely to be increased (J. Kim 
and Kwan 2021; Kwan 2018). All study subjects were 
subdivided into three groups according to their exposure 
measurement errors shown in Eq. (3): (1) individuals with 
similar dynamic and static exposures, which is referred to 
as the “Accurate” group; (2) individuals with higher static 
exposures than their dynamic exposures, which is referred 
to as the “Overestimated” group; and (3) individuals with 
higher dynamic exposures than their static exposures, which 
is referred to as the “Underestimated” group.

The magnitude and direction of two statistical indicators 
were employed to categorize exposure classification groups: 
(1) exposure measurement error and (2) mean absolute per-
centage error (MAPE). The exposure measurement error was 
calculated by subtracting an individual’s static exposure 
from their dynamic exposure (i.e.,  Dynamici −  Statici). A 
positive exposure measurement error indicates an individu-
al’s exposure is underestimated, while a negative measure-
ment error indicates overestimated exposure. MAPE was 
adopted as an additional criterion to evaluate the degree of 
agreement between an individual’s static and dynamic expo-
sures: |||

Dynamici−Statici

Statici

||| × 100% . Higher MAPE values indicate 
differences between static and dynamic exposures as a result 
of overestimated or underestimated exposures. The thresh-
olds for exposure measurement error and MAPE were set to 
±0.5 μg/m3 and 10%, respectively, to determine an individ-
ual’s exposure classification group. A comprehensive 
description of the classification method is shown in Eq. (3).

where Ei denotes the exposure classification group that indi-
vidual i belongs to;  Errori is the exposure measurement error 
for individual i.

(3)

Ei =

⎧
⎪⎨⎪⎩

Overestimated if Errori < −0.5 and MAPEi > 10%

Accurate if − 0.5 ≤ Error i ≤ 0.5 andMAPEi ≤ 10%

Underestimated if Error i > 0.5 and MAPEi > 10%

Random forest classification model

This study utilized the random forest classification model to 
examine associations of a variety of mobility and sociode-
mographic variables with exposure classification results. In 
contrast to traditional linear regression, the random forest 
model can capture nonlinear relationships between response 
variables and predictors and provide a flexible and auto-
mated process for predicting target variables (Breiman 
2001). The random forest model generates a number of deci-
sion trees and trains each decision tree independently using 
a random sample of the data. This randomness contributes 
to the model being more robust than a single decision tree 
and less prone to overfitting the training data. Furthermore, 
the random forest model avoids the probable multicollin-
earity across sociodemographic variables, which violates 
the underlying premise of independence in many regression 
models.

In this study, 90% of samples were randomly subsam-
pled as training set and the remaining 10% as a testing set 
to evaluate the model performance. Since the classes were 
unbalanced (79% of the study sample was classified as the 
Accurate group, 9% as the Overestimated group, and 12% as 
the Underestimated group), a combination of the Synthetic 
Minority Over-sampling Technique (SMOTE) and random 
under-sampling methods was utilized to resample the dataset 
until balanced training classes were achieved (Chawla et al. 
2002; He and Garcia 2009). The class-wise sensitivity and 
specificity, as well as the mean classification accuracy, were 
calculated to evaluate the random forest model performance. 
Confusion matrices were utilized to calculate the specificity 
and sensitivity of candidate models.

The optimal number of randomly sampled features at each 
node (m) and decision trees (k) were determined by minimiz-
ing the out-of-bag (OOB) error rate through iterative cross-
validation (Lu et al. 2021). The relative importance of each 
predictor variable was determined using the mean decrease 
in accuracy based on OOB error. Partial dependence plots 
were produced to depict the correlations between predictor 
variables and the probability of being classified into a given 
class. A partial dependence plot demonstrates the marginal 
effect of a predictor variable on the predicted response while 
controlling for all other variables in the model (Friedman 
2001). Figure 1 shows the framework and process of assess-
ing exposure classification error and factors affecting it.

Exposure and health effect across exposure 
classification groups

Ordinary least squares (OLS) regression models were run as 
multivariate models to assess the association between per-
sonal exposures and health outcomes for static and dynamic 
exposures, respectively. The exposure-health effects were 
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further assessed across different exposure classification 
groups, racial groups, and income groups. Recent studies 
have shown that exposure to  PM2.5 is linked to acute respira-
tory symptoms (Bose et al. 2015) and cardiovascular disease 
(Madrigano et al. 2013; Neophytou et al. 2014). Thus, two 
health outcomes were adopted as the dependent variables for 
the OLS models: the rate of emergency department visits for 
asthma and the rate of emergency department visits for heart 
attacks per 10,000 persons.

The health outcome data were obtained from CalEn-
viroScreen at the census tract level (California Office of 

Environmental Health Hazard Assessment 2023). Since the 
individual-level health outcome data were not available, the 
rate of asthma and rate of heart attack was assigned to each 
study subject based on their residential locations. That is, 
study subjects who live in the same TAZ are assumed to 
have the same health outcomes. The relationship between 
exposure and the two health indicators was estimated by 
OLS models adjusted several confounding variables includ-
ing demographic variables (gender, age, race) and socio-
economic status (income, employment status, education). 
Table 2 presents a summary of these variables.

Fig. 1  Research conceptual framework
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In summary, this study first measures the residence-based 
static and mobility-based dynamic exposures for study sub-
jects, respectively. The study subjects are then classified to 
three groups according to the magnitude and direction of 
their exposure measurement errors. The random forest clas-
sification model is used to examine the impact of human 
mobility and sociodemographic characteristics on exposure 
measurement error. Last, this study explores the exposure-
health effect by using static and dynamic exposure meas-
urements through OLS regression models among different 
cohorts (Fig. 1).

Results

PM2.5 and population activity distribution

Figure 2a–d presents the estimated hourly  PM2.5 concentra-
tions across Los Angeles County at the neighborhood level 
on a typical weekday in 2019. A heterogeneous spatiotem-
poral distribution pattern of  PM2.5 pollution can be observed. 
In general,  PM2.5 concentrations are higher in daytime than 
evening and night, especially in the morning peak hours 
(Fig. 2b), and most pollution concentrates in urban cores 
and along highways. These patterns are in line with the find-
ings of previous studies (Lu et al. 2021).

Figure 2e–h presents the simulated activity patterns of 
Los Angeles residents at four different hours on a typical 
weekday in 2019. These figures reflect the distribution pat-
tern of people’s residences and workplaces. Overall, Los 
Angeles residents generally travel from their sparsely distrib-
uted places of residence (Fig. 2e) to urban cores (Downtown 
Los Angeles, Wilshire-Santa Monica corridor, Long Beach) 

in the early morning (Fig. 2f) and stay all day (Fig. 2g) until 
they return to their residences again in the evening (Fig. 2h).

Exposure classification error analysis

To investigate potential exposure measurement errors result-
ing from ignoring human mobility, flows between differ-
ent quartiles of study subject’s static exposure and dynamic 
exposure were plotted in Fig. 3a. A high percentage of the 
population was misclassified into other quartiles, especially 
for study subjects with static exposures in middle quartiles 
(Q2 and Q3). About one-third of populations in the mid-
dle quartiles was classified into other quartiles when human 
mobility was omitted in exposure measurement. Three expo-
sure classification groups were identified by quantifying the 
difference between individuals’ static and dynamic expo-
sures based on Eq. (3). Table 1 gives summary statistics. 
Figure 3b–d shows the distributions of static and dynamic 
exposures for each group.

Table 1 shows that the Accurate group is the largest. For 
about 80% of the observations, there is no difference between 
static and dynamic exposures (the difference is statistically 
significant but not meaningful). Figure 3b shows how close 
the two distributions are. The Overestimated group is the 
smallest (9% of the study sample). For individuals in the 
Overestimated group, mean static exposure was 0.96 μg/m3 
higher than their dynamic exposure. This difference is large 
(about 10%) and significant. This group has the highest static 
exposure level of all groups (Fig. 3c). The Underestimated 
group accounts for the remaining 12% of observations. The 
mean difference between static and dynamic estimates is 
1.15 μg/m3 or about 17%, even larger than the difference for 
the Overestimated group (Fig. 3d).

Fig. 2  Estimated hourly  PM2.5 concentrations at (a) midnight, (b) 8 AM, (c) noon, and (d) 6 PM and distribution of population activity at (e) 
midnight, (f) 8 AM, (g) noon, and (h) 6 PM on a typical weekday in Los Angeles County
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Random forest results

Model performance and variable importance

The descriptive analysis has revealed mobility and sociode-
mographic differences across exposure classification groups. 
Random forest models were further trained using the same 
set of mobility and sociodemographic variables to examine 
their correlation with exposure classification errors. Table 2 
lists all mobility and sociodemographic variables and their 
summary statistics used for the random forest model. As 
noted earlier, three exposure classification groups were 
defined, and the random forest classification algorithm was 
used to develop a predictive classification model based on 

individual’s mobility patterns, residential pollution level, 
and sociodemographic characteristics. The hyperparameters 
for the random forest model were set to 1500 decision trees 
with a minimum sample leaf of 50.

The random forest model yielded a mean classification 
accuracy (adjusted across all classes) of 71%. Figure 4a 
presents the confusion matrix for evaluating the random 
forest model’s performance. The sensitivity values for the 
Accurate, Overestimated, and Underestimated groups are 
73%, 71%, and 70%, respectively, implying good agreement 
between actual and predicted classifications.

The relative contribution value of predictor variables to 
the random forest classification results is shown in Fig. 4b, 
sorted in order of importance. The variable importance 

Fig. 3  The distribution of exposure measurement error: (a) direction 
of potential  PM2.5 exposure misclassifications between static expo-
sure and dynamic exposure; (b) distribution of static and dynamic 

exposures for the Accurate group; (c) distribution of static and 
dynamic exposures for the Overestimated group; (d) distribution of 
static and dynamic exposures for the Underestimated group

Table 1  Summary statistics 
of static and dynamic  PM2.5 
exposures (μg/m3) across 
exposure classification groups 
(***p < 0.001)

Mean Std. dev Median Minimum Maximum

Accurate (N = 80,411) Dynamic exposure 8.17 1.38 8.51 2.71 12.27
Static exposure 8.16 1.39 8.48 2.65 11.97
Difference 0.01***

Overestimated (N = 8655) Dynamic exposure 8.03 1.06 8.16 3.35 11.46
Static exposure 8.99 1.01 9.15 4.20 11.97
Difference −0.96***

Underestimated (N = 11,718) Dynamic exposure 7.84 1.16 8.06 3.06 13.86
Static exposure 6.69 1.33 6.93 2.65 11.43
Difference 1.15***



2232 Air Quality, Atmosphere & Health (2023) 16:2225–2238

1 3

rank shows that daily trip distance, hours stay out of home, 
household income, and residential pollution level are 
among the most important features. By contrast, ethnic-
ity, employment status, and education play weaker roles 
in affecting exposure classification errors. These findings 
suggest that individual’s exposure measurement error is 
mainly affected by their mobility levels, income, and pol-
lution levels at residence.

Partial dependence analysis

The partial dependence plots illustrate the marginal effect 
of a single variable on the predicted classification outcome. 
According to variable importance results, the partial depend-
ence of daily trip distance, hours stay out of home, house-
hold income, and residential pollution levels on the prob-
ability of classification results were examined. Figure 5 plots 

Table 2  Descriptive statistics of the mobility and sociodemographic variables used in the analysis of exposure classification errors

Variables Description Mean Std. dev. Minimum Maximum

Travel behavior Trip number The number of daily trips made by an individual 3.84 2.05 2 18
Trip distance The daily trip distance in miles an individual travels 24.48 21.44 0.19 234.28
Hours stay out-of-home The hours an individual spends out-of-home per day 8.07 3.49 0 22.43
%Driving trip Proportion of daily trips of an individual made by 

driving
84.3% 32.2% 0% 100%

%Public transit trip Proportion of daily trips of an individual made by 
public transit

2.5% 14.1% 0% 100%

%Walk/bike trip Proportion of daily trips of an individual made by 
walking or bicycling

10.0% 25.8% 0% 100%

Residential pollution Residence pollution level The standard index showing overall air pollution 
level at places of residence (between 1 and 10): 
higher value means higher pollution

6.10 1.16 2.32 9.62

Sociodemographic Age Age 33.99 21.43 0 94
Income Household income ($1000) 72.22 30.12 12.27 230.90
Male Dummy variable: 1 = male; 0 = female 0 1
Non-Hispanic White Dummy variable: 1 = non-Hispanic White; 0 = 

otherwise
0 1

Black Dummy variable: 1 = Black; 0 = otherwise 0 1
Hispanic Dummy variable: 1 = Hispanic/Latino; 0 = other-

wise
0 1

Asian Dummy variable: 1 = Asian; 0 = otherwise 0 1
Worker Dummy variable: 1 = employed; 0 = otherwise 

(unemployed, homemaker, student, or retired)
0 1

College Dummy variable: 1 = college or higher degree; 0 = 
otherwise

0 1

Fig. 4  Random Forest model performance: (a) confusion matrix of predicted exposure classification groups; (b) variable importance rank
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the partial dependence of the abovementioned variables for 
all groups.

As shown in Fig. 5a, increasing probabilities of an indi-
vidual belonging to the Accurate group were associated 
with shorter daily trip distance, fewer hours spent out of 
home, and higher residential pollution levels. Household 
income displays a nonlinear relationship with probabilities 
of the Accurate group. The most significant marginal influ-
ence was depicted at around $80,000. The middle column 
of Fig. 5a shows a two-dimensional partial dependence plot 
of daily trip distance and hours stay out of home to explore 
the effects of combining two mobility variables on prob-
abilities of the Accurate group. The color scheme represents 
different probability levels. Yellow tones indicate a lower 
probability, and purple tones denote a higher probability. 
The two-dimensional plot shows that individuals who travel 
longer distances and time away from home are least likely to 
be categorized to the Accurate group.

A similar effect of mobility variables on classification 
probability can be observed in Fig. 5b,c. Both probabilities 
of the Overestimated group and the Underestimated group 
grow with the daily trip distance and hours stay out of home. 
The two-dimensional plots indicate that exposure is more 
likely to be overestimated or underestimated for people 
with high mobility levels. Although the effects of mobility 

variables on the magnitude of exposure classification error 
were similar for the Overestimated group and the Underes-
timated group, different household income and residential 
pollution levels for the two groups resulted in completely 
opposite directions of exposure classification errors. Increas-
ing probabilities of the Overestimated group were associ-
ated with lower household income and higher residential 
pollution levels (Fig. 5b). By contrast, lower household 
income and higher residential pollution levels were associ-
ated with reduced probabilities of the Underestimated group 
(Fig. 5c). The opposite associations of household income 
and residential pollution level with the probabilities of the 
Overestimated and Underestimated groups suggest that as 
mobility levels increased, exposures were more likely to be 
overestimated for low-income residents living in highly pol-
luted areas, while exposures were more likely to be under-
estimated for high-income residents living in areas with 
cleaner air.

Exposure‑health effect analysis

Figure 6 shows the correlation coefficient (95 percent 
confidence interval (CI)) between exposures (static and 
dynamic exposure) and health outcomes (rate of asthma 
and heart attack) across three different cohorts: exposure 

Fig. 5  Partial dependence (PD) plots for the most important variables in the random forest classification model for (a) the Accurate group, (b) 
the Overestimated group, and (c) the Underestimated group
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classification groups, racial groups, and income groups. A 
positive association between exposure and adverse health 
outcomes was observed in Fig. 6. However, the coefficients 
of static and dynamic exposures were significantly differ-
ent across different groups. Exposure measurement errors 
associated with omitting human mobility can result in bias 
in the correlation between exposures and health outcomes. 
For the Accurate group, the correlation coefficient of static 
exposure is similar to dynamic exposure (2.42 vs. 2.50 
for asthma and 0.21 vs. 0.22 for heart attack). However, 
for people whose exposure is overestimated, the effect 
of  PM2.5 exposure on the risk of asthma (1.85) and heart 
attack (0.27) is greater than estimated by static exposure 
(1.35 and 0.20). Conversely, for people whose exposure 
is underestimated, their health risks related to exposure 
to  PM2.5 tended to be overstated. For the Underestimated 
group, a 1 μg/m3 increase in static exposure to  PM2.5 

would lead to a 1.21% increase in emergency department 
visits for asthma. At the same time, the rate decreases to 
0.74% when considering human mobility in the exposure 
measurement (Fig. 6a).

The effect of  PM2.5 exposure on the risk of asthma and 
heart attack is found to be underestimated for most racial 
and income groups if ignoring human mobility in exposure 
measurement (Fig. 6c–f). Hispanics, blacks, and the low-
income are found to be disproportionately burdened with 
health risks associated with air pollution, which is consistent 
with findings obtained from existing literature (Bae et al. 
2007; Gilbert and Chakraborty 2011; Houston et al. 2004). 
The sensitivity analysis on the exposure-health effect sug-
gests that health risks of the socially disadvantaged after 
exposure to  PM2.5 are likely to be underestimated due to the 
exposure mismeasurement introduced by ignoring human 
mobility.

Fig. 6  Sensitivity analysis of 
exposure-health effect
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Discussion

Overlooking human mobility may lead to incorrect expo-
sure assessment and misleading conclusions and thus 
results in inefficient public health policy solutions (J. 
Kim and Kwan 2021; Park and Kwan 2017). A grow-
ing amount of research has highlighted the importance 
of human mobility in air pollution exposure assessment 
(Dewulf et al. 2016; Ma et al. 2020; M. M. Nyhan et al. 
2019; Park 2020), but little is known about the impact of 
distinct mobility patterns on exposure measurement errors 
and how these errors influence exposure-health effect. This 
study offers important insights into the literature by inves-
tigating the underlying factors contributing to exposure 
measurement errors. This study indicates that the individ-
ual’s mobility level is the most critical factor in determin-
ing exposure measurement errors. Exposure measurement 
errors increase with mobility. Individuals with high mobil-
ity have the most significant exposure measurement errors, 
especially those who travel long distances and spend more 
time out of the home.

There is also a significant correlation between indi-
viduals’ sociodemographic characteristics and exposure 
measurement errors. Household income has the great-
est effect on exposure measurement errors, likely due to 
the key role of wealth in determining where people live, 
their occupations, and places people often visit (Sampson 
2019). According to the results, household income is more 
inclined to drive the direction of exposure measurement 
errors. Air pollution at residence is another critical factor 
influencing exposure measurement errors. On average, as 
mobility increases, exposure is likely overestimated for 
low-income residents of neighborhoods with poor air 
quality, while exposure is typically underestimated for 
high-income residents of neighborhoods with cleaner air. 
This finding is consistent with the conclusion obtained 
from prior empirical research: Exposures of individuals 
who are less exposed at residence are likely amplified by 
their mobility, and exposure of people with high residen-
tial exposure is usually attenuated (Dewulf et al. 2016; 
Picornell et al. 2019; Tayarani and Rowangould 2020; Yu 
et al. 2020). One probable explanation is that people from 
neighborhoods with cleaner air are more likely to carry 
out their daily activities in neighborhoods with poorer 
air quality (Boeing et al. 2023). In contrast, residents of 
neighborhoods with high air pollution tend to engage in 
daily activities in neighborhoods with less air pollution 
than their residential neighborhoods (J. Kim and Kwan 
2021; Lu 2021).

The results show that the relative exposure measure-
ment error is larger for wealthier people because they 
often reside in neighborhoods with cleaner air and their 

residence-based exposures start much lower than those 
with financial restrictions. However, the overall exposure 
and burden of health risks are much higher for the more 
disadvantaged populations as they are likely from more 
polluted neighborhoods. People tend to spend more time 
at home, even those with high mobility levels (Lu 2021; 
Park 2020). If the socially disadvantaged stay within their 
residential neighborhoods or vicinity most of the day and 
spend a lot more time in transit to move shorter distances, 
either or both of these mobility patterns can lead to much 
worse exposures but fewer exposure measurement errors. 
Given the significant contribution of residential air pol-
lution to an individual’s overall exposure, although the 
exposure of people who live in more polluted neighbor-
hoods may be overestimated, they are still likely to have 
relatively higher exposures than those living in less pol-
luted neighborhoods.

Moreover, exposure mismeasurement can result in bias 
in the correlation between air pollution exposure and health 
outcomes, which may further bias estimates of public health 
impact. The direction and magnitude of exposure measure-
ment error can lead to incorrect estimates of the exposure-
health effect. Our results show that the exposure-health 
effect may be underestimated for individuals with overes-
timated exposure. Conversely, for those whose exposure is 
underestimated, their health risks after exposure to  PM2.5 
tend to be overstated. Ineffective public health and envi-
ronmental interventions can be introduced by biased expo-
sure-health effects as a result of exposure mismeasurement. 
Low-income and ethnic minorities have been burdened with 
more financial restrictions (Bae et al. 2007). They are also 
found to be exposed to high air pollution, which makes them 
doubly disadvantaged (Bae et al. 2007; Elliott and Smiley 
2019; Gilbert and Chakraborty 2011; Houston et al. 2004; J. 
Kim and Kwan 2021). Low-income people generally spend 
more time exposed to traffic during commuting or live in 
areas with poorer air quality, thus increasing exposure. Also, 
higher incidence of co-morbidities, nutritional deficiency, 
and less access to information and education due to lack of 
economic resources impose an increased vulnerability for 
socially disadvantaged groups. It is important for policymak-
ers to account for individual’s exposure at not only places 
of residence but also all other activity locations. Accurate 
exposure measurements can help policymakers develop pub-
lic health policies that reflect the interests of all people.

Several limitations in this study need to be addressed in 
future research. First, the human movement data used in this 
study were simulated from an activity-based travel demand 
model. Given this model simulated people’s daily travel tra-
jectories for a typical weekday in 2019, it was assumed that 
individuals have constant activity patterns throughout the year. 
However, people’s daily mobility patterns are not consistent 
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over time and may vary across weekdays, weekends, or sea-
sons (Susilo and Kitamura 2005; Xianyu et al. 2017). It is 
debatable whether people’s varied travel behaviors on a differ-
ent day (e.g., weekend, holiday) can generate similar exposure 
classification patterns identified in this study. Thus, more effort 
should be placed into studying how different travel behaviors 
over time can affect exposure measurement error by collecting 
human movement data covering multiple time periods.

Second, in this study, only ambient  PM2.5 exposure was 
estimated as indoor  PM2.5 data were not available. Recent 
evidence shows that people spend more time indoors (e.g., 
at home, workplace, and school) during the day, especially 
those with less mobility (Lu 2021; Park 2020). Staying 
indoors may provide some protection from sources of ambi-
ent air pollution (e.g., traffic emission), leading to different 
results in air pollution exposure assessments. Future expo-
sure research should consider indoor and outdoor  PM2.5 
concentrations to measure individual exposure accurately.

Third, the unique characteristics of demographic com-
position and land use layout are recognized for Los Ange-
les. As a result, the spatiotemporal mobility patterns and 
ground-level  PM2.5 concentration distribution depicted in 
this study only represent the study area's distinct features. 
The population mobility pattern, spatiotemporal variabilities 
of air pollution concentrations, sociodemographic mix, and 
land use layout are expected to vary across different regions. 
Further research is needed to examine whether findings from 
this study can be applied to other areas.

Conclusion

Ignoring human mobility in exposure estimates can lead 
to erroneous exposure assessments and ineffective policy 
implications. Prior research has emphasized the impor-
tance of human mobility in estimating air pollution expo-
sure, but little is known about how human mobility might 
lead to exposure measurement errors. To fill the literature 
gap, this study assesses residence-based and mobility-
based  PM2.5 exposures for 100,784 Los Angeles County 
residents. It examines the impact of mobility and sociode-
mographic variables on potential exposure measurement 
errors. Detailed human mobility data was integrated with 
hourly  PM2.5 surfaces at the neighborhood level. The find-
ing suggests that the magnitude of exposure measurement 
error is linked to people’s mobility levels, and individuals’ 
sociodemographic variables drive the direction of exposure 
measurement errors. Individuals with high mobility levels 
are likely to have increased exposure measurement errors. 
High income and low residential pollution are associated 
with exposure underestimation, and low income and high 
residential pollution levels are associated with exposure 
overestimation. The exposure measurement error introduced 

by the residence-based method can further lead to errone-
ous conclusions on the relationship between exposure and 
health risks. Policymakers should take into account human 
mobility and sociodemographic characteristics in exposure 
assessment and ensure that their policies reflect not only the 
preferences of socially advantaged populations but also the 
interests of disadvantaged populations.
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