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Abstract
A prompt and accurate prediction of air quality index (AQI) has become a necessity to tackle the mounting environmental 
threats. This paper proposes a feature-driven hybrid method for hourly, 3-step-ahead, and deterministic AQI prediction, 
which includes three modules. In Module 1, an “extract-merge-filter” procedure of feature engineering is created to capture 
the potential features from the AQI series. Ten feature sets are generated as candidates. In Module 2, six models including 
Light Gradient Boosting Machine, Extreme Gradient Boosting, Long Short-Term Memory, Convolutional Neural Network, 
Multilayer Perceptron, and Deep Neural Network are developed as base predictors and performed on the candidate features. 
In Module 3, predictors are first matched with their optimal features using a comprehensive metric, and then combined in 
an optimized ensemble using OPTUNA. A case study on the AQI data from four different Chinese cities is carried out to 
demonstrate the method. The experimental results show the following: (1) Feature engineering significantly boosts prediction 
performance and provides interpretable findings for practical use. (2) Customized input of features to the predictors is more 
effective than a fixed input and can rise the performance to a higher level. (3) OPTUNA is a promising tool for optimizing 
ensemble weights. The final ensemble model is superior to single machine learning models and has a good robustness.
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Introduction

Over the past decades, the intensive agricultural and indus-
trial activities, and the constant growth of population have 
escalated the pollutant emissions in the air. Numerous stud-
ies have stated that poor air quality is one of the biggest 
threats to both ecosystems and human existence (Wu et al. 
2007; Guan et al. 2016; He et al. 2019; Guo et al. 2020). In 
this regard, close monitor and accurate and timely prediction 
of atmospheric pollution have become essential. The govern-
ment planners can take precautionary measures and issue 
early warnings and citizens can be guided towards healthier 
travel choices (Yang et al. 2017).

The air quality index (AQI) is a widely used indicator 
that comprehensively reports the status of ambient air qual-
ity. It measures the concentrations of six major air pollut-
ants—carbon monoxide (CO), sulfur dioxide (SO2), nitrogen 
dioxide (NO2), ozone (O3), fine particulate matter (PM2.5), 
and inhalable particulate matter (PM10)—and converts them 
into a unified dimensionless indicator (Liu 2002; Kim et al. 
2022). AQI levels offer clear and concise advice on how 
to protect oneself from air pollution. For instance, healthy 
individuals can continue with normal activities or reduce 
outdoor exposure, while vulnerable individuals may need to 
take more rigorous protective measures. AQI values are usu-
ally calculated and published at intervals of hours, days, and 
months. The AQI time series exhibits four characteristics, 
including autocorrelation, periodicity, non-stationarity, and 
nonlinearity. (a) Autocorrelation refers to the tendency of 
the series to exhibit correlation between successive observa-
tions, indicating that current values are dependent on past 
values. This correlation gradually weakens over time. In 
most studies, the recent observations of the predicted target 
are generally used as the only input to the model (Zhang 
et al. 2020; Surakhi et al. 2021). (b) Periodicity refers to the 
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presence of recurring patterns, such as daily, weekly, and 
seasonal cycles, that are commonly observed in AQI data. 
For example, significant differences have been found in the 
distribution and variation patterns of AQI values between 
winter and summer (Wu et al. 2017). (c) Non-stationarity 
and nonlinearity refer to the time-varying nature of the 
mean, variance, and other statistical properties of the series. 
They arise from the complex interactions between multiple 
pollution sources and meteorological factors (Bitencourt 
et al. 2022).

Understanding and modeling these characteristics is 
crucial for air pollution prediction. Various techniques, 
including physical, statistical, and machine learning (ML) 
models, have been explored (Ojagh et al. 2021). Physical 
models simulate and analyze meteorological, aerodynamic, 
and chemical reaction mechanisms for air pollutant genera-
tion, accumulation, and diffusion. Numerical Weather Pre-
diction (NWP) models are a representative example (Zhou 
et al. 2017), but they have limited practicality for short-term 
predictions due to latency issues (Liu and Chen 2019). In 
contrast, statistical models, such as Autoregressive Inte-
grated Moving Average (ARIMA) models, make predictions 
solely based on statistical data relationships without consid-
ering the chemical and physical evolution mechanisms of 
pollutants (Zhang et al. 2018). However, these models can-
not accurately predict significant changes in non-stationary 
series, resulting in a loss of accuracy. On the other hand, ML 
models have gained recognition for their excellent nonlinear 
fitting ability, generalization, and real-time performance (Liu 
et al. 2021b). In the field of air quality prediction using ML 
models, two main tasks need to be addressed. First, mining 
the information that describes autocorrelation, periodicity, 
and other characteristics from the non-stationary original 
time series. Second, building a prediction system with high 
accuracy and stability.

A broad consensus in the industry has been that the upper 
limit of machine learning is controlled by data and features, 
and what the models do is just to try to approach this limit 
(He et al. 2021). Effective feature engineering boils down 
to a deep understanding of the dataset and has been of para-
mount importance. Luo et al. (2019) provided their win-
ning solution in 2018’s KDD CUP of Fresh Air; the task 
is to predict the air quality of the next 48 h in Beijing and 
London. They designed six groups of features. For the air 
quality data, statistical features such as the mean, median, 
maximum, and minimum values over different windows in 
the past 1 to 72 h were derived from the series. These fea-
ture groups, in proper combination, greatly improved the 
performance. More elaborate works were done by Mas-
moudi et al. (2020). They extracted datetime features (such 
as hour of the day, day, month, and season) and sliding 
window features (such as 24 h, 48 h, 169 h lagged rolling 
mean concentration of pollutants) and adopted the Random 

Forest (RF) to estimate feature quality and remove bad ones. 
Experiments showed that feature selection can narrow the 
training down to the most contributing features and improve 
algorithmic speed, accuracy, and processor usage. Another 
type of approach that has been proposed more frequently 
is based on the exceptional capacities of the certain neural 
networks as feature extractors. For instance, temporal and 
spatial features were extracted and dimensionally reduced 
by Convolutional Neural Network (CNN). Long Short-Term 
Memory (LSTM) network then processed the multivariate 
outputs and learned the serial dependencies (Li et al. 2020; 
Dai et al. 2021; Elmaz et al. 2021).

In terms of prediction systems, Decision Trees (DTs) 
and Artificial Neural Networks (ANNs) are two common 
solutions to a time series forecasting problem with machine 
learning (Jamei et al. 2022). The Decision Tree model is 
based on a tree structure, heuristically selects features to 
partition the feature space, and finally makes decisions in 
the leaf nodes of each partition. Thongthammachart et al. 
(2022) found that Light Gradient Boosting Machine (Light-
GBM) was superior to RF and Extreme Gradient Boosting 
(XGBoost) in estimating NO2 and PM2.5 concentrations, 
especially at high concentrations, which shed light on the 
risk assessment. Moreover, ANNs have become promising 
tools in recent years because of their strengths in nonlinear 
expression (de Gennaro et al. 2013). Multiple studies that 
employ ANNs in atmospheric pollution predictions have 
been done. The representative models include Multilayer 
Perceptron (MLP) (Li and Jin 2018; Perez and Menares 
2018), Elman Neural Network (ENN) (Hao and Tian 2019), 
LSTM (Liu et al. 2021a; Kim et al. 2022), and Deep Neural 
Network (DNN) (Eslami et al. 2020). All these models are 
solid approximators, though the performance can rise to a 
higher level through sophisticated methods like ensemble 
learning (Singh et al. 2013; Li et al. 2021). Within the sur-
veyed studies, for example, Liu et al. (2019) constructed a 
hybrid model for hourly fine particle concentrations predic-
tion, in which four ENNs with different architectures were 
set as base learners and the output prediction results were 
stacked on another model (also called meta-learner), Out-
lier-Robustness Extreme Learning Machine (ORELM), to 
make the final predictions. The proposed model was shown 
to outperform individual learners. The other popular ensem-
ble method is weight-based. Base learners are separately 
trained, and then their prediction results are assigned with 
ensemble weights. Aiming at the calibration of ensemble 
weights, other applicable techniques such as Particle Swarm 
Optimization (PSO) (Zhu et al. 2018), Multi-Objective Wolf 
Colony Algorithm (MOWCA) (Liu and Yang 2021), and 
Q-learning (Liu et al. 2021c) are commonly used.

Still, the existing studies are expected to be further 
explored in feature engineering, model matching, and 
ensemble optimization: (a) In terms of feature engineering, 
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despite the reported distinct increase in the accuracy and 
robustness, the network-based methods remain black-boxes 
for humans. They cannot tell the users what features are 
promising and what are not. In this sense, series-derived 
feature engineering is more preferred and interpretable. (b) 
In terms of the model matching, most studies placed empha-
sis on the heterogeneity of the base models to ensure a good 
ensemble, while inputting the same data or features into 
each model. The mismatch between data and models may 
occur and influence the ultimate performance. For example, 
ANNs perform better on continuous variables and slightly 
worse on discrete variables. In this sense, we are motivated 
to dynamically find the best features for different models. (c) 
In terms of ensemble optimization, some algorithms suffer 
from computation burden and are not lightweight enough.

To remove the aforementioned restrictions, this study pro-
poses a hybrid AQI prediction model that involves three-
stage feature engineering, dynamic matching of predictors 
and features, and optimized ensemble. The main contribu-
tions and innovations are summarized as follows:

•	 An “extract-merge-filter” procedure of feature engi-
neering is put forward to provide sufficient learning 
materials for base predictors. In the extraction stage, 
diverse classes of features are derived from the raw 
time series to capture multi-resolution knowledge, such 
as trending, seasonal or cyclical factors, and irregular 
changes. In the merging stage, several pairs of features 
are combined to exploit their complementary discrimina-
tive strengths. In the filtering stage, unsatisfactory fea-
tures are excluded to varying degrees by a built-in feature 
ranking algorithm of the LightGBM.

•	 A dynamic matching between base predictors and fea-
ture sets is performed based on a comprehensive eval-
uation metric. Six classical models, including tree mod-
els and ANNs, are chosen as base predictors. Regarding 
that they perform differently on various features, all 10 
feature sets are evaluated. In terms of the performance 
evaluation, we design a comprehensive metric based on 
the idea of sorting, which integrates three mainstream 
evaluation criteria, including MAE, RMSE, and PCC. 
This metric not only avoids the weak coupling between 
single metrics but also makes the matching more reason-
able.

•	 An effective and lightweight framework called 
OPTUNA is utilized to optimize the ensemble 
weights between multi-predictors. OPTUNA is ini-
tially designed to solve the hyperparameter optimization 
(HPO) problem, mostly for hyperparameters like con-
nection weights and kernel size within the model archi-
tecture (Domashova and Mikhailina 2021; Pravin et al. 
2022; Sipper and Moore 2022; Srinivas and Katarya 
2022). To the best of our knowledge, there are scarce 

studies applying OPTUNA to ensemble learning, let 
alone in the field of air quality prediction. It can be a 
good attempt since the weights between models can also 
be treated as hyperparameters.

Methodology

Framework of the proposed model

AQI prediction is a complex task with different approaches 
depending on the input variables used. In this study, we 
focus on developing a univariate model that solely relies 
on AQI as input to make 1-h, 3-step-ahead deterministic 
AQI predictions. Previous studies have shown that univariate 
approaches are promising for short-term AQI prediction and 
are easier to interpret and implement in practice (Castelli 
et al. 2020; Ji et al. 2022; Li et al. 2022). Additionally, uni-
variate models allow us to better understand the relationship 
between AQI and the selected features. The framework of 
the proposed model is shown in Fig. 1. It includes three 
modules: (1) three-stage feature engineering, (2) two-class 
base predictors modeling, and (3) dynamic multi-predictor 
ensemble. They are described as follows:

Module 1: An “extract-merge-filter” procedure of feature 
engineering is proposed. In the extraction stage, multiple 
classes of candidate features are extracted from the his-
torical AQI time series ahead of the current time step, 
including timestamp features, lag features, differential 
features, and window features. The following two stages 
focus on generating feature sets from candidate features 
in two different ways. In the merging stage, the features 
are merged in classes, obtaining five feature sets. In the 
filtering stage, all the candidate features are input into 
LightGBM and sorted by importance. Another five fea-
ture sets are filtered out based on different thresholds (top 
5, 10, 15, 20, 25). A total of 10 different feature sets are 
designed and prepared for subsequent experiments.
Module 2: Six models from tree models and ANNs 
are selected as base predictors. They are LightGBM, 
XGBoost, LSTM, CNN, MLP, and DNN. All feature sets 
will be trained and evaluated on these six base predictors. 
It not only guarantees model diversity for ensemble but 
also offers a chance to fully exert the strengths that mod-
els have on different feature inputs.
Module 3: The six base predictors are trained with the 
ten feature sets. The pair of base predictor and feature set 
that gives the best performance is recognized as the opti-
mal matching. Given that adopting different individual 
evaluation metrics may point to different conclusions, a 
comprehensive metric called rankall is proposed. It inte-
grates the evaluation results under the three mainstream 
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evaluation metrics, namely MAE, RMSE, and PCC, in a 
sorted and averaged way. After the matching is done, the 
results are combined in an ensemble where the ensemble 
weights are optimized using the hyperparameter optimi-
zation framework OPTUNA. At this point, the final pre-
diction results are obtained.

The proposed model is customizable and practical for 
use in different cities. On one hand, the dynamic model 
matching and ensemble are automated processes that do 
not require much human intervention and supervision. On 
the other hand, once the model training is complete, users 

only need to make individual predictions without the need 
for frequent model updates. The execution time for predic-
tion can be very short, which does not burden actual opera-
tions. However, it is recommended to retrain the model 
when there is a significant change in the city environment 
or monitoring equipment.

Module 1: Three‑stage feature engineering

Stage one: Candidate feature extraction  In this stage, four 
classes of candidate features are extracted. Figure 2 shows a 

Fig. 1   Framework of the proposed model

Fig. 2   Feature extraction process



1875Air Quality, Atmosphere & Health (2023) 16:1871–1890	

1 3

simple schematic of the process of extracting these features 
based on a series.

•	 Timestamp features

Timestamp features are derived from the datetime type 
of variables. They can generally be subdivided into calendar 
features, such as year, quarter, month, week, day, and hour, 
and Boolean features, such as whether it is a weekend and 
whether it is a holiday, which are used to flag special date-
time. This study looks at just 1 year of data. Features such as 
months and quarters that are not periodic and do not provide 
valuable information for model training are not retained.

•	 Lag features

Lag features represent past observations in a time series 
that measure its autocorrelation. Figure 3 presents the auto-
correlation plot generated from the AQI series in Dataset #1. 
The plot shows the correlation between the current observa-
tion and the lag values from prior time steps, indicated by 
vertical lines with dots at the top. From Fig. 3, we observe 
that the series exhibits a long-term autocorrelation, and 
the correlation weakens over time. Too many lag features 
may lead to redundancy and overfitting. To strike a balance 
between capturing the essential information of the series and 
avoiding unnecessary complexity in the model, we focus on 
the most highly correlated features, with a correlation coef-
ficient above 0.7. As a result, 9 lag features are obtained.

An expression is given in Eq. (1):

(1)lagt
n
= Y[t − n]

where n denotes the number of lagged steps, taken from 1 
to 9. Y denotes the observations series. t denotes the current 
time step.

•	 Differential features

Differential features capture trend information and are 
obtained by shifting the time series and making a differ-
ence. For simplicity, this study only extracts first-order and 
second-order differential features, which are expressed in 
Eq. (2) and Eq. (3):

•	 Window features

Window features are aggregated statistics of previous 
observations over a fixed length of time (called “window”), 
and are used to capture trending, seasonal or cyclical fac-
tors, and irregular changes in the time series. The lag feature 
mentioned above is also a specific kind of window feature, 
with a window size of 1. In this study, the current time step 
is included in the window; the window size is respectively 
taken as 12 h, 2 days, 3 days, 5 days, and 10 days; and the 
statistics calculated in the windows include mean, stand-
ard deviation, sum, kurtosis, skewness, and maximum. An 
example of calculating the mean over a window size of S 
observations before time step t is given in Eq. (4):

Stage two: Feature merging  The four classes of features 
have discriminative strengths and deficiencies. For instance, 
the lag features provide observations at specific historical 
time steps but lacks a description of the ups and downs in 
the long and short term, which is also found to be important 
for enhancing prediction accuracy. The window features are 
global statistics in different periods and do not care much 
about local gain changes. The timestamp features can mine 
the hidden information of the time step itself that the model 
may also care about, such as whether it is a holiday, but 
when used alone, they are obviously of little help in pre-
dicting future values since there are no actual observations 
involved.

This complementary nature between different classes 
of features inspires us to propose a feature merging 
method, expecting that the combined features may outper-
form any single one. From a statistical point of view, the 
combined features can fit the real distribution in a higher 

(2)diff t
1
= Y[t] − Y[t − 1]

(3)
diff t

2
= diff t

1
− diff t−1

1
= (Y[t] − Y[t − 1]) − (Y[t − 1] − Y[t − 2])

(4)windowt
mean

= mean(Y[t], Y[t − 1],⋯ , Y[t − S])

Fig. 3   Autocorrelation plot of AQI series



1876	 Air Quality, Atmosphere & Health (2023) 16:1871–1890

1 3

dimensional space. Specifically, the following five sets of 
features are constructed: Feature set #1: lag features, Fea-
ture set #2: lag features merged with differential features, 
Feature set #3: lag features merged with window features, 
Feature set #4: lag features merged with differential fea-
tures and window features, Feature set #5: lag features 
merged with differential features, window features, and 
timestamp features.

The main idea is that the lag features proved to be one of 
the most contributing features in predictive analysis (Sura-
khi et al. 2021), so they are adopted as the baseline and 
merged with the other four classes of features. In addition, 
the timestamp features are static variables and provide rela-
tively minor information, so they are only added in Feature 
set #5 to play a supplementary role.

Stage three: Feature filtering  Since Feature sets #1 to #5 are 
formed by the inter-combination between feature classes, the 
differences within individual features are greatly neglected. 
Too many feature dimensions can also easily bring about 
the “curse of dimensionality” and high computational 
complexity.

In this stage, features are filtered instead of expanded. 
We focus on the contribution of each feature to the pre-
diction model, while less caring about the feature class to 
which it belongs. Specifically, it is implemented through 
the feature selection algorithm built in LightGBM, which 
can quantify the contribution of each feature to the predic-
tion model as feature importance. The detailed principle is 
demonstrated in the “Module 2: Two-class base predictors 
modeling” section. The top 5, 10, 15, 20, and 25 features 
of the total features in descending order of feature impor-
tance are selected to build Feature sets #6, #7, #8, #9, and 
#10, respectively. They will be used to study the impact 
of feature selection as well as the size of the feature sets 
on the prediction performance.

So far, all 10 feature sets for further experiments have 
been prepared, and their composition and data overview are 
given in Table 1.

Module 2: Two‑class base predictors modeling

In this module, we select six popular models as base predic-
tors, including XGBoost, LightGBM, MLP, DNN, CNN, and 
LSTM. The schematic diagrams of them are given in Fig. 4.

Tree models 

•	 XGBoost

XGBoost and LightGBM are both implementations of 
Gradient Boosting Decision Tree (GBDT). They have strong 
capabilities in handling missing data and feature selection, 
which are particularly important in time-series analysis 
(Xian et al. 2022; Zhao et al. 2022). One Classification and 
Regression Tree (CART) is learned each iteration to fit the 
residuals between the true values and the prediction results 
of previous trees. The main improvement of XGBoost to 
GBDT is the modification of the cost function. A regulari-
zation term is added to avoid over-fitting issues. Moreover, 
GBDT only uses the first-order derivatives, while XGBoost 
expands the cost function into Taylor’s second-order series 
to obtain the first-order and second-order derivatives, mak-
ing the convergence faster.

XGBoost grows trees in a level-wise strategy, as shown in 
Fig. 4(a), where leaves at the same level are split simultaneously. 
Based on the basic information gain of the current feature, the 
optimal split is selected. There are a lot of unnecessary compu-
tational efforts due to its indiscriminate traversal. Refer to Song 
et al. (2020) for more detailed explanations of XGBoost.

•	 LightGBM

LightGBM adopts a leaf-wise tree growth strategy, where 
the leaf with the highest information gain is split first. As shown 
in Fig. 4(b), the right subtree is already much deeper than the 
left subtree. If the gradient partition of the right subtree is still 

Table 1   Summary of feature 
sets considered in this study

Feature set Composition Size

#1 Lag 9
#2 Lag + differential 11
#3 Lag + window 39
#4 Lag + differential + window 41
#5 Lag + differential + window + timestamp 46
#6 Top 5 of the total features in descending order of importance 5
#7 Top 10 of the total features in descending order of importance 10
#8 Top 15 of the total features in descending order of importance 15
#9 Top 20 of the total features in descending order of importance 20
#10 Top 25 of the total features in descending order of importance 25
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dominant over the left subtree, the right subtree will continue 
to be split. Compared with XGBoost, LightGBM shows faster 
training speed and higher prediction accuracy. The information 
gain of a split point (j, d) with feature j and split d is measured 
by the variance after splits, given in Eq. (5):

where n denotes the number of training data.xij denotes the 
feature j of the ith sample.

A is the subset of first a × 100% samples with larger 
gradients.

B is the subset of remaining (1 − a) × 100% samples with 
smaller gradients.b × 100% is the proportion of random sam-
pling in subset B.

(5)V(j, d) =
1

n
(
(
∑

xij∈Al
gi +

1−a

b

∑

xij∈Bl
gi)

2

n
j

l
(d)

+
(
∑

xij∈Ar
gi +

1−a

b

∑

xij∈Br
gi)

2

n
j
r(d)

)

Al = {xi ∈ B ∶ xij ≤ d},Ar = {xi ∈ A ∶ xij > d},

Bl = {xi ∈ B ∶ xij ≤ d},Br = {xi ∈ A ∶ xij > d}.

Coefficient 1−a
b

 is used to appropriately amplify the sampled 
data with small gradients to maintain the distribution of the origi-
nal data.gi denotes the gradient of the ith sample.nj

l
 and njr are the 

numbers of the samples split into left and right child node.
For each feature j, the best split is selected by 

d∗
j
= argmax

D
V(j, d) , and the largest gain is calculated by 

V(j, d∗
j
).

During modeling, LightGBM can record the number of 
times each feature is used as a split node and the information 
gain after splitting. The feature importance can be quantified 
in this manner. This is a technique built into LightGBM and 
is often used to aid in feature selection. Refer to Ke et al. 
(2017) for more detailed explanations of LightGBM.

Artificial neural networks 

•	 MLP

Fig. 4   Schematic diagram of the models used in this study: (a) XGBoost, (b) LightGBM, (c) MLP and DNN, (d) LSTM, (e) CNN
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MLP is a simple ANN with a forward structure of the 
input layer, hidden layer, and output layer, as shown in 
Fig. 4(c). The layers are connected by weights, biases, and 
transfer functions. Except for the nodes in the input layer, 
each node has an activation function, which is used to 
introduce nonlinear factors, so that the neural network can 
approximate the nonlinear input–output mapping. MLPs 
are generally trained through backpropagation to assign 
and update the connection weights. Refer to Chianese et al. 
(2019) for more detailed explanations of MLP.

•	 DNN

When it comes to DNN, it is usually a very broad con-
cept; CNNs, RNNs, etc. can all be classified as DNNs. But 
in this paper, DNN refers specifically to ordinary neural 
networks with multiple hidden layers. The MLP introduced 
above can be understood as one simplest DNN with only 
one hidden layer. By stacking multiple layers of non-linear 
transformations, DNNs can extract hierarchical representa-
tions of the time series data (Sezer et al. 2020). The increase 
in the number of hidden layers generally improves prediction 
accuracy, but the issues of over-fitting and gradient vanish-
ing may also come along. In the later study of this paper, the 
effect of network “depth” can also be investigated by observ-
ing the prediction performance between MLP and DNN.

•	 CNN

CNN is mostly applied in image recognition (Lee et al. 
2020) and natural language processing (Zhao et al. 2018). 
Some studies also used it for time series forecasting with 
its advantages in local feature mining (Wang et al. 2022). A 
basic CNN consists of five parts: input layer, convolutional 
layer, pooling layer, fully connected layer, and output layer, 
as shown in Fig. 4(e). Convolutional layers are used to extract 
features and reduce noise. Pooling layers are used to compress 
the amount of data and parameters to prevent over-fitting. Key 
techniques including local receptive field, weight sharing, and 
pooling are introduced, to simplify the networks and enhance 
the stability of the network against displacement, scaling, and 
nonlinear deformation. Refer to Kattenborn et al. (2021) for 
more detailed explanations of CNN.

•	 LSTM

LSTM is a highly representative Recurrent Neural Net-
work (RNN). Its recurrent nature makes it particularly effec-
tive in modeling series data with long-term dependencies. 
Studies have shown that LSTM has achieved promising 

results in various time series prediction tasks, such as stock 
price prediction (Cao et al. 2019) and traffic flow prediction 
(Yang et al. 2019). LSTM has the memory to store knowl-
edge through the joint action of a set of gates, namely forget 
gate, input gate, and output gate. Figure 4(d) shows a sim-
plified framework of the LSTM. The forget gate discards 
the knowledge input from the previous cell. The remaining 
knowledge is further processed by the input gate, and the 
useful knowledge is input into the current cell. The output 
gate determines the final output of the current cell. Refer 
to Hochreiter and Schmidhuber (1997) for more detailed 
explanations of LSTM.

It is necessary to add that both LSTM and CNN have 
special requirements for the format of input data, which must 
be a 3D tensor with shape (samples, timesteps, features), 
while the input format of other models used in this study is 
a 2D (samples, features). Therefore, we need to rearrange the 
input data when dealing with LSTM and CNN.

In summary, the selected base predictors offer a diverse 
set of strengths that make them well-suited for our prediction 
task. XGBoost and LightGBM are tree models with power-
ful feature selection and missing data handling capabilities, 
while MLP, DNN, CNN, and LSTM are ANNs that excel at 
capturing nonlinear relationships and extracting high-level 
features from raw data. By leveraging the strengths of each 
model, they complement each other and improve the predic-
tion accuracy and stability of the ensemble model.

Module 3: Dynamic multi‑predictor ensemble

Dynamic model matching based on a comprehensive evalu‑
ation metric  This study uses evaluation metrics to find the 
feature set that performs best for specific models. In the 
field of machine learning, Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and Pearson Correlation 
Coefficient (PCC) are three mainstream metrics for model 
performance evaluation. MAE and RMSE have dimensions 
and are related to the magnitude of the data. PCC is dimen-
sionless. They are calculated in Eqs. (6)–(8):
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where Yt is the actual observations in time t, and Pt is the 
predicted result in time t. N denotes the total number of 
observations. Et

(

Yt
)

 and Et

(

Pt

)

 respectively denote the mean 
values of actual and prediction results.

However, single-metric evaluation suffers from the fol-
lowing limitations: (a) These three metrics are of different 
criteria. For instance, RMSE measures discreteness, while 
PCC measures linear correlation. In practice, however, it is 
often not the case that a model is optimal in all evaluation 
criteria. (b) These three metrics are of different scales. For 
instance, MAE and RMSE take values from 0 to + ∞. The 
smaller the value, the better the performance. PCC takes val-
ues from − 1 to 1. The closer the absolute value is to 1, that 
is, the larger the absolute value, the better the performance.

To this end, this study proposes a comprehensive metric 
called rankall. An example of the process of calculating this 
metric is presented in Fig. 5. First, consider the ranking of 
the metric of one feature set among all ten feature sets. The 
better the performance (in the customized standards of each 
metric), the higher the ranking. That is, MAEs and RMSEs 
need to be sorted in ascending order, while PCCs need to be 
sorted in descending order. Second, aggregate the rankings of 
these three metrics. It is important to note that in our study, 
we consider the metrics to be equally important, and therefore 
their rankings are weighted on an average basis. However, the 
weighting of the rankings can be flexibly adjusted to meet spe-
cific needs in other scenarios. For instance, if one prioritizes 
correlation, a higher weight can be assigned to PCC.

The calculation formula of rankall is given in Eq. (9):

where the superscript i is for model i. The subscripts m, r, 
and p are for metrics MAE, RMSE, and PCC, respectively. 
ranki

mae
 denotes the ranking of MAE of model i among that 

(9)ranki
all

= (ranki
mae

+ ranki
rmse

+ ranki
pcc

)∕3

of all the models in ascending order. ranki
rmse

 denotes the 
ranking of RMSE of model i among that of all the models 
in ascending order. denotes the ranking of PCC of model i 
among that of all the models in descending order.ranki

mae
 , 

ranki
rmse

 , and ranki
pcc

 all take integer values from 0 to 9.

Optimized ensemble based on OPTUNA  OPTUNA is ini-
tially proposed to overcome the drawbacks of Grid Search 
(GS) and Random Search (RS), which are two conventional 
hyperparameter optimization methods. GS configures 
hyperparameters to be optimized to form a “grid” space and 
implements an exhaustive search in this space. RS proved 
to be less computationally costly than GS, as it explores 
in specified configurations rather than all the possible con-
figurations (Panichella 2021). One major drawback of these 
two is that the search is aimless, and they do not determine 
whether the current domain is worth exploring, which means 
that a great deal of time may be spent in evaluating “bad” 
hyperparameter configurations (Pravin et al. 2022).

OPTUNA casts HPO as a process of minimizing or maxi-
mizing an objective function, in which the hyperparameters 
and their ranges are specified, and the validation score is 
returned (Akiba et al. 2019). One of the most powerful func-
tions of OPTUNA is that it takes advantage of previous trials 
in the pre-defined search space to determine which trial to 
try next. If a trial is not very promising, it can be terminated 
early so that the search space is methodically narrowed, and 
more time is made for trials with better hyperparameters.

In the implementation of our study, the objective function 
is to minimize the RMSE evaluated on the validation set, 
and the hyperparameters to be optimized are the ensemble 
weights for each base predictor, with a search space of 0 to 
1. It can generally be expressed by Eq. (10):

Fig. 5   Calculation process of rankall
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where S* denotes the optimal hyperparameters that mini-
mizes the objective function, i.e., a set of six weights. Y(t;D) 
denotes the actual observation of sample D at time t.P(t;D)
,P1(t;D),P2(t;D),P3(t;D) , P4(t;D),P5(t;D) , and P6(t;D) respec-
tively denote the predicted values of the ensemble model, 
LightGBM, XGBoost, LSTM, CNN, MLP, and DNN for 
sample D at time t. [�1,�2,⋯ ,�6] are the ensemble weights.

Case study

Dataset preparation

To validate the feasibility and robustness of the proposed 
method, experiments were carried out on four datasets 
from different Chinese cities. Table  2 gives an over-
view of the four datasets at the city level and a statistical 
description at the series level. The four selected cities 
are Suzhou, Nanchang, Shenzhen, and Urumqi, which are 
distinct in terms of geographical location and economic 
construction level. The statistical characteristics of the 
four series differ greatly. All above ensure the diversity 
of the experimental data.

Each series was collected at hourly resolution, span-
ning from 2020/01/01 to 2020/12/31, with a total of 8746 
samples. In this study, missing values in the raw series are 
first filled by cubic interpolation as a simple preprocess-
ing step. And then the series is divided into the training 
set, validation set, and testing set at the ratio of 3:1:1. The 
training set is used to train base predictors. The valida-
tion set is used to ascertain intermediate values, such as 
model configurations and ensemble weights. The testing 
set is used to ultimately evaluate the generalization ability 
of the model. Figure 6 shows the distribution of the AQI 
series for four selected cities, and the division of training, 
validation, and test sets.

(10)
S∗ = arg min

0≤�1,⋯�6≤1
{RMSE[Y(t;D),P(t;D)]}

s.t.P(t;D) =
∑6

a=1
(Pa(t;D)×�a)
∑6

a=1
�a

Comparison analysis

Analysis of candidate features

A total of 46 candidate features are extracted. A summary 
of them is given in Table 3.

In this section, we adopt Pearson correlation analysis to 
explore how the candidate features as well as the target label 
are linearly correlated. Taking Dataset #1 as an example, the 
Pearson correlation between all pairs of variables (i.e., 46 
candidate features and 1 label) is displayed in the form of a 
47 × 47 matrix, as shown in Fig. 7, where the (i, j)th element 
is the PCC between the ith variable and the jth variable. The 
diagonal elements, representing the PCC between each vari-
able and itself, are always 1. It can be seen from Fig. 7 that:

1)	 To analyze from the perspective of intra-class comparison: 
(a) A clear intra-class Pearson correlation is shown within 
the lag features (close to 1), which also confirms the autocor-
relation of the time series mentioned above. (b) Among the 
window features, the intra-class Pearson correlation main-
tains a relatively high level. (c) Timestamp features have 
little intra-class correlation with each other. It can be easily 
explained by the fact that the timestamp features only provide 
knowledge at a calendar level, not an observations level.

2)	 To analyze from the perspective of inter-class comparison: 
Both differential features and timestamp features are weakly 
correlated with other class features. For the differential fea-
tures, the possible reasons are as follows. On the one hand, 
the second-order differential feature used in this study only 
involves the observations of the prior two time steps. On 
the other hand, the essence of the difference is to make non-
stationary time series stationary, so it implies an inevitable 
loss of information every time the difference is performed.

3)	 The last column of the correlation matrix shows the rela-
tionship between features and the label. To analyze from 
the perspective of how the features are related to the 
label: (a) The lag features are most relevant to the label, 
but as the number of lagged steps increases, the correla-
tion gradually weakens. (b) The differential features, the 
kurtosis features, and the timestamp features have the 
lowest correlation with the label.

Table 2   Description of dataset

Dataset City level Series level

City Location Tier Min Max Mean Standard deviation Skew Kurt

#1 Suzhou East New first-tier 8.0 263.0 56.3985 33.7858 2.0518 5.9629
#2 Nanchang Central Second-tier 8.0 221.0 55.5668 29.6335 1.0023 1.6868
#3 Shenzhen South First-tier 8.0 132.0 33.3791 16.8074 0.9946 1.4496
#4 Urumuqi Northwest Third-tier 0.0 500.0 95.5516 90.3008 2.0608 3.9532
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Fig. 6   Raw AQI series of four 
selected cities

Table 3   Summary of candidate features considered in this study

Type Features Brief description Size

Timestamp features time_hour Hour of day, from 0 to 23, denoting 00:00 to 23:00 5
time_daypart Daypart of day, from 0 to 5, denoting dawn, morning, noon, afternoon, evening, and midnight, 

respectively
time_day Day of week, from 0 to 6, denoting Monday to Sunday
time_day_of_month Day of month
time_is_weekend Whether it is a weekend

Lag features lag t Observation at the t timestep before the current time step, where t = 1, 2, 3, …, 9 9
Differential features diff1 First-order difference of the observations at the current time step 2

diff2 Second-order difference of the observations at the current time step
Window features window_mean_S The mean of the observations over the previous window of size S, where S = 12H, 2D, 3D, 5D, 

10D
30

window_std_S The standard deviation of the observations over the previous window of size S, where S = 12H, 
2D, 3D, 5D, 10D

window_sum_S The sum of the observations over the previous window of size S, where S = 12H, 2D, 3D, 5D, 
10D

window_skew_ S The skewness of the observations over the previous window of size S, where S = 12H, 2D, 3D, 
5D, 10D

window_kurt_ S The kurtosis of the observations over the previous window of size S, where S = 12H, 2D, 3D, 
5D, 10D

window_max_S The maximum of the observations over the previous window of size S, where S = 12H, 2D, 3D, 
5D, 10D
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Impact of feature merging strategies

In this section, the prediction performances of six base predic-
tors with five feature merging strategies are compared. Fig-
ure 8 and Table S1 give the evaluation of the experimental 
results on the validation set using base metrics, namely MAE, 
RMSE, and PCC. Given the limited length of this paper, only 
the case of Dataset #1 is shown, and the other three are not 
provided here. From Fig. 8 and Table S1, it can be found that:

1)	 None of the feature sets dominates the other when using 
different individual evaluation metrics. For instance, for 
LightGBM, when using MAE, it is Feature set #4 giving 
the minimum value of 9.9752. When using RMSE, it is 
Feature set #5. This is consistent with the reason why the 
comprehensive evaluation metric rankall is proposed.

2)	 To verify the effectiveness of the feature merging strategies, 
we take Feature set #1, which only contains lag features, as 
a baseline and compare it with the other four feature sets. In 
most cases, the optimal feature sets are among Feature set #2, 
#3, #4, and #5, i.e., the ones that adopt feature merging strate-

gies. It implies that merging features from different classes 
does have a positive contribution to predictive performance, 
outperforming features from a single class. On the other hand, 
model performance does not strictly improve with the con-
tinuous addition of features, but rather changes from good to 
bad. It implies that blindly adding features will bring some 
redundancy and complicate the model’s understanding. The 
feature filtering is then recognized as a possible better solu-
tion, which will be presented and discussed in the “Impact of 
feature filtering strategies” section.

3)	 To analyze from the perspective of features, for most 
models (XGBoost, LSTM, CNN, MLP, DNN), the opti-
mal feature set is either Feature set #1 or Feature set #2. 
One explanation for this can be that lag features and dif-
ferential features transfer more valuable knowledge for 
model prediction. As observed above, lag features and 
differential features are less correlated. Therefore, when 
the two are merged, they can complement each other well 
so that the model can achieve higher accuracy.

4)	 To analyze from the perspective of models: (a) Opposite to 
ANNs and XGBoost, LightGBM can instead benefit from 

Fig. 7   Pearson correlation matric of all variables (including can-
didate features and label) of Dataset #1. Note that: Some tick labels 
have been omitted for brevity. The actual sequence of the matrix 
from top to bottom is listed in: lag1, lag2, lag3, lag4, lag5, lag6, 
lag7, lag8, lag9, diff1, diff2, window_mean_12H, window_std_12H, 
window_sum_12H, window_skew_12H, window_kurt_12H, win-
dow_max_12H, window_mean_12H, window_std_12H, win-
dow_sum_12H, window_skew_12H, window_kurt_12H, window_

max_12H, window_mean_2D, window_std_2D, window_sum_2D, 
window_skew_2D, window_kurt_2D, window_max_2D, window_
mean_3D, window_std_3D, window_sum_3D, window_skew_3D, 
window_kurt_3D, window_max_3D, window_mean_5D, window_
std_5D, window_sum_5D, window_skew_5D, window_kurt_5D, 
window_max_5D, window_mean_10D, window_std_10D, win-
dow_sum_10D, window_skew_10D, window_kurt_10D, window_
max_10D, label
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datasets with a larger number of feature variables. When 
performing on Feature set #5, it gives the minimum RMSE 
of 14.3124 and the maximum PCC of 0.7210. It is because 
LightGBM has an exceptional technique called Exclusive 
Feature Bundling (EFB); it treats features with mutually 
exclusive relationships as one to adapt to high-dimensional 
features and avoid redundancy (Alabdullah et al. 2022). (b) 
Among all ANNs, under all evaluation criteria, the perfor-
mance of LSTM with its optimal feature set is better than 
that of other models. Moreover, DNN outperforms MLP, 
which proves that in general, the fitting capacity of ANNs 
strengthens with the increase in the number of hidden lay-

ers. Nevertheless, in most cases, ANNs perform inferior to 
tree models and are more sensitive to feature changes. This 
may be caused by the model structure or hyperparameter 
tuning that does not meet expectations.

Impact of feature filtering strategies

After training LightGBM with Feature set #5, a list of feature 
importance rankings for all candidates is output. For differ-
ent datasets, the ranking results can be quite different. Taking 
Dataset #1 as an example, Fig. 9(a) shows the top 25 features 

Fig. 8   Prediction evaluation 
metrics of base predictors with 
Feature sets #1, #2, #3, #4, and 
#5 (Dataset #1, validation set)

Fig. 9   Importance of candi-
date features: (a) The top 25 
in descending order. (b) The 
importance ratios of four feature 
classes (Dataset #1, validation 
set)
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in descending order of feature importance. Bars for features 
from different classes are distinguished by different colors. 
Figure 9(b) shows the ratios of feature importance of four 
feature classes. Lag features, differential features, window fea-
tures, and timestamp features account for 26.3%, 8.0%, 55.3%, 
and 10.3% respectively. Table S2 shows the full sorting list 
of all features. From Fig. 9 and Table S2, it can be seen that:

1)	 The “lag1” is the most important feature, with impor-
tance of 15,369, far ahead of other features. The remain-
ing lag features in the top 25 are “lag5” and “lag9,” 
ranking 22nd and 24th respectively.

2)	 Among the differential features, the importance of the 
first-order differential feature “diff1” ranks 2nd, at 5411. 
The importance of the second-order differential feature 
“diff2” ranks 23rd.

3)	 The overall importance of window features is the highest, 
most of which are ranked between the top 3 and the top 
21. The “window_sum_10D,” “window_mean_10D,” and 
“window_std_10D” are the most important, indicating that 
coarse-grained windows can better capture factors that are 
valuable for prediction. All kurtosis features, regardless of 
their window sizes, have an importance of 0.

4)	 The two most important timestamp features are “time_
hour” (ranked 6th) and “time_day” (i.e., weekday, 
ranked 18th). Both are cyclical. And the importance of 

“time_is_weekend” is only 130, which shows the AQI 
has no obvious calendar effect.

To sum up, by looking at the feature importance rank-
ings generated by the trained LightGBM, the contributions 
of individual features are paid attention to. There are weak 
features that are of low importance in each feature class. 
Therefore, if we merge features in classes, there will cer-
tainly be cases where both strong and weak features are fed 
into the model, resulting in redundancy and no significant 
improvement in the prediction performance of the model. 
Thus, the way of filtering out the contributing features to 
build feature sets is more reasonable and flexible than the 
way of simple inter-class combinations.

Figure 10 and Table S3 give the performance evaluation 
among the base predictors using different feature filtering 
strategies. It can be seen that:

1)	 To verify the effectiveness of the feature filtering 
strategies, we take Feature set #5, which contains 
all candidate features, as a baseline and compare it 
with the other five feature sets. In Fig. 10, the base-
line is displayed in the form of a black dotted line. 
A clear improvement can be seen in all ANNs after 
feature filtering. The MAEs and RMSEs are smaller, 
and the PCCs are larger. But it is not the case with 

Fig. 10   Prediction evaluation 
metrics of base predictors with 
Feature sets #6, #7, #8, #9, and 
#10 (Dataset #1, validation set)
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tree models. For instance, LightGBM performs worse 
on Feature set #9 (MAE is 10.1318) and Feature set 
#10 (MAE is 10.0542) than on Feature set #5 (MAE 
is 9.9888). The possible reason is that tree models 
require intensive feature input and can self-identify 
redundant features. The feature filtering method may 
seem unnecessary here.

2)	 To compare the effect between the feature filtering 
strategies and the feature merging strategies, we add 
the performance of base predictors with their optimal 
feature sets obtained from merging strategies, which 
is displayed in the form of a red dashed line. Some 
of the optimal feature sets are derived from the fea-
ture merging strategies. For instance, the optimal fea-
ture set of XGBoost is Feature set #2, which is per-
formed better than Feature set #6–#10, while feature 
filtering strategies also produce effective feature sets. 
For instance, DNN performs better on Feature set #6 
(MAE is 9.5981) and Feature set #7 (MAE is 9.6847) 
than Feature set #2 (MAE is 9.7990). Therefore, the 

results confirm that the feature filtering strategies do 
not always outperform the feature merging strategies.

Dynamic model matching

In this section, we use the comprehensive evaluation 
method to calculate the scores of all groups of base pre-
dictors and feature sets, which are given in Table 4. Those 
with the smallest rankall are regarded as optimal. In this 
way, the six base predictors matched with optimal features 
are obtained and subsequently used for the ensemble. We 
can conclude that the proposed feature engineering is effec-
tive overall. Eleven out of 24 optimal feature sets are the 
ones adopted filtering strategies and 7 are Feature set #2 
(adopted merging strategies).

The newly defined rankall solves the deficiencies of 
the single-metric evaluation method in terms of criteria 
and scales. On the one hand, MAE, RMSE, and PCC are 
taken as base metrics. The contributions of each base 
metric are integrated in the way of a weighted average. 

Table 4   Evaluation of all cases using the proposed metric rankall

The optimal feature sets for each predictor are shown in bold text

Dataset Base predictor Feature set

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#1 LightGBM 8.6667 5.0 8.3333 3.3333 2.6667 4.6667 0.6667 0.3333 6.3333 5
XGBoost 1.6667 0.0 8.3333 6.3333 4.0 7.3333 6.3333 3.0 6.0 2
LSTM 1.6667 1.3333 8.6667 8.3333 7.0 5.0 3.6667 1.6667 1.6667 6
CNN 1.6667 2.0 8.3333 8.6667 7.0 2.0 2.0 4.3333 4.0 5
MLP 2.6667 3.3333 7.6667 6.6667 9.0 0.0 1.6667 2.3333 5.3333 6.3333
DNN 3.0 2.0 4.0 6.6667 9.0 0.0 1.0 5.0 6.6667 7.6667

#2 LightGBM 7.0 5.0 9.0 8.0 3.6667 0.0 1.0 4.0 4.6667 2.6667
XGBoost 1.6667 3.6667 9.0 7.6667 7.0 0.0 2.6667 2.0 5.0 6.3333
LSTM 2.6667 4.6667 8.3333 7.0 8.6667 3.3333 0.3333 2.6667 1.6667 5.6667
CNN 3.6667 0.3333 7.0 8.0 9.0 3.3333 6.0 1.6667 4.0 2
MLP 1.6667 0.3333 6.3333 7.0 9.0 3.0 1.0 4.0 6.0 6.6667
DNN 1.3333 0.0 6.0 8.3333 8.6667 2.0 3.6667 3.0 6.3333 5.6667

#3 LightGBM 0.3333 1.0 7.3333 6.0 4.0 4.3333 9.0 7.0 2.6667 3.3333
XGBoost 0.3333 0.6667 8.0 6.0 5.0 2.6667 5.3333 8.0 6.6667 2.3333
LSTM 6.0 3.3333 9.0 7.3333 7.6667 4.6667 1.6667 2.3333 1.3333 1.6667
CNN 4.3333 4.3333 9.0 7.0 8.0 3.3333 4.0 2.6667 0.0 2.3333
MLP 0.0 1.0 5.0 6.6667 6.3333 2.0 3.0 4.3333 7.6667 9
DNN 0.3333 0.6667 8.0 6.0 3.3333 2.0 3.6667 6.6667 9.0 5.3333

#4 LightGBM 7.0 8.6667 6.3333 6.0 3.3333 5.6667 0.3333 0.6667 3.0 4
XGBoost 1.6667 2.6667 4.6667 7.3333 4.6667 3.3333 5.6667 9.0 4.3333 1.6667
LSTM 4.0 0.3333 8.3333 8.6667 6.3333 6.0 1.3333 4.6667 1.3333 4
CNN 5.0 1.6667 6.3333 4.3333 2.3333 5.3333 6.6667 2.0 4.6667 6.6667
MLP 8.0 7.6667 6.6667 3.6667 5.0 3.3333 5.6667 0.3333 2.3333 2.3333
DNN 6.3333 7.6667 1.6667 4.0 5.3333 4.3333 4.0 6.6667 0.3333 4.6667
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The performance of multiple criteria is comprehensively 
evaluated. On the other hand, it normalizes the errors with 
large differences to the rankings with designated ranges. 
The impact of dimensions is eliminated as well. Also, this 
metric delivers better interpretability and intuition. Its 
value ranges from 0 to 1. A smaller value indicates a bet-
ter performance.

Proposed model vs. single models

Figure 11 shows the convergence curves of OPTUNA dur-
ing the process of optimizing the ensemble weights on the 
validation sets. Figure 12 and Table 5 compare the model 
performance on the testing sets under the cases where the six 
base predictors are used alone vs. the six are ensembled by 

Fig. 11   Convergence curves of 
OPTUNA during iterations

Fig. 12   Evaluation of eight base 
models, mean ensemble model, 
and optimized ensemble model 
on the testing sets (MAE)
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averaging vs. the six are ensembled by OPTUNA algorithm. 
Table 6 gives the ensemble weights of each base predictor 
generated by OPTUNA. Figure 13 compares the predicted 
results with the actual observations on the testing sets. We 
can conclude that:

1)	 The error on the validation set gradually decreases with 
the iterations of OPTUNA going on. This indicates that 
the optimization works and has a good robustness.

2)	 In all cases, the optimized ensemble model is superior to 
single models and the mean ensemble model. And the opti-
mized ensemble model is more robust to different datasets.

3)	 The mean ensemble does not necessarily guarantee a good 
performance, and it may not be as effective as single mod-
els, such as CNN. It is because the mean ensemble cannot 
adaptively assign different weights to the base predictors 
based on the data. In contrast, the optimized ensemble can 
effectively cope with datasets of different distributions. 
As shown in Table 6, the weights for CNN are higher in 
Dataset #1, #2, and #3, which are 0.4987, 0.4807, and 
0.4888 respectively. However, in Dataset #4, CNN is only 
given a weight of 0.0017 because of its poor performance.

4)	 The geographical location and industrial factors of Urumqi 
City result in Dataset #4 having the highest AQI magnitude 
and variance among all datasets, leading to the maximum 
MAE (21.8749) and RMSE (34.5657) produced by the opti-
mized ensemble model. However, despite this challenging 
dataset, the proposed method demonstrates exceptional per-
formance in terms of PCC (0.9432), showcasing its superiority 
in dealing with highly non-stationary data. For datasets with 
inferior prediction results, such as Dataset #3, further hyperpa-
rameter tuning may be necessary, as its optimized model only 
achieves a PCC of 0.8103.

5)	 From the prediction results of the proposed model shown 
in Fig. 13, the difference between the predicted value and 
the actual observations is very small. And it can make more 
accurate tracking for some mutation points and peak values.

Overall, the results highlight the promising potential of 
the proposed method for accurately predicting AQI across 
various cities and datasets.

Conclusions

In this study, an hourly, 3-step-ahead deterministic AQI pre-
diction model involving feature engineering, dynamic model 
matching, automatic optimized ensemble is proposed and 
evaluated on datasets acquired from four different cities in 
China. We have favorable findings as follows:

1)	 The “extract-merge-filter” procedure provides valuable 
information to the model and each stage of it is proved 
to be indispensable in improving the overall performance. 
Potential information in the time series is fully exploited, 
and some groups of features (especially lag and differential 
features) are shown to be complementary, making the mod-
els stronger nonlinear approximators. The feature filtering 
plays the most important role, which is embodied in the fact 
that the optimal feature sets of 11 out of 24 cases are based 
on the filtering strategies.

Table 5   Evaluation of eight base models, mean ensemble model, and 
optimized ensemble model on the testing sets

The best performance among all models is shown in bold text

Dataset Base predictor Optimal 
feature 
set

MAE RMSE PCC

#1 LightGBM #8 12.0409 17.6659 0.9141
XGBoost #2 11.5534 17.0431 0.9152
LSTM #2 12.6915 18.5476 0.9205
CNN #1 10.8984 16.1695 0.9215
MLP #6 11.4763 16.8926 0.9155
DNN #6 11.5004 16.9261 0.9172
Mean ensemble / 11.3047 16.5697 0.9227
Optimized ensem-

ble
/ 10.9042 15.9836 0.9234

#2 LightGBM #6 14.1694 20.0062 0.8156
XGBoost #6 14.7383 21.3497 0.7908
LSTM #9 13.9294 19.6808 0.8307
CNN #2 12.3355 17.1566 0.8563
MLP #2 12.6125 17.6508 0.8508
DNN #2 12.4026 17.3142 0.8545
Mean ensemble / 12.8124 17.9425 0.8525
Optimized ensem-

ble
/ 12.1511 16.8598 0.8572

#3 LightGBM #1 8.2236 10.9524 0.7182
XGBoost #1 8.086 10.836 0.7306
LSTM #9 7.0688 9.5078 0.8087
CNN #9 6.2375 8.6454 0.8103
MLP #1 6.6329 9.0668 0.8081
DNN #1 6.1324 8.5711 0.8078
Mean ensemble / 6.8038 9.192 0.8011
Optimized ensem-

ble
/ 6.0816 8.4187 0.8103

#4 LightGBM #7 28.8691 44.7675 0.9125
XGBoost #1 27.3787 41.8499 0.9295
LSTM #2 23.3262 35.9732 0.9404
CNN #2 22.3807 36.4739 0.9376
MLP #8 22.2753 35.5991 0.9401
DNN #9 22.057 34.6938 0.9431
Mean ensemble / 22.6634 35.4941 0.9425
Optimized ensem-

ble
/ 21.8749 34.5657 0.9432
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2)	 It is more reasonable to input customized features for dif-
ferent base predictors than to input the same ones. The 
comprehensive metric that helps to achieve this integrates 
the evaluation results of three metrics and is considered 
more reliable than when the three metrics are used sepa-
rately. In addition to architecture optimization within 
the model, OPTUNA is also well suited to optimize the 
ensemble weights between multi-predictors. The opti-
mized ensemble outperformed the single machine learn-
ing models and surpassed their averaged results.

3)	 The proposed model performed well on four distinct data-
sets, demonstrating the feasibility and robustness of the 
model. More importantly, due to the sufficient works on 
AQI features, influencing factors can be ascertained from 
the prediction results and further help to implement some 
practical pollution prevention and control measures.

There is, of course, scope for future studies to put effort 
on: (a) Previous studies have demonstrated the effectiveness 
of meteorological factors, such as temperature and humid-
ity, as features in predicting AQI. Therefore, incorporating 
these variables into the proposed model and investigating 
their contributions to AQI prediction could be an area for 
further research. (b) To further enhance model accuracy, 
additional groups of features could be considered during the 
feature merging and filtering stages. For instance, using a 
finer granularity of feature filtering, with a change to a level 
of 1, could yield more reliable results and prevent the model 
from ending up in a local optimum. (c) The hyperparameter 
tuning within the models was not investigated, which may 
limit the model’s performance on certain datasets and mod-
els. More advanced hyperparameter tuning methods remain 
to be explored.

Table 6   Ensemble weights of 
each base predictor

Dataset LightGBM XGBoost LSTM CNN MLP DNN

#1 0.0646 0.2354 0.2504 0.4987 0.0012 0.0016
#2 0.0388 0.1106 0.0205 0.4807 0.036 0.3614
#3 0.0012 0.036 0.4833 0.4888 0.0598 0.0021
#4 0.1053 0.1809 0.2175 0.0017 0.2264 0.3017

Fig. 13   Comparison of the 
predicted results with actual 
observations on the testing sets
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