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Abstract
The health impacts associated with exposure to elevated concentrations of fine particulate matter (PM2.5) are well recognised. 
There is a substantial number of studies characterising PM2.5 concentrations outdoors, as well as in homes within low- and 
middle-income countries. In high-income countries (HICs), there is a sizeable literature on indoor PM2.5 relating to smoking, 
but the evidence on exposure to PM2.5 generated from non-tobacco sources in homes is sparse. This is especially relevant as 
people living in HICs spend the majority of their time at home, and in the northern hemisphere households often have low air 
exchange rates for energy efficiency. This review identified 49 studies that described indoor PM2.5 concentrations generated 
from a variety of common household sources in real-life home settings in HICs. These included wood/solid fuel burning 
appliances, cooking, candles, incense, cleaning and humidifiers. The reported concentrations varied widely, both between 
sources and within groups of the same source. The burning of solid fuels was found to generate the highest indoor PM2.5 
concentrations. On occasion, other sources were also reported to be responsible for high PM2.5 concentrations; however, this 
was only in a few select examples. This review also highlights the many inconsistencies in the ways data are collected and 
reported. The variable methods of measurement and reporting make comparison and interpretation of data difficult. There 
is a need for standardisation of methods and agreed contextual data to make household PM2.5 data more useful in epidemio-
logical studies and aid comparison of the impact of different interventions and policies.
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Introduction

Air pollution is a major hazard to public health globally, with 
nine out of ten people exposed to concentrations that exceed 
the World Health Organization (WHO) guidance limits. Poor 
outdoor air quality claims 4.2 million lives every year, and 
indoor air pollution accounts for 3.8 million annual deaths 
(World Health Organization 2021a). Particulate matter (PM) 
is one of the most common air pollutants that is associated 
with human health harms when it exceeds regulatory levels 
(Centers for Disease Control and Prevention 2021). PM2.5, 

PM less than 2.5 μm in diameter, is one of the most harmful 
pollutants to inhale due to its effects on health (Kelly and 
Fussell 2015; Schraufnagel et al. 2019).

The adverse health effects associated with exposure to 
PM2.5 are now well recognised in public health research. 
Studies have shown that exposure to elevated concentrations 
of PM2.5 is associated with an increased risk of hospitalisa-
tion for cardiopulmonary illnesses such as asthma, ischemic 
heart disease and cardiac failure (Du et al. 2016; Xing et al. 
2016; Hayes et al. 2020). In addition to being linked to mor-
bidity, chronic exposure to PM2.5 can also lead to a higher 
mortality risk for lung cancer and cardiovascular diseases 
(Arden Pope et al. 2011, 2020). The health effects of PM2.5 
extend beyond the cardiopulmonary system. Recent studies 
have found associations between PM2.5 and the incidence 
of chronic kidney disease, type 2 diabetes and cerebrovas-
cular disease (Li et al. 2017; Carey et al. 2018; Bowe et al. 
2019; Ghazi et al. 2021). There is also emerging evidence to 
suggest that dementia, autism, depression and other mental 
health disorders may be related to long-term exposure (Lam 

 *	 Sean Semple 
	 sean.semple@stir.ac.uk

	 Shuying Wei 
	 shw00153@students.stir.ac.uk

1	 Faculty of Health Sciences and Sport, University of Stirling, 
Stirling FK9 4LA, UK

2	 Institute for Social Marketing and Health, University 
of Stirling, Stirling FK9 4LA, UK

http://orcid.org/0000-0001-7069-224X
http://orcid.org/0000-0002-0462-7295
http://crossmark.crossref.org/dialog/?doi=10.1007/s11869-022-01288-8&domain=pdf


554	 Air Quality, Atmosphere & Health (2023) 16:553–566

1 3

et al. 2016; Braithwaite et al. 2019; Shi et al. 2020). Given 
the detrimental impact that PM2.5 has on health, there is a 
need to better understand how human exposure takes place. 
Characterising and investigating personal exposure to PM2.5 
will help tackle emission sources and/or change behaviour 
to reduce exposure, which should, in turn, reduce the burden 
of air pollution-related illnesses.

PM2.5 is a ubiquitous pollutant coming from an array 
of emission sources. Although air pollution is most com-
monly associated with outdoor environments, PM2.5 gener-
ated from indoor sources and breathed in within the home 
setting is likely to make up a considerable proportion of 
total population inhaled dose. Even in the twenty-first cen-
tury, 2.8 billion people still rely on burning solid fuels for 
heating, cooking and lighting (Bonjour et al. 2013). Indoor 
PM2.5 concentrations in low- and middle-income countries 
(LMICs) vary widely and are dependent on the type of com-
bustion device and fuel used. Indoor concentrations of PM2.5 
in LMICs often far exceed the WHO air quality guideline 
(AQG), which currently stand at 15 μg/m3 in 24 h and 5 μg/
m3 annually (World Health Organization 2021b). For exam-
ple, in homes with traditional solid fuel burning stoves in 
India (Arif and Parveen 2021), Mongolia (Lim et al. 2018) 
and Honduras (Young et al. 2019), mean 24-h indoor PM2.5 
concentrations have been shown to exceed 200  μg/m3. 
Indoor air quality in LMICs has been extensively studied 
in recent decades owing to its associated adverse health 
impacts and implied socioeconomic inequalities. Investiga-
tion into indoor PM2.5 in LMICs continues, especially as 
interventions aimed at tackling the problem have had varied 
success (Budya and Yasir Arofat 2011; Hanna et al. 2012; 
Mortimer et al. 2017).

In contrast to LMICs, literature on indoor PM2.5 concen-
trations in high-income countries (HICs) is comparatively 
scarce despite it also being a relevant and substantial global 
problem. Some studies have characterised indoor PM2.5 con-
centrations in non-residential places within HICs, including 
offices (Jones et al. 2021), schools (Carrion-Matta et al. 2019), 
prisons (Semple et al. 2017), restaurants (El‐Sharkawy and 
Javed 2018) and other microenvironments. However, there are 
only a small number of studies that have characterised PM2.5 
generated from sources in residential settings within HICs. 
It is important that the health impacts of household indoor 
PM2.5 levels in HICs are not overlooked, especially as people 
in HICs spend 90% of their time indoors, with almost 70% of 
that being at home (Klepeis et al. 2001; Delgado-Saborit et al. 
2011), with even higher proportions of time spent at home 
during the COVID-19 pandemic (O’Donnell et al. 2021). By 
far, the most investigated source of PM2.5 within home settings 
in HICs is second-hand tobacco smoke. Studies consistently 
show that the concentration of indoor PM2.5 is significantly 
higher in smoking homes than non-smoking homes and often 
exceeds the WHO AQG (Semple et al. 2015; Zhang et al. 

2020). The burning of solid or biomass fuels for the purpose of 
heating is one of the few non-tobacco household sources that 
has been investigated in HICs (Schluger 2014; Fleisch et al. 
2020; Chakraborty et al. 2020). Other indoor PM2.5 sources 
have received little attention, despite their commonality within 
residential settings. These include cooking, cleaning and the 
combustion of material other than biomass fuel such as candles 
and incense.

The characterisation of PM2.5 in outdoor environments has 
been studied extensively in HICs. Databases have been com-
piled to show the longitudinal changes in outdoor PM2.5 con-
centrations, as well as indicating the real-time PM2.5 at local 
levels (Air Quality in Scotland 2022; Department for Envi-
ronment Food & Rural Affairs 2022). There are also emerg-
ing citizen networks, such as PurpleAir that report both out-
door and indoor PM2.5 (PurpleAir 2022). Despite increasing 
awareness of the need to characterise indoor PM2.5, research 
into concentrations within home settings in HICs is relatively 
uncommon. In addition, most studies that report residential 
PM2.5 concentrations in HICs focus primarily on health out-
comes (Habre et al. 2014; Karottki et al. 2014). It is often not 
obvious from the title of the articles that the studies involve 
measuring indoor PM2.5 thus making it difficult for those inter-
ested in the field to readily access or identify what has already 
been achieved. This systematic review, therefore, intends to 
identify, collate and appraise all relevant studies that inves-
tigate the indoor PM2.5 concentrations generated from com-
mon household sources in HICs and provide a comprehensive 
overview. The following research questions will be addressed 
in this systematic review:

1.	 What are the indoor concentrations of PM2.5 generated 
from common sources (excluding tobacco or e-ciga-
rettes) in homes within HICs?

2.	 How do indoor concentrations of PM2.5 in homes within 
HICs compare to the WHO air quality guideline 2021?

3.	 What are the methods used in existing studies to meas-
ure and report concentrations of PM2.5 in homes within 
HICs?

By reviewing the current literature and drawing compari-
sons between various sources of PM2.5, this review aims to 
highlight the direction in which future research in the field 
should focus, and ultimately benefit the health of people 
living in HICs who are at risk of exposure to elevated con-
centrations of PM2.5 at home.

Materials and methods

This systematic review was performed following the best 
practices outlined by the Centre for Reviews and Dissemi-
nation (Centre for Reviews and Dissemination 2009) and 
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the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) (Page et al. 2021).

Search methods

A literature search was conducted using the PubMed data-
base. The search strategy consisted of key terms covering 
three topic areas; air quality, emission source and setting. 
Search terms used to describe air quality included; indoor, 
home, residential, household, particulate matter and PM2.5. 
Exact names of household products or activities that gener-
ate indoor PM2.5 in home settings were used to search for 
emission source. Examples of these sources are woodstove, 
cooking fume, candle and humidifier. As for the setting, due 
to there being very few relevant studies conducted in HICs, 
the Boolean Logic “NOT” function was employed to exclude 
LMICs where studies concerning levels of indoor PM2.5 are 
most commonly conducted. Details of the search strings are 
provided in Supplementary Information 1. On the account 
of the envisaged scarcity of studies in the area of interest, 
there was no restriction on publication date and the search 
included all studies through to January 2022.

Eligibility criteria

Studies were included if they met the following eligibility 
criteria: (1) conducted in HICs as defined by the World Bank 
in 2021 as having a gross national income per capita above 
12,695 USD (The World Bank 2021); (2) PM2.5 concentra-
tions measured and reported in µg/m3; (3) PM2.5 concentra-
tions measured in real-life indoor residential settings (i.e. not 
laboratory settings, or home settings with highly controlled 
variables); and (4) the exposure to PM2.5 was objectively 
measured and was not a subjective assessment or self-
reported proxy for exposure. Studies were excluded if they 
were not published in English, or reported PM2.5 concentra-
tions generated from tobacco combustion (e.g. cigarette or 
pipe smoking) or e-cigarette sources (vaping). A post hoc 
decision was made during full-text screening stage about 
studies that sampled in both smoking and non-smoking 
homes; studies were excluded if the reported data could not 
be separated from smoking and non-smoking households.

Selection process

The information from retrieved articles was imported into 
an Excel spreadsheet. After duplicates were removed, one 
researcher [SW] screened the titles and, where applicable, 
abstracts to identify relevant studies according to the eli-
gibility criteria. Full-text articles were assessed if the rel-
evance of a study was not obvious from its title or abstract. 
The second researcher [SS] randomly selected 10% of all 
retrieved articles and independently assessed the studies’ 

relevance to the research questions and whether they met 
the inclusion criteria. The random selection of the 10% 
sample was performed in R using Dplyr with the slice_
sample function. The initial agreement on studies’ eligi-
bility was 98% between the two researchers; discrepan-
cies were resolved after discussion. Reference checking 
for additional relevant articles was carried out to maximise 
the capture of related studies; references were cited by 
the included studies as well as those citing the included 
studies.

Data extraction

A data extraction form was designed and piloted before its 
application to all included studies. The extracted data was 
organised into two categories, one being study character-
istics such as sample size, enrolment period and country 
where the study was conducted and the other category being 
methods of exposure assessment in which the following data 
were recorded: PM2.5 source, sampling duration, measure-
ment device, location of measurement, type of measurement 
(static or personal) and main findings. The data extraction 
was completed by one researcher [SW] with the second 
[SS] cross-checking approximately 10% (n = 7) of studies 
to identify and minimise errors. The sampling of studies for 
cross-checking was conducted through selection of the 4th 
row and then every subsequent 10th row thereafter on the 
data extraction spreadsheet.

Quality appraisal

The exposure assessment methods in included studies were 
appraised for their risk of bias. The appraisal was carried out 
using three criteria from the National Institutes of Health’s 
quality assessment tool for observational cohort and cross-
sectional studies (National Institutes of Health 2021). The 
criteria were as follows:

1.	 For exposures that can vary in amount or level, did the 
study examine different levels of the exposure as related 
to the outcome (e.g., categories of exposure, or exposure 
measured as continuous variable)?

2.	 Were the exposure measures (independent variables) 
clearly defined, valid, reliable and implemented consist-
ently across all study participants?

3.	 Was the exposure(s) assessed more than once over time?

Studies that answered “yes” to all three criteria were rated 
as low risk of bias, one “no” as being medium risk and two 
“no’s” as having high risk. All studies were included in data 
synthesis despite their levels of risk of bias.
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Results

Study selection

A total of 5553 articles were retrieved from the literature 
search on PubMed and by reference-checking. After remov-
ing 2167 duplicates, 2564 studies were excluded based on 
their titles and a further 677 on their abstracts. The remain-
ing 145 articles proceeded onto the full-text screening stage 
in which 96 were excluded due to the following reasons: 
did not measure and report PM2.5 concentrations; measured 
PM2.5 concentrations in outdoor, non-residential locations, 
laboratories or home settings with highly controlled vari-
ables; did not objectively measure exposure to PM2.5; and 
could not separate data from smoking and non-smoking 
homes. Thus, 49 studies were included in this systematic 
review (Fig. 1).

Study characteristics

Supplementary Information 2 details the main characteris-
tics of included studies. There were 22 studies conducted 
in Europe; five in the UK (Wigzell et al. 2000; Nasir and 
Colbeck 2013; O’Leary et  al. 2018; Chakraborty et  al. 
2020; Shehab et al. 2021); three in Portugal (Alves et al. 
2020; Madureira et al. 2020; Marques and Pitarma 2020); 
two each in Sweden (Molnar et al. 2005; Omelekhina et al. 
2022), Italy (Frasca et al. 2018; Pietrogrande et al. 2021) 
and Greece (Sarigiannis et al. 2014; Assimakopoulos et al. 
2018); one each in Finland (Siponen et al. 2019), Norway 
(Wyss et al. 2016), Denmark (Karottki et al. 2014), Germany 

(Salthammer et al. 2014), Poland (Jedrychowski et al. 2006), 
Switzerland (Monn et al. 1997) and Belgium (Stranger et al. 
2009); and one study was multicentric (UK and the Republic 
of Ireland) (Semple et al. 2012). There was only one study 
each from Asia (Japan) (Ohura et al. 2005), the Middle East 
(Kuwait) (Yassin et al. 2012), Oceania (Australia) (Mazaheri 
et al. 2018) and South America (Chile) (Rojas-Bracho et al. 
2002). North America had the most studies, with 18 con-
ducted in the USA (Abt et al. 2000; Brugge et al. 2003; Wal-
lace et al. 2003; Rojas-Bracho et al. 2004; Allen et al. 2004, 
2008; Olson and Burke 2006; Baxter et al. 2007; Brown 
et al. 2009; Hart et al. 2011; Ward et al. 2011; Noonan et al. 
2012; Paulin et al. 2013; McNamara et al. 2013; Semmens 
et al. 2015; Fleisch et al. 2020; Zhao et al. 2020; Hadeed 
et al. 2021) and five in Canada (Allen et al. 2009; MacNeill 
et al. 2014; Wheeler et al. 2014; Jeong et al. 2019; Mendell 
et al. 2022). Included studies were published between 1997 
and 2021 with 32 of 49 published since 2011 (Fig. 2).

The two most common types of measurement meth-
ods used to quantity PM2.5 concentrations were utilised in 
equal proportion across the studies; optical and gravimetric 
devices were each employed in 24 studies, with one study 
using both optical and gravimetric methods. Static sampling 
was adopted in 37 studies, four placed devices on partici-
pants and eight studies used both static and personal place-
ments. Table 1 provides details of placement methods within 
each type of device.

Out of 49 studies, 40 reported methods in measuring 
concurrent outdoor PM2.5 concentrations. Data on indoor 
and outdoor PM2.5 concentrations was available for 31of 
these studies (Supplementary Information 3) and was 

Fig. 1   Flow diagram of the 
study selection process
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extracted. Indoor-to-outdoor (I/O) ratios for each of the 
studies with complete extractable datasets are presented 
in Fig. 3. Values > 1 indicate a higher indoor PM2.5 con-
centration than that measured outdoors.

*I/O ratios are calculated based on measures of central 
tendency provided in individual original articles.

Of all included studies, 32 were rated as having a low 
risk of bias for their exposure assessment methods, 15 
studies had medium risk, and only two were assessed as 
having high risk of bias. Most studies that were rated as 
medium risk were so, due to short sampling durations that 
would be insufficient in capturing behavioural variabili-
ties; in this systematic review, insufficient sampling period 
was defined as being ≤ 72 h. The remaining medium risk 
studies failed to specify the location of sampling device 
placement, potentially resulting in measurement errors 
within individual included studies. Studies deemed as 
being at high risk of bias failed on both sampling duration 
and specificity of device placement.

Fig. 2   Number of included 
studies published in each year

Table 1   Placement methods within each type of device

Type of device Device placement Number of 
studies

Gravimetric Both static and personal 6
Personal 3
Static 15

Optical Both static and personal 1
Personal 1
Static 22

Both gravimetric and 
optical

Both static and personal 1

Fig. 3   Calculated I/O ratios of 
included studies
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Sources of exposure

Although many studies investigated exposure sources 
other than those listed in Supplementary Information 1, 
only original studies that reported concentration in μg/m3 
were included in this systematic review. Studies that did 
not report actual measurements relating to a particular 
source, but instead provided general values of static or 
personal PM2.5 concentrations, are included in the analy-
sis as having “no specific source”.

Woodstoves

Indoor PM2.5 generated from woodstoves was measured 
in a total of 15 studies. The reported PM2.5 concentra-
tions varied widely between studies, with 24-h mean or 
median ranging from as high as 45.0 μg/m3 (Noonan et al. 
2012) down to 4.1 μg/m3 (Siponen et al. 2019). Figure 4 
illustrates the varied concentration in the ten studies that 
report PM2.5 in woodstove using homes in a 24-h period 
and how they compare with the WHO AQG level. Not 
all studies reported their PM2.5 concentrations over 24 h. 
Two studies reported 48-h average PM2.5 concentrations 
of 28.8 (Semmens et al. 2015) and 32.3 (McNamara et al. 
2013) μg/m3. A further two gave PM2.5 concentrations as 
hourly means of 12.2 (Chakraborty et al. 2020) and 26.4 
(Wyss et al. 2016) μg/m3. Only one study (Fleisch et al. 
2020) reported a weekly median PM2.5 value as being 
6.65 μg/m3.

Solid fuel burning

Six studies investigated PM2.5 concentrations associated 
with solid fuel appliances other than just wood combustion. 
Two studies examined biomass-burning fireplaces, with 
one reported the daily mean being 31.1 μg/m3 (Marques 
and Pitarma 2020), and the other estimated the 24-h mean 
PM2.5 concentration at 50  μg/m3 during a cold period 
whilst fireplaces were operating (Sarigiannis et al. 2014). 
One study investigated two types of solid fuel combustion, 
coal and peat burning, with 24-h mean PM2.5 concentra-
tions measured at 7.4 and 10.9 μg/m3, respectively (Semple 
et al. 2012). Coal/wood burning stoves were examined by 
two studies; one reported the average PM2.5 concentration 
in August as being 22.9 μg/m3 and in December as 15.0 μg/
m3 (Paulin et al. 2013), whilst the other gave mean personal 
exposure to PM2.5 when coal/wood stoves were in operation 
as 48.2 μg/m3 (Jedrychowski et al. 2006). The 24-h mean 
PM2.5 concentration associated with solid fuel burning in 
general was reported by one study, giving 12.5 μg/m3 in 
the non-heating season and 33.9 μg/m3 during the heating 
season (Hadeed et al. 2021).

Cooking

A total of 16 studies examined PM2.5 concentrations 
related to cooking. Like the previous two sources of expo-
sure, there is a great deal of variation between studies in 
terms of time periods in which the measurements were 
reported and in the concentration values themselves. Three 

Fig. 4   Studies that reported 
woodstove related PM2.5 con-
centration in a 24-h period
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studies reported the peak PM2.5 concentration during 
cooking. Omelekhina et al. (2022) reported a single peak 
value as high as 3050 μg/m3, whereas the other two studies 
provided averaged peak values. Zhao’s et al. demonstrated 
5-min median peak PM2.5 concentration of 37 μg/m3 (Zhao 
et al. 2020), whilst Noonan’s study reported a median peak 
value an order of magnitude higher at 305 μg/m3 (Noonan 
et al. 2012). Four studies reported their PM2.5 concen-
trations in 24-h periods, with the values from the three 
studies (Semple et al. 2012; Siponen et al. 2019; Pietro-
grande et al. 2021) conducted in Europe being relatively 
similar to one another, ranging from 3.1 to 18.7 μg/m3, 
whilst a 24-h mean value of 54.7 μg/m3 reported from a 
study in Kuwait is significantly higher (Yassin et al. 2012). 
One study reported its PM2.5 concentration as an hourly 
mean (Wyss et al. 2016), and another two studies as 48-h 
means (Wigzell et al. 2000; Jedrychowski et al. 2006). 
The remaining six studies (Olson and Burke 2006; Baxter 
et al. 2007; O’Leary et al. 2018; Mazaheri et al. 2018; 
Alves et al. 2020; Shehab et al. 2021) (Table 2) reported 
their cooking related PM2.5 concentrations over various 
sampling durations, thus making them difficult to group 
and directly compare.

Candle and incense

Five studies characterised indoor PM2.5 associated with the 
use of candles and with a further one study investigating the 
burning of incense. The burning of incense was reported to 
increase indoor PM2.5 concentration by an average of 6 μg/
m3 (Wallace et al. 2003). Two studies reported PM2.5 con-
centrations of 70 (Noonan et al. 2012) and 36 (Assimako-
poulos et al. 2018) μg/m3 during candle burning, while the 
remaining three reported values over various time frame. 
For example, a mean hourly concentration of 20.3 μg/m3 
was reported by Wyss et al. (2016); Jedrychowski et al. 
measured the 48-h mean personal exposure to PM2.5 during 
the burning of candles as being 45.6 μg/m3 (Jedrychowski 

et al. 2006); and the indoor daily median concentration in 
Siponen’s study was 4.2 μg/m3 (Siponen et al. 2019).

Cleaning

Two studies examined PM2.5 emission associated with 
household cleaning. One study reported the median peak 
PM2.5 during cleaning was 28 μg/m3 (Noonan et al. 2012), 
whereas the other found house cleaning activities led to 
a daily median indoor PM2.5 concentration of 4.5 μg/m3 
(Siponen et al. 2019).

Humidifier

Only one study characterised PM2.5 associated with the use 
of a humidifier in a real-life setting; this is perhaps due to 
humidifiers not being common household items. Neverthe-
less, the use of a humidifier was shown to lead to an approxi-
mate five-fold increase when compared to ambient PM2.5 
concentrations. From Brown’s study, the mean exposure was 
calculated to be 49.5 and 59.0 μg/m3 in winter and summer, 
respectively (Brown et al. 2009).

No specific source

As previously mentioned, not all studies related indoor 
PM2.5 concentrations to a specific emission source as 15 
of the 49 studies measured general indoor PM2.5 levels at 
home. Despite the generality of these studies, they also 
show considerable variation in measurement and reporting 
methods. Abt used 12-h mean PM2.5 concentration across 
homes, reporting a value of 13.9 μg/m3 (Abt et al. 2000), 
whilst both Allen (Allen et al. 2004) and Jeong (Jeong et al. 
2019) gave hourly mean concentrations between 5.9 to 
8.7 μg/m3. Five studies reported means or medians over 24-h 
periods. Two of these studies had very similar values, with 
MacNeil reporting 6.78 μg/m3 in winter and 10.10 μg/m3 
in summer (MacNeill et al. 2014), whilst Nasir’s saw PM2.5 
concentrations of 6 and 9 μg/m3 in respective seasons (Nasir 

Table 2   Studies examining cooking related PM2.5 that have not been described in main text

Sampling duration Central tendency Main findings (μg/m3)

Shehab et al. 2021 Four days Mean 24.7–50.0
O’Leary et al. 2018 Two weeks Mean Week 1 26.8–226

Week 2 20.7–308
Alves et al. 2020 Two homes for 48 h, two for 72 h Mean 14–30
Mazaheri et al. 2018 One week Mean Weekdays 6.47–9.49

Weekend 6.10–13.0
Baxter et al. 2007 Three to four days in two seasons Mean 6.77–74.9
Olson and Burke 2006 Seven days in each of the four seasons Mean 42–377
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and Colbeck 2013). Stranger and Ohura also reported similar 
results, with Stranger reporting a mean PM2.5 concentration 
of 29.5 μg/m3 (Stranger et al. 2009), whilst Ohura found 
mean personal exposure in a living room during winter to be 
35.3 μg/m3 and 16.5 μg/m3 in summer (Ohura et al. 2005). 
The one study conducted in Chile found 24-h mean personal 
exposure to be 69.5 μg/m3 and indoor static measurement 
to be 68.5 μg/m3 (Rojas-Bracho et al. 2002), which are 
significantly higher than the four studies conducted in 
Europe and North America. The remaining seven studies 
(Monn et al. 1997; Brugge et al. 2003; Rojas-Bracho et al. 
2004; Allen et al. 2008; Karottki et al. 2014; Madureira et al. 
2020; Mendell et al. 2022) investigating residential PM2.5 
concentrations, not related to a particular source, all used a 
variety of measurement methods and reported their findings 
over time periods specified in the original articles (Table 3).

Discussion

This review identifies only 49 studies, spanning a period 
of nearly 25  years, that have measured and quantified 
concentrations of PM2.5 in non-smoking homes in HICs. 
Many countries appear to have no published data on 
typical household concentrations. In the small number of 
studies identified, there is considerable variability that is 
often difficult to interpret due to the lack of qualitative or 
contextual data on the sources and individual behaviours of 
household residents. The burning of wood and other solid 
fuels, cooking, the burning of candles and incense, house 
cleaning and the use of humidifiers have all been studied to 
varying extent and shown to lead to household indoor PM2.5 
concentrations in HICs that exceed the WHO AQG. Despite 
the many differences in study design and methodology 
making direct comparison between studies and the extraction 
of meaningful conclusions difficult, wood/solid fuel burning 
appliances appear to be the most likely to produce high 
concentrations of PM2.5 with almost half of the included 

studies concerning this source reporting values above the 
WHO AQG 24-h level. Very few studies concerning other 
sources of exposure report such high PM2.5 concentrations, 
although there are examples for each source that stand out as 
having the ability to generate high concentrations.

Although this review has identified that household 
sources within HICs can lead to indoor PM2.5 concentrations 
that exceed the WHO AQG; however, they tend to be much 
lower than those reported in LMICs. For example, the mean 
indoor PM2.5 concentrations in kitchens with traditional 
biomass or solid fuel burning stoves in LMICs can be 
between 530 and 990 μg/m3 (Pope et al. 2017), whereas in 
this review, the highest reported concentrations associated 
with similar sources are in the region of 50 μg/m3 in a 24-h 
period. This echoes similar findings in Lim’s review that 
concludes the personal exposure to PM2.5 in HICs is much 
lower than countries in other classifications by income 
levels (Lim et al. 2022). The difference in indoor PM2.5 
concentrations between smoking and non-smoking homes in 
HICs is another avenue for comparison. From the included 
studies within this review where samples were obtained from 
both smoking and non-smoking homes,1 smoking, either 
from active smoking or second-hand smoke, led to indoor 
PM2.5 concentrations to increase by 5.7 to 37 μg/m3. It is 
important to be mindful of these values when comparing 
data and that there are many factors to consider when 
drawing conclusions from these results.

It is apparent from the review of literature that there 
are limited data on household indoor PM2.5 related to non-
tobacco sources within HICs. These studies in HICs only 
started to emerge in the late 1990s with just two to three 
publications per year thereafter, culminating in a total of 
49 studies. Despite the inherent difficulties of carrying out 

Table 3   Studies examining non-source specific PM2.5 concentrations that have not been described in main text

Sampling duration Central tendency Main findings (μg/m3)

Karottki et al. 2014 45 h Median 11.8
Madureira et al. 2020 48 h Mean 31
Monn et al. 1997 48 to 72 h Mean 18.3–26.0
Rojas-Bracho et al. 2004 One 6-day period in winter, one or two 2-day 

period(s) in summer
Mean Winter Summer

Personal 2.6–128.0 0.6–68.9
Indoor 3.5–73.2 1.6–52.1

Brugge et al. 2003 Six 24-h periods for 7 homes, three 24-h periods 
for 2 homes

Mean 12.3

Allen et al. 2008 Ten days Mean 5–19
Mendell et al. 2022 Four 7-day periods Median 2.7

1  This systematic review only included data from non-smoking 
homes; however, individual studies may have also reported data for 
smoking households.
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exposure assessment studies in LMICS, there is considerably 
more research in these settings. Due to the focus on indoor 
combustion in homes within LMICs, a systematic review 
conducted in 2017 identified 55 studies in LMICs that 
characterised indoor PM2.5 associated with the use of 
cookstoves (Quansah et al. 2017).

Within the literature on PM2.5 concentrations in homes 
within HICs, biomass and solid fuel burning for heating, 
followed by cooking fume, are the focus in most of the 
identified studies, whilst only a handful of studies investigated 
PM2.5 generated from house cleaning, the burning of candles 
and incense, and other PM-generating activities. There is also 
a geographical skew in the location of conducted studies, 
with the majority of studies carried out in North America 
and Europe. Other HICs, especially those in Asia, the Middle 
East, Oceania and South America, are seldom mentioned, 
creating significant gaps within the literature.

Within the limited literature on the indoor PM2.5 generated 
from household sources, there are two predominant methods 
utilised in the quantification of PM2.5; these are optical and 
gravimetric. Despite their widespread use within the field, 
there remain considerable differences, not only between 
measurement methods, but also within the two groups of 
devices, with variation arising between different models and 
brands based on the same measurement technology (Lanki 
et al. 2002; Wallace et al. 2011). At present, there appears to 
be no recognised standard procedure or calibration technique 
to correct for many of these differences. This problem in 
measurement is further complicated by the implementation 
of the measurement technique by researchers in different 
studies. Some studies use a static placement of the sampling 
device, whilst others adopt a personal device which yields 
PM2.5 concentrations as experienced by occupants within 
the study households (Adgate et al. 2003). This variability 
in measurement methods makes direct comparison across 
studies difficult. In addition to this challenge, results are 
reported using a wide range of averaging times and various 
measures of central tendency. For instance, studies that only 
report PM2.5 concentrations during the activity may produce 
exceptionally high values and thus not reflect a 24-h period 
rendering them incomparable against the WHO AQG 24-h 
level. As described earlier, the majority of studies were 
rated as having medium or high risk of bias due to exposure 
measurement methods failing to sample for more than 
72 h. However, even with longer sampling periods, many 
behavioural variabilities may not be captured, making it 
difficult to estimate an annual average exposure, another 
WHO AQG metric. These factors highlight that without a 
standardised approach to the measurement and reporting of 
household PM2.5 concentrations, any meaningful comparison 
of data between studies is not only difficult but may also lack 
any validity. This closely echoes the conclusions and findings 
of another systematic review by Younger et al. (2022).

There would also appear to be a great degree of variability 
in the measured PM2.5 concentrations from the same source 
across and within studies, although, as just discussed, it is 
perhaps difficult to distinguish true variation in a source 
of exposure from the variation and uncertainty of the 
measurement device and method. Another consideration 
that may greatly impact measured values is contextual 
outdoor PM2.5 concentration. This significantly differs both 
temporally and spatially and will influence indoor PM2.5 
concentration during the sampling, depending on house 
location and time of day and season (Cyrys et al. 2004; Chen 
and Zhao 2011). Among the studies herein collated, 31 of 
the 49 made reference to and had extractable outdoor PM2.5 
measurements from either central monitoring sites or directly 
outside of participating homes. It is clear that outdoor 
concentrations are a consideration among researchers in the 
field. However, the overwhelming majority fail to report 
metrics such as building characteristics, ventilation and air 
exchange rate, among other structural and meteorological 
factors that would be required to comment on the effect that 
outdoor PM2.5 infiltration has on indoor measurements.

Further research is clearly required to build a more 
comprehensive picture of the exposure to indoor PM2.5 in 
homes within HICs. The contribution to this understanding, 
however, must be conducted and presented in a way that 
allows for ease of direct comparison between individual 
studies, such that meaningful conclusions may be drawn. 
Thus, there is an obvious need for standardised methods 
in both the measurement and reporting of indoor PM2.5 
concentrations in this field of research. Such standardisation 
would perhaps be analogous to that called for in occupational 
exposure to hazardous substances (National Institute for 
Occupational Safety and Health 2002; Kromhout 2002). 
Parameters such as sources of exposure, times, locations 
and households would all need to be considered in such a 
standardised framework. Researchers should ensure that 
sampling devices, whether they be based on optical and 
gravimetric technologies, produce accurate, reliable and 
comparable values. This may be achieved by calibrating 
optical instruments by co-locating with reference gravimetric 
samplers. Values from optical instruments can then be 
reported after adjustment with these gravimetrically-
derived calibrations (Wang et al. 2016; Vogt et al. 2021). 
Defining and standardising a minimum sampling duration 
that is representative of a household’s activity is another 
consideration that would greatly improve the validity of 
intra- and inter-study comparison. This data should then be 
reported in a standardised time weighted average and perhaps 
be consistent with that of the WHO AQG, which currently 
uses 24-h and annual average intervals for PM2.5 exposure. 
To allow for the comprehensive interpretation of data, as 
advocated in the field of occupational exposure, the collection 
and reporting of certain contextual information should be 
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mandated. Examples of such information should include 
corresponding outdoor PM2.5 concentrations, building 
characteristics and ventilation conditions as a minimum.

An extrapolation that is pertinent to this review is the 
potential benefit of a low-cost PM2.5 monitor that provides 
instantaneous feedback. As already discussed, people in 
HICs spend a significant amount of time at home, and thus 
household sources that generate high levels of PM2.5 pose 
potential health risks to occupants that are unknowingly 
exposed for extended periods of time. Having easy and reli-
able access to real-time PM2.5 values may prompt residents 
to alter behaviours and limit their own exposures. This may 
include opening windows when cooking or minimising the 
use of candles. Such devices would provide the most ben-
efit to individuals with existing respiratory conditions as a 
means of preventing the exacerbation of their illnesses which 
in turn may maintain or improve health, and reduce avoid-
able burden on the healthcare system.

Strengths and weaknesses

There are several limitations to this systematic review. 
Firstly, the use of a single database for literature search may 
result in a very small number of studies being neglected 
from inclusion. PubMed, however, is likely to be the most 
comprehensive database for literature on indoor air quality 
in homes; thus, the omission should be minimum. Returned 
studies were single-screened based on their titles and 
abstracts by one researcher in the selection stage. Although 
10% of these were independently assessed by a second 
researcher, it is still possible that relevant, but less explicitly 
so, studies were overlooked and not included. Their inclu-
sion would not have been possible without screening the 
full-texts, an impracticable task for any systematic review 
of this kind. As only articles published in English were 
included, this systematic review would also have neglected 
a very small number of studies concerning indoor PM2.5 
concentrations that have only been published in other lan-
guages. In addition to the limitation associated with the 
exclusion of potentially relevant studies, there are limita-
tions associated with the extracted data itself. Due to the 
highly varied sample sizes and recruitment methods used 
across the included studies, the studies’ samples may not be 
representative of the target population, introducing bias and 
lowering the generalisability of the conclusions drawn from 
the review. The quality appraisal tool implemented in this 
systematic review to assess the risk of bias for the exposure 
assessment methods rather than the actual study designs 
themselves. It is therefore possible that this review includes 
studies with low external validity. The last noteworthy limi-
tation pertains to the current lack of standardised methods 

for the measurement of PM2.5, with different studies using a 
variety of measurement devices and sampling durations, as 
discussed earlier. The potential observational errors in the 
included studies themselves can again negatively impact on 
the conclusions drawn.

Conclusion

This systematic review collates existing studies concerning 
indoor PM2.5 concentrations associated with common 
household sources in HICs and reveals that these can, at 
times, generate PM2.5 concentrations inside homes that 
exceed the WHO AQG. The small number of studies 
identified in this review highlights the need for more research 
into concentrations of PM2.5 in homes within HICs. This 
review also provides insight into the current indoor PM2.5 
measuring and reporting techniques which were found to 
vary greatly between studies. This high degree of variability 
in exposure assessments and the presentations of results 
suggests that more uniform and standardised methodologies 
are needed in future research. Most importantly, this 
systematic review highlights the need to promote public 
education around PM2.5 pollution in home settings and 
guide people to make more informed choices in lifestyles or 
behaviour. This should consequently reduce the health risks 
associated with exposure to high concentrations of PM2.5, and 
ultimately protect the health of people in HICs.
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