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Abstract
Smart farming (SF) has emerged as a scientific approach exploiting technology advances for the management of agricultural 
practices, focusing on the control of resources and chemicals used. There is still limited evidence in the scientific literature 
in regard to the efficiency of SF, particularly for targeted environmental issues, such as air pollutant emissions from agri-
cultural activities. The present paper expoits quantitative data collected from questionnaires to farmers of 6 pilot areas in 
Greece, participating in the LIFE GAIA Sense project. Emissions and pollutant levels were calculated for two consecutive 
years in these pilot areas, namely 2019 (baseline year) and 2020, which is the first SF application year. The methodology 
for calculating realistic emissions data, following a combined tier 1/tier2 approach is presented. To this purpose, detailed 
activity data of the specific SF application areas related to agricultural activities were acquired, based on the responses 
of participating farmers to targeted questionnaires. Calculated emissions were used as input data for air quality modeling 
simulations to examine the efficiency of SF in reducing local pollutant concentrations. The results show significant emis-
sions and concentrations reductions in five out of the six pilot areas, for all pollutants and greenhouse gases studied, due to 
the decrease in fuel consumption and N fertilizer applied, as a result of the farmers following the SF advice. Particularly 
for NH3, which is an agricultural air pollutant of concern due to its health and environmental impacts, emission reductions 
of around 30% (and by up to almost 60%) were calculated.

Keywords  Agricultural air pollutant and greenhouse gas emissions · Air pollution modeling · Air pollution management · 
Smart farming · Sustainable agriculture

Introduction

An important environmental pressure of agricultural activi-
ties relates to air quality deterioration. Agriculture is a com-
mon driver for both air pollution and climate change and 
these feedback mechanisms have to be considered when 
assessing the relevant environmental impacts of agricultural 
practices. Many agricultural activities rely on energy con-
sumption of relevant machinery and equipment, resulting 
to significant emissions of greenhouse gases (GHGs) and 
air pollutants, including carbon dioxide, nitrogen oxides, 
and particulate matter (mainly PM2.5 and PM10). Activi-
ties throughout the life cycle of agricultural products and 

livestock that rely on fossil fuel usage, e.g., energy required 
for heating/lighting and cooling in greenhouses and live-
stock premises, for routine agricultural activities (ploughing, 
spraying, harvesting, shredding, etc.), and for the transport/
loading of the products to shelves of retailers are important 
emitters. All the above agricultural activities also emit a sig-
nificant amount of particulate matter, accounting for around 
16% of PM10 emissions in the EU emission inventory of 
2019 (EEA 2019a). Furthermore, N2O emission from crop-
lands as a result of biological nitrification and denitrification 
processes in soils is an important contributor in GHGs emis-
sions in Europe. According to the latest EU GHG inventory, 
GHG emissions in the agricultural sector represent almost 
10% of the total EU GHG emissions (EEA 2019b). Ferti-
lizer application in agricultural soils is an important agri-
cultural source of ammonia (NH3), nitrogen oxides (NOx), 
and nitrous oxide (N2O) emissions, accounting for 93%, 8% 
(EEA 2019a), and 5.9% (EEA 2019b) of total EU emissions, 
respectively. In particular, the alkaline ammonia emissions 
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from N fertilizer application contribute to the formation of 
inorganic fine airborne particulate matter (PM2.5), follow-
ing the reaction with sulfuric and nitric acid (Erisman and 
Schaap 2004), with significant health and climatic effects.

To reduce farming-related atmospheric emissions, 
appropriate technology tools and methodologies to realis-
tically evaluate atmospheric impacts and suggest mitigation 
options at farm level may be of use to farmers and policy 
makers. In this frame, the European Commission funds 
research and demonstration projects aiming to develop 
data-driven Decision Support Systems to promote sustain-
able agricultural practices, taking advantage of state-of-
the-art technological advances covered by the umbrella 
term “Smart Farming” (SF). SF refers to the exploitation 
of real-time data relevant to agricultural activities by farm-
ers in order to optimize their use of chemicals (fertilizers, 
pesticides) and natural resources (water, energy), so as to 
reduce the associated cost and environmental impact, while 
retaining or, ideally, increasing crop yield. SF applications 
represent an emerging and promising digital agriculture 
methodology, as relevant data are collected via remote sens-
ing and monitoring sensors of low-cost (e.g., for measuring 
air quality, meteorological parameters), and are then dis-
tributed to farmers via smart systems such as the Internet 
of Things (IoT) platforms, Big Data, artificial intelligence, 
and cloud computing (Lieder and Schröter-Schlaack 2021).

An example of a European developed SF system is dem-
onstrated in the GAIA Sense Smart Farming application, 
which has been developed as a resource efficiency tool for 
agricultural enterprises. The project LIFE GAIA Sense 
(URL 1) targets agriculture related environmental issues 
through the development and application of an innovative 
SF system that aims at reducing the consumption of natu-
ral resources and minimizing environmental impact, while 
increasing crop production. Its main purpose is to monitor 
crops, collect high-resolution environmental data, and offer 
advice about irrigation, fertilization and pesticides based on 
site-specific soil, weather, and plant nutrition data. This phi-
losophy leads to an increase of resource efficiency, promot-
ing sustainable and circular economy in the agriculture sec-
tor. One of the main objectives of the project is to evaluate 
and quantify the environmental impact of the GAIA Sense 
application in terms of air, soil and water pollution by imple-
menting 18 demonstration pilot campaigns across Greece, 
Spain, and Portugal.

SF applications are not strongly supported by current 
policy regulation, according to the workshop report of the 
European Commission’s Joint Research Centre, which took 
place in the Milan World Expo, with the theme “Feeding the 
planet, energy for life,” in 2015. This lack of policy action 
reflects lack in awareness among public and sector stake-
holders, partly stemming from inadequate scientific evidence 
and quantified results. A number of scientific efforts have 

focused on a review of opportunities and risks related to SF 
(Lieder and Schröter-Schlaack2021), but quantification of 
individual environmental gains at farm level is still lacking. 
In terms of air quality improvement, estimation of agricul-
tural emissions of air pollutants is primarily directed toward 
national or state scales (Almaraz et al. 2018; Gu et al. 2018), 
while research and statistical analysis of results on a farm-
level are very scarce. As emissions of air pollutants from 
agricultural activities affect primarily exposure of farmers 
and farm workers, as well as populations of surrounding 
areas, it is important to assess the improvement of local air 
quality as a result of SF application. By collecting, synthe-
sizing, and statistical analysis of farm level air pollutant 
emissions and concentration data from many small farms, it 
will be possible to draw scientifically based conclusions on 
the efficiency of SF on a larger, e.g., national, scale (bottom-
up technique).

The scientific evidence necessary for evaluating the effi-
ciency of the SF system application in terms of air quality 
improvement requires an integrated approach, including 
preparation of a process-based emissions inventory for the 
specific geographical area of the pilot farm and time period 
at an appropriate resolution, and based on these farm-spe-
cific emissions data, the quantification of any reductions 
in pollutant concentrations. Although measured data from 
on-site sensors are of indisputable value for characterizing 
farm-scale air quality, monitoring stations cannot cover all 
regions and periods of interest to study spatial and tempo-
ral variability of air pollutants over an agricultural area. 
For this purpose, air quality models are the only scientifi-
cally relevant tools. Pollutant dispersion models describe 
the physical and chemical processes in the atmosphere 
which control the transport and transformation of emitted 
air pollutants and are thus able to realistically simulate 
their spatial and temporal distribution. Air pollution mod-
eling related to agricultural atmospheric emissions during 
the last decade has mainly been limited to ammonia dis-
persion simulations, as ammonia dispersion characteristics 
were not satisfactorily represented in initial agricultural 
air quality simulations (Zhang et al. 2008). Different dis-
persion models (e.g., the advanced Gaussian Atmospheric 
Dispersion Modeling System AERMOD and the AMS/EPA 
Regulatory Model ADMS) have been compared in terms 
of their ability to accurately simulate ammonia concentra-
tion dispersion patterns, focusing on individual processes, 
such as dry deposition (Theobald et al. 2012). Significant 
research efforts document the development and implemen-
tation of dynamical ammonia emission parameterization 
in air pollution models, particularly accounting for tempo-
ral variability (Gyldenkærne et al. 2005). Finally, for air 
quality management purposes, a number of papers have 
employed air pollution simulations to estimate the impact 
of agricultural ammonia emissions reduction on air quality, 
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particularly in terms of particulate matter formation (Zhao 
et al. 2017; Pozzer et al. 2017). An important aspect affect-
ing model accuracy is the spatial representativity, as spa-
tial variability of emissions and subgrid variations of con-
centrations is a significant source of uncertainty in model 
results (Park et al. 2006).

In view of the above issues, the present paper aims to 
enhance scientific evidence and provide demonstrable ben-
efits in regard to the efficiency of SF in reducing agriculture 
related environmental impacts, by presenting an integrated 
methodology and statistical results for quantifying the ben-
efits on air quality at farm-scale resulting from the GAIA 
Sense system application in smallholder farms in Greece. 
The first step of the methodology involves calculating the 
emissions of atmospheric pollutants and GHGs emitted 
from the agricultural activities in six GAIA Sense pilot 
areas in Greece, representing five different crop types. The 
Lagrangian air pollutant dispersion model AUSTAL is then 
deployed for assessing the impact of agricultural activities 
on the local air pollution levels.

Methodology for evaluation of the SF 
system

The methodology followed to assess the impact of applica-
tion of the SF advice in each pilot area in terms of local air 
quality is described in detail in the following paragraphs. 
The SF advice in the GAIA Sense system is adapted to the 
requirements of each crop field, as it is based on day-by-
day analysis of historical data on meteorology, soil vari-
ables, and farming activities performed and on forecasting 
of relevant meteorological and soil parameters data for the 
specified region. In particular, the fertilization models used 
are calibrated for each pilot area, using (a) geospatial and 
geographical data for the particular field location, (b) crop 
information, such as crop variety and plant age, as well as (c) 

information from soil samples regarding soil type/composi-
tion, pH, nutrient content, and (d) information from gaiatron 
telemetric sensors in respect to meteorological parameters, 
including wind speed and direction, temperature, soil mois-
ture, rainfall, and radiation. The data are analyzed and inte-
grated into the fertilization models which are then used to 
synthesize the collected data and provide recommendations 
to farmers on proper fertilization quantity and chemical con-
text, according to the specific requirements of each location 
and crop type. This advice is presented to farmers via the 
dedicated applications of the system, which are either web-
based or mobile applications.

The steps followed in the methodology of the present 
study (Fig. 1) involved the processes of (1) raw data collec-
tion and analysis, (2) extraction of emissions factors (EFs) 
from official national guidebooks, (3) calculation of emis-
sions of all legislated atmospheric pollutants, (4) retrieval 
and preparation of other input data (including meteorology 
and geographical data) for dispersion modeling simulations, 
(5) calculation of pollutant concentrations and dispersion 
patterns, and, as a final step (6) statistical analysis of results 
between the two studied years for the integrated evaluation 
of the efficiency of the GAIA Sense SF system, in terms of 
local air quality improvement. The methodological steps are 
described in detail in the following sections.

Methodology for emissions calculation

Realistic emission data are a pre-requisite for reliable mod-
eling estimation of the impact of agricultural activities on 
local air quality. Availability of high temporal and spatial 
resolution of pollutant emissions in smart farming applica-
tions is of particular importance in order to assess the local 
impact on the atmospheric environment. Atmospheric pol-
lutant emissions are calculated by multiplying the activity 
rate with an emission factor. In the suggested methodology 
presented in this paper, emission factors from the EMEP/

Fig. 1   Methodological steps 
for the integrated evaluation 
of the GAIA Sense SF system 
in respect to local air quality 
improvement
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EEA air pollutant emission inventory guidebook 2019 
(EMEP/EEA 2019a, b) and particularly of the 1A (mobile 
machinery) and 3D (crop production and agricultural soils) 
NFR categories were used for most of the studied pollutants. 
For calculation of N2O emissions resulting from fertilization 
of agricultural soil, the IPCC reference emission factor of 
1% of kg N fertilizer applied is used. The proposed modeling 
methodology relies on the calculation of realistic emissions 
data following a combined tier 1 and tier 2 approach for 
emission calculation. For this purpose, detailed activity data 
of the specific SF application pilot areas related to agricul-
tural activities were acquired.

Activity data for the specific smart farming applications 
were based on the compilation and analysis of the responses 
of participating farmers to targeted questionnaires. The ques-
tionnaires were structured including three categories of 
questions in relation to social, economical, and environmen-
tal indicators in order to obtain the necessary quantitative 
information for an integrated impact assessment of the SF 
system in the participating pilot agricultural parcels. A set of 
environmental indicators specifically targeted the impact on 
the atmospheric environment and were included to provide 
quantitative activity data for calculating the related atmos-
pheric pollutant emissions. These indicators particularly 
included the use of fertilizers and energy use. The related 
questions required specifically the following information:

1.	 Use of chemical and organic fertilizers—type (compo-
sition) and quantity (annual quantity in kg per ha) of 
fertilizer for the specific crop type and the application 
frequency (e.g., per year or season)

2.	 Energy use—annual consumption of transport fuel in 
liters

The quantitative replies of the farmers in the aforemen-
tioned questions were combined with the information they 
entered in their agricultural logbooks and with specific 
information regarding soil properties (pH in particular) 
from GAIA Sense monitoring IoT devices, called GAIA-
trons. GAIAtrons are telemetric autonomous stations that 
collect data from sensors installed in the field and record 
atmospheric and soil parameters in the GAIA Sense pilot 
farm areas.

In regard to the available sample size, 17 farmers from 6 
different pilot regions across Greece, which are representing 
a range of five crop types, provided usable data. Figure 2 
demonstrates the geographical region of each pilot area and 
the corresponding crop type.

Regarding collection of raw data, a number of 17 com-
pleted questionnaires were received, out of which seven 
reported quantitative information on both fertilizers used and 
fuel consumption, while the rest of them (10/17), provided 
data only on fertilizer application. In order to increase data 
accuracy for the statistical analysis of the study, fertilizer 
data from questionnaires were compared and completed 
with available relevant data from agricultural logbooks for 
the majority of the participating fields (12/17). Agricultural 
croplogs are completed with quantitative data in real-time, 
namely shortly after the specific agricultural activity has 
taken place and are thus considered more realistic compared 
to data reported by farmers in the questionnaires, which are 

Fig. 2   Map of the six studied 
pilot areas in Greece represent-
ing five different crop types
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completed as mean quantities at the end of the cultivating 
year.

Two consecutive years were compared for evaluating 
the SF system efficiency, 2019 (baseline cultivation period) 
and 2020 (SF application year). Table 1 presents changes 
in the total amount of nitrogen (N) from fertilizers applied, 
as well as in the fuel consumed for all relevant transporta-
tion between the two studied years, in the 17 pilot fields. 
Absolute values are reported for each year, along with % 
changes. As a result of conforming to SF advice for agri-
cultural practices, significant reductions are observed in the 
majority of the fields both for N application (N fertilizer use 
was reduced in 13 out of the 17 pilot fields, reaching values 
of − 50%), as well as for fuel consumption (reduction in five 
out of 7 pilot fields, reaching values of − 40%). However, in 
a few pilot fields, significant increases are also noted, such 
as in the case of a 60.5% increase in fertilizer application in 
Stylida 5 and in the case of 70% increase in fuel consump-
tion in Mirabello 4. These positive changes can be attributed 
to the fact that in some cases farmers chose not to follow 

the SF advice, or to other reasons, e.g., related to fertili-
zation timing and frequency depending on meteorological 
conditions for the increase in N fertilizer application, or the 
use of different transport equipment for the increase in fuel 
consumption.

In Table 2, data from individual pilot fields are shown 
averaged over each pilot region, in order to present them 
in relation to their geographical location. Averaged data 
for fuel consumption have absorbed the positive change in 
the case of Mirabello 4, leading to an overall decrease of 
19.8% in the Mirabello pilot region, but in respect to ferti-
lizer application, the large increase reported in the pilot field 
of Stylida 5 (and to a less extend in Stylida 4) resulted in a 
significant overall positive change of 26.4% in the pilot field 
area of Stylida for olive crop.

Based on the above on-site activity and soil data acquired 
from the questionnaires and field monitors (imported in the 
agricultural logbooks), a methodology to calculate realistic 
emissions of atmospheric pollutants and GHGs was struc-
tured depending on pollutant type, as follows:

Table 1   Absolute values of 
nitrogen (N) in fertilizers 
applied and fuel consumed 
for the two cultivation years 
and their relative percentage 
changes in the 17 participating 
pilot fields

N in fertilizers (kg/ha) Fuel consumption (lt/ha)

Pilot field 2019 2020 Change (%) 2019 2020 Change (%)

Elassona 6 (Walnut) 66.37 46.5  − 29.94 316.46 316.46 0
Mirabello 2 (Olive) 144 84  − 41.67 222.22 133.33  − 40
Mirabello 4 (Olive) 160 104  − 35 50 85 70
Pella 3 (Peach) 60 60 0 100 62.5  − 37.5
Pella 4 (Peach) 88 80  − 9.09 88.24 73.53  − 16.67
Pella 5 (Peach) 96 90  − 6.25 192.31 128.21  − 33.33
Stylida 3 (Olive) 35.18 26.08  − 25.87 – – –
Stylida 4 (Olive) 76 95 25 561.8 524.3  − 6.67
Stylida 5 (Olive) 57 91.5 60.53 – – –
Pieria 1 (Kiwi) 288.66 149.39  − 48.25 – – –
Pieria 2 (Kiwi) 303.06 154.6  − 48.99 – – –
Pieria 3 (Kiwi) 211.59 152.39  − 27.98 – – –
Pieria 4 (Kiwi) 197.76 165.19  − 16.47 – – –
Pieria 5 (Kiwi) 232.71 210.19  − 9.68 – – –
Orestiada 1 (Cotton) 164 85.5  − 47.87 – – –
Orestiada 3 (Cotton) 170.2 178 4.58 – – –
Orestiada 7 (Cotton) 132 66  − 50 – – –

Table 2   Absolute values of 
nitrogen (N) in fertilizers 
applied and fuel consumed 
for the two cultivation years 
and their relative percentage 
changes, averaged over each 
pilot region

N in fertilizers applied (kg/ha) Fuel consumption (lt/ha)

Pilot Area 2019 2020 Change (%) 2019 2020 Change (%)

Elassona (Walnut) 66.4 46.5  − 29.9 316.5 316.5 0
Mirabello (Olive1) 152 94  − 38.2 136.1 109.2  − 19.8
Pella (Peach) 81.3 76.7  − 5.7 126.8 88.1  − 30.6
Stylida (Olive2) 56.1 70.9 26.4 561.8 524.3  − 6.67
Pieria (Kiwi) 246.8 166.4  − 32.6 – – –
Orestiada (Cotton) 155.4 109.8  − 29.3 – – –
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•	 Tier 1 methodology was applied to calculate emissions of 
PM10, PM2.5, NO, and NMVOC, using the default emis-
sion factors (EFs) for NFR Source category 3.D (crop pro-
duction and agricultural soils) from Table 3.1 of the EMEP 
EMEP/EEA air pollutant emission inventory guidebook 
2019 (EMEP/EEA, 2019a, b). This source category 
includes emissions related to the application of N fertiliz-
ers (for NO), emissions from standing cultivated crops (for 
NMVOC) and farm-level agricultural operations (for par-
ticulate matter), such as ploughing, spraying, harvesting, 
and storage/handling of agricultural product. On-site data 
for quantities of fertilizer (kg of fertilizer N) applied and 
size of the cultivated area (ha) were derived from farmers’ 
questionnaires and logbooks. The percentage of N of each 
fertilizer was estimated from the fertilizer composition.

•	 Tier 1 methodology was used for emissions calculation of 
GHGs (CH4, CO2, N2O) and atmospheric pollutants (NH3, 
NMVOC, NOx, PM10, and PM2.5), employing the default 
EFs for NFR Source category 1.A.4.c.ii-Agriculture from 
Table 3–1 (Tier 1 emission factors for off-road machinery) 
of the EMEP EMEP/EEA air pollutant emission inven-
tory guidebook 2019 (EMEP/EEA, 2019a, b). This source 
category includes exhaust emissions related to fuel con-
sumption of off-road vehicles and other machinery used 
in agriculture. On-site activity data on fuel consumption 
were derived from farmers’ questionnaires.

•	 Tier 1 methodology was used for calculating N2O emis-
sions from fertilizer application in agricultural soils, 
according to the default value of 1% of kg−1 fertilizer N 
applied of IPCC (IPCC, 2006).

•	 Tier 2 methodology was applied for the calculation of 
NH3 emissions resulting from soil fertilization, tak-
ing into account the climate zone of the pilot farm, 
the soil pH, and the amount of N applied to the soil 
as calculated from the information in the farmers’ 
questionnaires and logbooks. The EFs were selected 
based on the fertilizer type as recorded by the farmer 
and applied on each pilot farm, according to Table 3.2 
EFs for NH3 emissions from fertilizers (in g NH3 (kg 
N applied)−1) from the EMEP EMEP/EEA air pollut-
ant emission inventory guidebook 2019 (EMEP/EEA, 
2019a, b).

The tier 1 EFs used to calculate the emissions for all 
atmospheric pollutants emitted from agricultural activi-
ties, apart from fertilizer related NH3, are summarized in 
Table 3. Tier 2 EFs for NH3 calculation are related to the 
fertilizer type applied and can be found in Table 3.2 of the 
EMEP/EEA air pollutant emission inventory guidebook 
2019 (EMEP/EEA, 2019a, b).

In addition to the above calculations of emissions, a 
sensitivity analysis on the effect of temporal variation of 
emissions on air pollutant local concentrations was per-
formed for the Elassona 6 field, for which emissions were 
calculated per day, on the basis of the recorded fertilizer 
application dates within the baseline and the SF applica-
tion year. In particular, 8 application days were recorded 
for 2019 and 6 for 2020. The emissions were considered 
to be 0 for the rest of the days.

Table 3   Emission factors (EFs) from NFR categories

All EFs (except the EF of N2O from fertilizer application) are based on EMEP/EEA air pollutant emission inventory guidebook 2019.
 All EFs are tier 1, except the ones of NH3 from fertilizer application which are tier 2.
a See Table 3.2 in EMEP/EEA air pollutant emission inventory guidebook 2019.
b EF of N2O from fertilizer application is based on 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

NFR category

Pollutants Fertilizer application (NFR 3D) Non-road machinery (NFR 
1.A.4 cii)

Standing crops (NFR 
3D) (kg ha−1)

Agricultural operations 
(NFR 3D) (kg ha−1)

PM10 – 1913 g·tonnes−1 fuel – 1.56
PM2.5 – 1913 g·tonnes−1 fuel – 0.06
NOx – 34,457 g·tonnes−1 fuel – –
NO 0.04 kg NO2 kg–1 fertilizer N applied – – –
NMVOC – 3542 g·tonnes−1 fuel 0.86 –
NH3 Table 3.2a 8 g·tonnes−1 fuel – –
N2O 0.01 kg N2O–N (kg N)−1b 136 g·tonnes−1 fuel – –
CO2 – 3160 kg·tonnes−1 fuel – –
CH4 – 87 g·tonnes−1 fuel – –
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Methodology for dispersion simulations

The contribution of emitted pollutants on ambient concen-
trations and deposition rates around the pilot fields was 
assessed by performing dispersion calculations for a period 
of a year. For this assessment, three pilot fields were chosen 
on the basis of the completeness of activity and emission 
information and the availability of local meteorological 
measurements. These are the Elassona 6, Mirabello 2, and 
Pella 3 fields, located in Central, Southern, and Northern 
parts of Greece, respectively, and in this way representing 
different climatic and meteorological regimes of a Medi-
terranean region. The Lagrangian dispersion model AUS-
TAL2000 (Janicke 2002; Janicke et al. 2003) was applied 
on computational domains with a total extent of 5 × 5 km2 
around each pilot field, and a grid resolution of 20 m.

For the assessment of dispersion in the surrounding areas, 
yearly average fields of concentration increments for the pol-
lutants NOx, PM10, NH3, VOCs, and N2O were calculated, 
as well as deposition fields for PM10 and NH3. In addition 
to yearly averages, additional concentration percentiles and 
maximum values were calculated for the reference period 
in line with the limit values and averaging periods speci-
fied by the EU directive for the protection of human health 
(2008/50/EC). These values were calculated as concentra-
tion increments due to the farming emissions, on a set of 
representative virtual receptor sites lying inside, near and 
further away from each pilot field. Given that the particular 
model operates under a linear assumption for concentrations, 
calculated concentrations represent increments attributed to 
the emissions under consideration. Oxidation rates of NO in 
AUSTAL2000 depend only on temperature and atmospheric 
stability class, therefore background concentrations could be 
set to zero for all pollutants without affecting the calculated 
concentration and deposition increments.

Driving meteorology was obtained from hourly time 
series of on-site meteorological observations of wind 
speed, direction and temperature for the year 2020, while 
the atmospheric stability hourly state was determined using 
the Turner’s method (Turner, 1970) using cloud cover infor-
mation from the nearest airport. The aerodynamic roughness 
length was calculated using land use maps for the applica-
tion areas and was set to z_0 = 0.1 m for all three pilot fields. 
The effects of local topography were taken into account by 
incorporating information from Digital Elevation Maps with 
a resolution of 90 m and the use of the diagnostic field flow 
model TALdia. For both the baseline and application peri-
ods, a common meteorological input was used, correspond-
ing to the 2020 conditions.

Emissions from all activities were represented as polyg-
onal area sources coinciding with the limits of each pilot 
field. Activities realistically occurring outside the field, i.e., 
transport of on-road machinery or material spillage were 

also incorporated in the polygonal area. The nominal emis-
sion height for both exhaust and suspension sources was set 
to 2 m above ground. As usual in the application of AUS-
TAL2000 over long periods, emission rates were considered 
constant throughout the simulation period, with the excep-
tion of NH3 emissions in the Elassona case, which were 
introduced as a time-variable series depending on the dates 
of fertilizer application. The fact that agricultural activities 
occur under a variety of meteorological and atmospheric 
stability conditions throughout the cultivation period mini-
mizes any bias that is introduced by this assumption.

Results

Results of emissions calculation

The results of emissions calculation indicate the correlation 
of the studied pollutants to major contributing emissions 
sources in agriculture. The contribution % of each agricul-
tural source to the total emissions of the studied pollutants 
was calculated and the results are presented in Fig. 3. The 
relevant contributions result due to the EFs attributed to each 
source type in the combined tier 1/tier 2 emissions calcula-
tion methodology used in the present paper, as described in 
the in EMEP/EEA air pollutant emission inventory guide-
book 2019. The contribution ratios of Fig. 3 were calculated 
by applying the following equation to each air pollutant and 
GHG individually:

[Emissions from each source (g) / Total emissions from 
all sources (g)] ∙ 100.

Emission results only from the crop fields for which fuel 
consumption data were available (Elassona 6, Pella 3, 4, & 
5, Mirabello 2 & 4, Stylida 4) were used, for the year 2019 
and/or 2020 (see Table 2). The final percentage values were 
calculated from the average values of these pilot areas and 
cultivation years.

From the analysis it is shown that, according to the emis-
sions calculation methodology used in the present paper, 
emissions for ΝΟx, CO2, and CH4 result entirely from fuel 
combustion in non-road machinery, while N fertilizer appli-
cation contributes to NO emissions by 100%. NH3 and N2O 
are also almost exclusively emitted from N fertilizer appli-
cation, by 99.97% and 95.97% respectively, while a small 
percentage (0.03% and 4.03% respectively) is emitted from 
fuel consumption activities. Agricultural activities (other 
agricultural activities such as ploughing, spraying, har-
vesting, and storage/handling of agricultural products) are 
responsible for 79.35% of PM10 emissions and for 17.73% 
of PM2.5 emissions, whereas fuel consumption of non-road 
machinery contributes by 20.65% to PM10 emissions and 
by 82.27% to PM2.5 emissions. Standing crop emissions are 
the main source of NMVOCs, contributing by 56.6% to total 
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emissions, while a smaller but significant contribution to 
NMVOCs agricultural emissions is related to fuel consump-
tion (43.49%).

As demonstrated in Fig. 4 and based on the statistical 
analysis performed, particulate matter and NMVOC pol-
lutants in the pilot fields are emitted mainly as a result of 
fuel consumption. The highest total emissions of all three 
pollutants are calculated in the case of Stylida, where also 
the highest fuel consumption data (562 lt/ha for 2019 and 
524 lt/ha for 2020) are reported by farmers. In all pilot 
cases, emissions of PM and NMVOCs follow the trendline 
of the amount of fuel consumed in agricultural activities. 
The decrease noted in emissions of all relevant pollutants 
in Mirabello and Pella in 2020 compared to 2019 is related 
to the reduction in fuel consumed by farmers in 2020, as 
a result of conforming to the SF advice. In Elassona, fuel 

consumption remained the same for the 2 years studied, 
resulting in unchanged pollutant emissions.

Figure 5 presents the correlation between the total emis-
sions (in g/ha) of NH3 and N2O and NO, and the amount of 
fertilizer applied. Kiwi is the crop with the highest amount 
of N fertilizer applied in both studied years (247 and 166 kg/
ha respectively) and the highest emissions (23,179 g/ha of 
NH3, 2468 g/ha of N2O, and 9870 g/ha of NO in 2019 and 
12,033 g/ha of NH3, 1664 g/ha of N2O, and 6654 g/ha of NO 
in 2020), while the lowest amount of N fertilizer is applied 
in the case of olive production (Stylida) in 2019 (56.1 kg/
ha) and walnut production (Elassona) in 2020 (47 kg/ha). In 
the case of Elassona, the low N fertilizer results to the lowest 
related emissions (6177 g/ha of NH3, 701 g/ha of N2O, and 
2654.8 g/ha of NO in 2019 and 4225 g/ha of NH3, 502 g/ha 
of N2O, and 1860 g/ha of NO in 2020) between the different 

Fig. 3   Contribution (%) of 
major agricultural emissions 
sources to air pollutants and 
GHGs emissions

Fig. 4   Calculated emissions of 
PM10, PM2.5, and NMVOCs 
in the studied pilot areas, in 
relation to fuel consumption in 
2019 and 2020
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pilot areas. In all pilot fields, apart from Stylida, SF applica-
tion resulted in reduced N fertilizer quantities applied, lead-
ing to lower emissions of the relevant pollutants.

The regional intercrop variations in NH3 emissions are 
related not only to the difference in the amount of N in the 
fertilizers applied, but also to the different EF allocated to 
the specific fertilizer type used. The tier 2 EFs used for the 
calculation of NH3 emissions vary considerably according 
to the fertilizer type. For example, NPK mixtures, such as 
the ones applied in the case of olive crops, have high EFs 
of 94 g NH3 per kg of N in fertilizers for temperate climate 
and high pH, whereas for the same climatic and soil condi-
tions, the EF of AN mixtures, such as those used in the case 
of cotton, is only 33 g NH3 per kg of N in fertilizers. In this 
case, Fig. 5 shows that, despite of the fact that the amount 
of N in fertilizers in Orestiada (155 kg/ha), is slightly bigger 
than in Mirabello (152 kg/ha) in 2019, NH3 emissions are 
significantly lower (12,886 g/ha in Orestiada compared to 
14,289 g/ha in Mirabello).

For the evaluation of the efficiency of the SF applica-
tion in terms of reduction of atmospheric emissions, the 
differences in emissions of all pollutants for all pilot sites 
between the baseline year 2019 and the first SF applica-
tion year 2020 were calculated (Fig. 6). In the majority 
of the participating pilot fields, SF resulted in reduction 
of air pollutants and GHG emissions due to the lower 
amount of fuel consumed and N fertilizer applied. In 
four out of the six studied pilot areas, the quantity of 
N fertilizer applied was reduced by around 30%, reach-
ing a significant 38.16% decrease in the case of Mira-
bello (olive crop), a 32.58% decrease in Pieria (kiwi), 
29.94% in Elassona (walnut), and 29.32% in Orestiada 
(cotton). In these pilot areas, an equal decrease in NO 
emissions was estimated, as in the methodology used in 
the present paper, NO is emitted entirely from N ferti-
lizer application. As described in detail in the previous 
paragraphs, pollutant emissions mainly attributed to N 
fertilizer application include also NH3 and N2O, which 

Fig. 5   Calculated emissions 
of NH3, N2O, and NO in the 
studied pilot areas, in relation 
to N fertilizer applied in 2019 
and 2020

Fig. 6   Percentage % change of 
emissions in relation to percent-
age change in fuel consumption 
and the amount of nitrogen 
(N) in the fertilizers applied 
between 2019 and 2020
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are also reduced in 2020 by up to 60.4% for NH3 and by 
up to 37.97% for N2O, both in Mirabello pilot area (olive 
crop). Mirabello pilot area demonstrates the largest NH3 
emission reduction compared to other areas, which could 
be attributed to the SF advice to change the fertilizer type 
in addition to lower fertilizer quantity. AN fertilizer was 
applied in 2020 in Mirabello 4 field, which has a signifi-
cantly lower EF compared to NPK applied in the baseline 
year, as described in detail in the previous paragraph. A 
small reduction of 5.74% in fuel consumption in Pella 
pilot area was reported by farmers, leading to less signifi-
cant decrease in the emissions of the related pollutants. 
Stylida is the only pilot area in which N fertilizer applied 
has increased in 2020 (by 26.4%), resulting to substantial 
increases in emissions of NH3 (by 41.58%), NO, and N2O 
(both increased by 26.4% as fuel consumption data were 
not available for Stylida and relevant emissions resulted 
solely from fertilizer application). The increase in fer-
tilizer application may be attributed to the fact that the 
farmers in the specific area were not willing to follow the 
SF advice in 2020.

Fuel consumption data were available only for three 
out of the six participating pilot areas, namely Elassona, 
Mirabello, and Pella. As shown in Fig. 6, fuel consump-
tion in Elassona remained unchanged between 2019 and 
2020, thus no differences were calculated in the emissions 
of relevant pollutants (NOx, NMVOC, PM, and GHGs: 
CO2 and CH4).

A substantial decrease in fuel consumption in 2020 
compared to 2019 was reported by farmers in Mirabello 
(by 19.8%) and in Pella (by 30.56%), resulting to equal 
reductions in emissions of NOx, CO2, and CH4 as the 
only contributing source for these pollutants are fuel con-
sumption activities, and to significant reductions in PM2.5 
emissions (by 15.61% in Mirabello and 23.74% in Pella).

Air pollutant dispersion results

Three sets of receptor points were defined to assess the pol-
lution effect due to emissions within each field. The locations 
of these points in the corresponding computational domains 
for the three selected pilot fields are shown in Fig. 7.

Annual average concentration increments of NOx, calcu-
lated for the Elassona 6 pilot field, are shown in Fig. 8 (left). 
The spatial maximum corresponds to a value less than 1 μg/
m3 and is located within the limits of the emission polygon. 
As evident by the plume shape, the prevailing wind is caus-
ing a preferential dispersion toward the south-SE direction 
with the concentration increment rapidly decreasing by an 
order of magnitude within the first 1 km from the source. A 
slight topography-induced effect is also visible due to the 
presence of hill on the western part of the domain. Due to 
the lack of any non-linear chemistry in the model, the aver-
age plumes of other pollutants follow a similar distribution.

Deposition fields for PM10 follow a very similar spa-
tial distribution, as shown in Fig. 8 (middle). On the other 
hand,NH3 deposition (Fig. 8, right) has pronounced lobes 
corresponding to the time-dependent emissions from the 
application of fertilizer during specific periods of the year. 
PM10 deposition rates have a maximum of around 6·10−5 g/
(m2 day), while NH3 deposition rates lie below 0.56 kg/ha/
year. For both pollutants, the bulk of the total deposition 
occurs within the limits of the field.

Table 4 summarizes the quantification of the pollution 
burden under the baseline (2019) and 2020 periods for the 
three most representative receptor points and for the average 
domain. It is evident that for NO2 and ammonia both the 
concentration and deposition increments undergo a decrease 
directly consistent with the corresponding reduction in 
emissions. Ammonia concentrations and deposition depend 
on the days of fertilizer application which were different 

Fig. 7   AUSTAL2000 computational domains and receptor points for Elassona 6 (left), Mirabello 2 (middle), and Pella 3 (right) pilot fields
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between 2019 and 2020; therefore, the corresponding reduc-
tions at the receptor points are not directly comparable. For 
the rest of the pollutants, no decrease is noted in line with the 
assumption of constant corresponding emissions. It should 
be further noted that the apparent discrepancy between the 
behavior of NO2 and NOx in this set of simulations is due to 
the independent treatment as separately-emitted pollutants, 
where the bulk of dispersed NO2 is assumed to be produced 
by oxidation of primary emitted NO.

In Fig. 9 (left), annual average concentration increments 
of NOx for the Mirabello 2 pilot field are shown. The spatial 
maximum corresponds to less than 0.1 μg/m3 and is located 
near the southern boundary of the emission polygon. The 
plume has two prominent lobes to the N-NW to S-SE direc-
tion, while the same order-of-magnitude decrease within 
the first 1 km from the source is observed for NOx as in the 

Elassona case. Deposition fields for PM10 and NH3 follow a 
very similar spatial distribution, as shown in Fig. 9 (middle, 
right). PM10 deposition rates have a maximum of around 
1·10−5 g/(m2 day),while NH3 deposition rates lie below 
1.35·10−4 g/(m2 day). For both pollutants, the bulk of the 
total deposition occurs within the limits of the field.

Table 5  summarizes the pollution burden under the 
baseline (2019) and 2020 periods for the selected receptor 
points. As in the Elassona 6 case, the concentration incre-
ments of gaseous pollutants are decreasing almost linearly 
with the corresponding reduction in emissions. In the case 
of PM10, the near-field concentrations are dominated by 
the smaller reduction of the coarse PM component, while 
in larger distances, the reduction of the PM2.5 component 
becomes more significant. The decrement of PM10 deposi-
tion rates for 2020 is dominated by the small reduction in 

Fig. 8   Annual average fields of NOx surface concentration increment, in μg/m3 (left), and deposition rate increments of PM10 (middle) and 
NH3(right), in g/(m.2 day), calculated around the Elassona 6 pilot field for 2019

Table 4   Reductions of annual average concentrations and deposition rates in three representative receptor points of the Elassona 6 pilot field and 
for the average domain

Location Field_SW Mhlia Monastery Domain average

Pollutant Average 
annual  
reduction

Annual 
percentage 
reduction (%)

Average 
annual  
reduction

Αnnual 
percentage 
reduction (%)

Average 
annual  
reduction

Αnnual 
percentage 
reduction (%)

Average 
annual  
reduction

Αnnual  
percentage 
reduction (%)

Concentrations 
(µg/m3)

Concentrations Concentrations 
(µg/m3)

Concentrations Concentrations 
(µg/m3)

Concentrations Concentrations 
(µg/m3)

Concentrations

NO2 1.74·10−3 29.95 9.79·10−5 29.93 5.87·10−6 29.93 3.57·10−5 29.94
NOx 0 0 0 0 0 0 0 0
VOC 0 0 0 0 0 0 0 0
PM10 0 0 0 0 0 0 0 0
NH3 1.37·10−2 4.88 1.05·10−3 98.44 6.45·10−8 19.19 9.18·10−5 13.57

Deposition g/
(m2 day)

Deposition Deposition g/
(m2 day)

Deposition Deposition g/
(m2 day)

Deposition Deposition g/
(m2 day)

Deposition

PM10 0 0 0 0 0 0 0 0
Deposition g/

(m2 day)
Deposition Deposition g/

(m2 day)
Deposition Deposition g/

(m2 day)
Deposition Deposition g/

(m2 day)
Deposition

NH3 1.53·10−5 8.76 9.18·10−7 99 4.4·10−10 100 7.83·10−8 18.76
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the coarse component emission, while deposition rates for 
NH3 decrease linearly with the corresponding emissions.

Figure 10 (left) shows the annual average concentration 
increments of NOx for the Pella 3 pilot field. The spatial 

maximum corresponds to less than 0.2 μg/m3 and is located 
near the northern boundary of the emission polygon. The 
average plume is dispersed toward the south, with an appar-
ent distortion caused by the local topography in the western 

Fig. 9   Annual average fields of NOx surface concentration increment, in μg/m3 (left), and deposition rate increments of PM10 (middle) and NH3 
(right), in g/(m.2d), calculated around the Mirabello 2 pilot field for 2019

Table 5   Reductions of annual average concentrations and deposition rates in three representative receptor points of the Mirabello 2 pilot field

Location Field_SW Bryses Limnes

Pollutant Average annual  
reduction

Αnnual percentage 
reduction (%)

Average annual  
reduction

Αnnual percentage 
reduction (%)

Average annual  
reduction

Αnnual  
percentage 
reduction (%)

Concentrations (µg/m3) Concentrations Concentrations (µg/m3) Concentrations Concentrations (µg/m3) Concentrations

NO2 4.03·10−5 41.66 5.1·10−5 41.64 5.58·10−7 41.66
NOx 4.31·10−3 40 1.3·10−4 40 2.39·10−6 40
VOC 4.43·10−4 17.61 1.34·10−5 17.6 2.45·10−7 17.56
PM10 2.35·10−4 8.25 5.18·10−6 15.86 1.08·10−7 12.79
NH3 8.15·10−3 41.69 6.62·10−5 41.68 1.99·10−6 41.67

Deposition g/(m2 day) Deposition Deposition g/(m2 day) Deposition Deposition g/(m2 day) Deposition
PM10 1.9·10−8 1.26 4.01·10−10 4.39 9·10−12 2.19

Deposition g/(m2 day) Deposition Deposition g/(m2 day) Deposition Deposition g/(m2 day) Deposition
NH3 5.4·10−6 41.67 2.97·10−8 41.67 1.43·10−9 41.68

Fig. 10   Annual average fields of NOx surface concentration increment, in μg/m3 (left), and deposition rate increments of PM10 (middle) and NH3 
(right), in g/(m.2 day), calculated around the Pella 3 pilot field for 2019
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part of the domain. Concentrations decrease almost by two 
orders of magnitude within the first 1 km from the source. 
Deposition fields for PM10 and NH3 follow a very similar 
spatial distribution, as shown in Fig. 10 (middle, right). 
PM10 deposition rates have a maximum of around 5·10−5 g/
(m2 day) while NH3 deposition rates lie below 1.62·10−4 g/
(m2 day). For both pollutants, the bulk of the total deposition 
occurs within a distance 100 m from the field.

Table 6 summarizes the pollution burden under the base-
line (2019) and 2020 periods for the selected receptor points. 
As in the Mirabello 2 case, the concentration increments are 
decreasing almost linearly with the corresponding reduction 
in emissions for NOx and VOC and are almost constant for 
the rest of the pollutants, in line with the negligible reduc-
tion in their emissions rates. PM10 reductions are dominated 
by the (smaller) reduction of the coarse fraction near the 
field and increase toward the larger reduction of the PM2.5 
component as we move further away. The decrement of 
PM10 deposition rates for 2020 is dominated by the small 
reduction in the coarse component emission, while deposi-
tion rates for NH3 decrease linearly with the corresponding 
emissions.

Conclusions

SF application emerges as an efficient and robust tool 
for implementing the EU policies in the areas of water, 
waste and air management, by reducing the contribution 
of the agricultural sector over the major environmental 
burdens. Atmospheric modeling is one of several com-
ponents contributing to the comprehensive evaluation of 
the environmental impact of SF application. In the pre-
sent paper, a Lagrangian dispersion model was used for 
atmospheric simulations to assess the efficiency of the SF 

GAIA Sense system in terms of local air quality improve-
ment, which relies in a large degree on realistic atmos-
pheric emissions data. The methodology for calculating 
emissions of atmospheric pollutants and GHGs related to 
the agricultural activities of the participating pilot farms 
was based on a combined tier 1 and tier 2 approach from 
the EMEP/EEA and IPCC guidebooks and on farm-level 
activity information from farmers’ replies to targeted ques-
tionnaires, in the frame of the LIFE GAIA Sense project. 
The results of the present study indicate the potential ben-
efits of SF application in the studied pilot areas in terms 
of improvement of local air quality, for most pollutants 
in direct proportion to the reduction in the corresponding 
emission rates. Reduction in PM deposition is dependent 
on the mix of coarse–fine fractions, but generally follows 
a clearly decreasing trend. Taking into account the effect 
of temporal variation in emissions, in order to account for 
individual days of fertilizer application, causes a change 
in the spatial distribution of deposited and dispersed mass 
but without noticeable change in the calculated spatial 
average and maxima. The noted emission reductions per-
centages achieved could not be generalized for other crops 
or application areas, as the SF advice is adapted to the par-
ticular crop field on the basis of selected geospatial, soil, 
meteorological, and crop information. Further studies on 
additional participating fields are necessary to support the 
encouraging results of the present study on the beneficial 
impact of SF on local air quality in agricultural areas.
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Table 6   Reductions of annual average concentrations and deposition rates in three representative receptor points of the Pella 3 pilot field 

Location Field_SW Rizo Petrea

Pollutant Average annual  
reduction

Αnnual percentage 
reduction (%)

Average annual  
reduction

Αnnual percentage 
reduction (%)

Average annual  
reduction

Αnnual percentage 
reduction (%)

Concentrations (µg/m3) Concentrations Concentrations (µg/m3) Concentrations Concentrations (µg/m3) Concentrations

NO2 0 0 0 0 0 0
NOx 6.9·10−3 37.52 2.33·10−5 37.5 2.28·10−5 37.51
VOC 7.09·10−4 9.81 2.39·10−6 9.79 2.35·10−6 9.84
PM10 3.63·10−4 4.52 9.9·10−7 7.47 8.93·10−7 8.59
NH3 0 0 0 0 1·10−8 0.04

Deposition g/(m2 day) Deposition Deposition g/(m2 day) Deposition Deposition g/(m2 day) Deposition
PM10 3.3·10−8 0.69 7.8·10−11 1.23 7.6·10−11 1.47

Deposition g/(m2 day) Deposition Deposition g/(m2 day) Deposition Deposition g/(m2 day) Deposition
NH3 2.7·10−9 0.02 2.7·10−12 0.01 2.7·10−12 0.01
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