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Abstract
Exposure to potentially toxic elements (PTEs) bound to  PM2.5 can cause various health effects, including cardiovascular 
disease, allergies, and other related diseases. There have been several studies on the concentration of PTEs, including zinc 
(Zn), iron (Fe), and manganese (Mn) bound  PM2.5 in the indoor air of urban schools. In this study, the concentration of Zn, 
Fe, and Mn in the indoor air of schools bound  PM2.5 were meta-analyzed. PubMed and Scopus were used to retrieve papers 
related to the concentration of PTEs bound  PM2.5 in the indoor air of urban schools from January 1, 2000 to March 10, 
2020. The concentration of PTEs in  PM2.5 was meta-analyzed based on the country subgroup in the random-effects model 
(REM). Thirty papers with 25 data reports were included in the study. The rank order of PTEs bound  PM2.5 was Zn (17.32 ng/
m3) > Fe (14.49 ng/m3) > Mn (7.40 ng/m3). The rank order of countries based on the concentration of Fe-bound  PM2.5 in the 
indoor air of urban schools was China > Poland > Italy > Spain > Taiwan > Turkey > Iran) > Chile; Zn, Poland > Iran > Tai-
wan > Turkey > Spain > Italy > Chile; and for Mn, Poland > China > Iran > Taiwan > Spain > Italy > Chile. The pooled con-
centration of PTEs (Fe, Mn, and Zn) bound  PM2.5 in the indoor air of urban schools in Poland and China was higher than 
in other countries, hence, therefore, it is recommended to carry out a  PM2.5 concentration reduction program in the indoor 
air of schools in these countries.
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Introduction

Chemical and microbial contamination of the environment, 
including water(Wang et al. 2022; Yang et al. 2021; Yu et al. 
2022), food(Liu et al. 2022a; Sun et al. 2022; Wang et al. 
2022), soil (Liu et al. 2022b), and air (Quan et al. 2022) can 
endanger human health. Air pollution in urban environments 
is one of the leading causes of health concerns, especially for 
sensitive people, especially children (Raysoni et al. 2017a). 
Ambient airborne particles are one of the main components 
of air pollutants that have significant adverse effects on 
human health (Chen et al. 2022b; Fang et al. 2018; Ghozi-
kali et al. 2018; Liu et al. 2022c; Shang et al. 2021; Tian 
et al. 2022; Wang et al. 2022; Zhang et al. 2021). The pres-
ence of airborne particles in school classrooms is one of the 
primary pollutants affecting students’ health and indoor air 
quality (Di Gilio et al. 2017b). Various studies have shown 
that particulate matter of different sizes, such as  PM10 and 
 PM2.5, are associated with decreased lung function indices 
so that  PM2.5 particles can penetrate deep into the lungs and 
lead to inflammation of the alveoli (Ghozikali et al. 2018).

Also, PTEs s are among the most harmful toxins in 
the environment, particularly airborne dust (Chen et al. 
2022a; Gao et al. 2022; Huang et al. 2018; Wu et al. 2021; 
Yin et al. 2021; Zhang et al. 2021; Zoghi et al. 2022). The 
presence of trace metal elements in and on fine particles 
 (PM2.5) is one of the main components that determine the 
toxicity of  PM2.5 (Bi et al. 2018).

PM2.5 particles are produced by physical and mechanical 
processes and mainly originate from combustion (Ghozikali 
et al. 2018).In addition, these particles are produced from 
other sources such as traffic and various industries and natu-
ral resources such as dust storms (Hassanvand et al. 2015a). 
In general, indoor sources of  PM2.5 emissions include cook-
ing, combustion heat, and smoking, which are not present 
in school buildings. However, classroom indoor air pollu-
tion depends on various factors such as ventilation system, 
activities, number of occupants, concentration, and composi-
tion of outdoor  PM2.5 (Di Gilio et al. 2017b). However, the 
sources of  PM2.5 in the classroom may differ from elsewhere, 
and the metal compositions of  PM2.5 may also be different 
(Bi et al. 2018). These trace elements may originate from 
various urban and industrial sources (Di Gilio et al. 2017b).

In general, particle exposure is widely associated with 
various cardiovascular, respiratory, and immunological 
health problems. These effects would be exacerbated by 
potentially toxic elements (PTEs) adsorbed on  PM2.5 parti-
cles (Mesías Monsalve et al. 2018a). The trace metals zinc 
and manganese are carcinogenic and mutagenic (Raysoni 
et al. 2017a). These consequences are even more harmful 
to children’s health because their respiratory system is not 
yet fully developed (Di Gilio et al. 2017b).

Various toxicological studies have shown that metal com-
ponents in or on  PM2.5 particles produce reactive oxygen 
species through the Fenton reaction, which in turn causes 
damage to cell DNA, lipids, and proteins (Gali et al. 2015). 
Furthermore, numerous studies have shown that particle-
bound metals are involved in causing oxidative stress and 
mitochondrial damage, leading to increased mortality and 
cardiovascular disease (Di Gilio et al. 2017b).

It is estimated that adults spend approximately 60 to 80% 
of their time indoors and children at least 50% of their time 
in school. Thus, a significant portion of exposure to air pol-
lutants occurs in school environments (Viana et al. 2014b), 
and exposure to fine particles and trace elements in the class-
room can lead to health threats for children (Bi et al. 2018). 
Therefore, understanding the composition and concentration 
of suspended particles and trace elements and their relation-
ships is important for evaluating personal exposure (Has-
sanvand et al. 2015a).

Although there are several investigations on the concen-
tration of  PM2.5 and PTEs bound in  PM2.5 in the indoor air 
of urban schools (Abdel-Salam 2019, Bi et al. 2018, Chithra 
and Nagendra 2014, Ekmekcioglu and Keskin 2007, Ghozi-
kali et al. 2018, Halek et al. 2009, Mohammadyan et al. 
2017, Mohammadyan et al. 2013), a meta-analysis has not 
been conducted. The main aim of the current study was to 
meta-analysis the concentration of Zn, Fe, and Mn bound 
 PM2.5 in the indoor air of urban schools.

Material and method

Searching strategy

PRISMA guidelines were used to retrieve papers (Higgins 
and Green 2011) (Fig. 1). PubMed and Scopus were used to 
retrieve papers related to the concentration of PTEs bound 
 PM2.5 in the indoor air of urban schools from January 1, 
2000 to March 10, 2020. Keywords were “air pollution” 
OR “Particulate Matter” OR “PM2.5” OR “PM10” AND 
“toxic element” OR “trace element” OR “heavy metal” OR 
AND “residential” OR “school” OR “university.” Disagree-
ment between two authors regarding excluding and select 
of papers was resolved by the final decision of the corre-
sponding author(Aranega and Oliveira 2022, De Souza et al. 
2021).

Inclusion and extraction of data

Our criteria measured Zn, Fe, Mn bound  PM2.5 in indoor air; 
available full text; descriptive study; and presented mean 
and standard deviation PTEs in  PM2.5 and investigation per-
formed in school and urban areas. Extracted data from each 
paper included country, sample duration, mean and standard 
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deviation concentration of heavy metal bound  PM2.5, and 
measurement method.

Meta‑analysis of data

The concentration of Zn, Fe, and Mn bound  PM2.5 was meta-
analyzed based on mean and standard deviation. Cochran’s 
Q test calculated the  I2 index (heterogeneity statistic). As the 
I2 index was higher than 50%, heterogeneity was considered 
high (Higgins et al. 2008). Therefore, the random-effects 
model (REM) was used to estimate pooled effect size in 
the country subgroup. REM is a statistical model where the 
parameters of the model are random variables(Higgins et al. 
2008). The concentration of PTEs bound to  PM2.5 converted 
to ng/m3. Meta-analysis was conducted using Stata software 
(version 14; STATA Corp., College Station, TX).

Results

Five hundred and seventy articles were found in the initial 
search, and 505 were excluded due to duplicates in the data-
bases. Then, in the screening step, 52 articles were excluded 
for reasons such as review articles, measurement of  PM10, 
and measurement in rural areas. Finally, 13 articles with 25 
data reports were included in the meta-analysis (Fig. 1 and 
Appendix 1). The “Results” revealed that the rank order of 
PTEs in bound  PM2.5 based on overall concentration in the 
indoor air of urban school Zn (17.32 ng/m3) > Fe (14.49 ng/
m3) > Mn (7.40 ng/m3). High concentrations of metals such 
as Zn and Fe in  PM2.5 are mostly related to busy streets and 

high-traffic areas (areas that experience more than 20 vehi-
cles from 2 or more axle vehicles). On high-traffic streets, 
vehicles are frequently stopped. Intermittent movement and 
stopping cause these metals to be released into the air from 
the exhaust and brake linings, the tires wear, and brake wear 
(Pastuszka et al. 2010). Also, many studies have stated that 
the reason for the high concentration of Zn compared to 
other metals in indoor air is the high use of,this metal in the 
following cases: as a coating to protect metals and wood 
from corrosion and UV rays; as a protector in paints to pre-
vent mildew, the UV-protection of coatings, and zinc-rich 
coatings (Canha et al. 2014; Slezakova et al. 2011).

The rank order of countries based on concentration of 
Mn bound  PM2.5 in indoor air of urban school was Poland 
(46.00  ng/m3) > China (26.56  ng/m3) > Iran (15.25  ng/
m3) > Taiwan (6.49  ng/m3) > Spain (5.90  ng/m3) > Italy 
(4.93 ng/m3) > Chile (1.49 ng/m3) (Table 1).

Studies have shown that the release of Mn into the atmos-
phere depends more on natural resources (such as Earth’s 
crust erosion, excavation, volcanic activity, and mining). 
However, Ahmadi cited brake pads as the primary source 
of manganese emissions (Pastuszka et al. 2010, Rogula-
Kozłowska et al. 2008). Similar to Pb emission, an abun-
dance of Mn bound to  PM2.5 was observed in March and 
April. Analysis of data in Chinese studies showed that two 
factors cause the presence of Mn on particulate matters in 
the atmosphere; one is the burning of coal as fuel in the cold 
seasons and the second is the re-suspension of dust on the 
dirt road and unpaved areas (Wang et al. 2020). Fang et al. 
(Fang et al. 2018) reported that the difference in the  PM2.5 
concentration and metals adsorbed on the  PM2.5 surface in 

Fig. 1  Process of selection 
papers based on PRISMA
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Taiwan is related to seasonal changes and weather condi-
tions (temperature, humidity, wind speed). According to 
the findings, the  PM2.5 concentration was highest in August 
and October, which coincided with school reopening. The 
concentration of Mn adsorbed on the  PM2.5 was highest in 
August and September, attributed to the higher temperature 
in these months. The presence of low amounts of manga-
nese-associated particles in the indoor air of Italian schools 
was attributed to its crustal origin (Cesari et al. 2012; Con-
tini et al. 2014).

Soleimani et al. (Soleimani et al. 2018) reviewed the 
PTEs in the indoor air of Iran. They predicted that the 
Mn concentration associated with the particulate matter 
was higher in summer, fall, and winter. According to this 
research, high levels of manganese in the air were related 
to seasonal dust storms and strong monsoon winds. In con-
trast, Naderizadeh et al. (Naderizadeh et al. 2016) and Has-
sanvand et al. (Hassanvand et al. 2015b) reported sources 
of Mn emission in the air anthropogenic activities such as 
metal mining, industries that are metal-based, and vehicles. 
Numerous researchers in Chile have ascribed Mn emission 
in the atmosphere to erosion of the Earth’s surface, mining 

activities, and the distribution of their waste by wind (Cas-
tilla and Nealler 1978, Medina et al. 2005, Mesías Monsalve 
et al. 2018b, Neary and Garcia-Chevesich 2008, Ramirez 
et al. 2005). Steel, ferroalloy, and manganese manufacturing 
plants are the major industrial processes leading to high Mn 
loadings on particulate matter in the Spanish atmosphere 
(Arruti et al. 2010).

The rank order of countries based on concentration of 
Fe-bound  PM2.5 in indoor air of urban school was China 
(1334.81 ng/m3) > Poland (567.80 ng/m3) > Italy (212.00 ng/
m3) > Spain (200.00 ng/m3) > Taiwan (192.26 ng/m3) > Tur-
key (156.85 ng/m3) > Iran (102.20 ng/m3) > Chile (1.62 ng/
m3) (Table 2).

Studies conducted in Poland have shown that the prox-
imity of schools to crossroads and traffic sites can be the 
primary cause of high levels of Fe associated with fine par-
ticles (Pastuszka et al. 2010, Rogula-Kozłowska et al. 2008). 
Specific research in Italy has shown that iron-bound parti-
cles in indoor air are due to the activity of industries (espe-
cially steelmaking and metal smelting) near the city. These 
studies showed that when wind speeds are high in autumn 
and winter, wind blow lead to re-suspension and transfer of 

Table 1  Meta-analysis of 
concentration of Mn bound 
 PM2.5 in indoor air of urban 
school (ng/m3)

1 Effect size (average concentration)

County Number study ES1 Lower Upper Weight (%) Het-
erogeneity 
statistic

Degrees 
of free-
dom

p value I2

Iran 1 15.25 2.70 27.80 4.48 0 0 .%
Chile 2 1.49 0.13 3.12 29.36 2.21 1 0.137 54.70%
China 9 26.56 12.28 40.84 10.78 12.79 8 0.119 37.40%
Spain 1 5.90 1.04 10.76 11.23 0 0 .%
Taiwan 3 6.49 3.38 9.61 31.29 0.28 2 0.871 0.00%
Italy 1 4.93 0.87 8.99 12.2 0 0 .%
Poland 1 46.00 8.13 83.87 0.67 0 0 .%
Overall 18 7.40 4.24 10.56 100 66.02 17 0 74.20%

Table 2  Meta-analysis of concentration of Fe-bound  PM2.5 in indoor air of urban school (ng/m3)

2 Effect size (average concentration)

County Number study ES2 Lower Upper Weight (%) Heterogeneity 
statistic

Degrees of 
freedom

p value I2

Iran 1 102.20 44.11 160.29 2.34 0 0 .%
Turkey 1 156.85 67.70 246.00 1.02 0 0 .%
Chile 2 1.62 0.20 3.04 92.84 3.54 1 0.06 71.70%
China 6 1334.81 242.53 2427.08 0.44 28.78 5 0 82.60%
Spain 1 200.00 86.32 313.68 0.63 0 0 .%
Taiwan 3 192.26 128.66 255.86 2.02 0.56 2 0.755 0.00%
Italy 1 212.00 91.50 332.50 0.57 0 0 .%
Poland 2 567.80 321.34 814.26 0.14 0.25 1 0.618 0.00%
Overall 17 14.49 5.37 23.60 100 165.75 16 0 90.30%
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dust-containing metal to indoor air (Di Gilio et al. 2017a). It 
has been reported that the presence of Fe production indus-
tries and the re-suspension of dust and soil are responsible 
for the high level of this metal on  PM2.5 in urban air. Hassan 
et al. (Hassanvand et al. 2015b) reported that since indus-
tries in Iran are located outside the city, the main reason 
for iron-on  PM2.5 in indoor air is the re-suspension of dust 
from roads. Studies in Taiwan have reported that the aver-
age concentration of Fe-bound  PM2.5 is highest in summer 
when temperatures are high (Fang et al. 2003, 2018, 2014). 
The proximity of schools to dirt roads, unpaved streets and 
playgrounds, and sweeping the street was reported by Amato 
et al. (Amato et al. 2014) as the leading cause of the release 
of Fe into the indoor air of Spanish schools. In research 
papers conducted in Spain, dust re-suspension through solid 
wind, moving vehicles, and playing with children were 
reported to cause iron release into the indoor air. Raysoni 
et al. (Raysoni et al. 2017b) attributed the Fe contents asso-
ciated with  PM2.5 emitted from non-anthropogenic sources 
such as erosion of the Earth’s crust, volcano eruption, and 
excavation to heavy traffic and metallurgical industries. In 
addition, Monsalve et al. (Mesías Monsalve et al. 2018b) and 
Amato et al. (Amato et al. 2014) revealed that Fe’s presence 
in  PM2.5 in the air had been caused due to natural sources, 
urbanization activities, and natural crustal elements. They 
discussed that Fe emissions in the air were not associated 
with industrialization.

The rank order of countries based on concentration of 
Zn-bound  PM2.5 in indoor air of urban school was Poland 
(267.00 ng/m3) > Iran (68.90 ng/m3) > Taiwan (57.29 ng/
m3) > Turkey (48.54 ng/m3) > Spain (42.10 ng/m3) > Italy 
(15.50 ng/m3) > Chile (1.41 ng/m3) (Table 3).

Studies in Iran have shown that zinc emissions in the air 
are related to heavy traffic, brake wear, and vehicle tire wear. 
Also, because zinc is an additive in engine oil, this metal 
can be released into the environment (Hassanvand et al. 
2015b; Norouzi et al. 2017; Soleimani et al. 2018). Stud-
ies in Taiwan have shown that the highest concentration of 

zinc-bound particles was associated with late summer, which 
was related to high temperature and the reopening of schools 
(Fang et al. 2003, 2018, 2012). Viana et al. (Viana et al. 
2014a) and Querol et al. (Querol et al. 2004) attributed the 
release of Zn-bound particulate matter in indoor air in Spain 
to vehicle emissions wall painting, painting colors, and the 
presence of metal furniture in the classroom. Most studies 
in Poland have attributed identified heavy traffic that causes 
abrasion of car’s internal components (such as pad, brake, 
engine, and tires) as the leading cause of Zn-PM2.5 emission 
into the air (Pastuszka et al. 2010, Rogula-Kozłowska et al. 
2008, Zwoździak et al. 2013). Studies reviewed in Chile 
reported that Zn could be released into the atmosphere due 
to smelting and mining activities, extraction of ores, natu-
ral oxidation of minerals, and Cu ore processes (Gidhagen 
et al. 2002, Jorquera and Barraza 2013, Mesías Monsalve 
et al. 2018b). Ekmekcioglu and Keskin (Ekmekcioglu and 
Keskin 2007) reported the Automotive Industry as a sig-
nificant source of airborne Zn due to its use in many auto 
parts. Ergenekon and Ulutas (Ergenekon and Ulutaş 2014) 
have stated that emission of anthropogenic sources such as 
application in building materials, burning heavy oil, motor 
oil, generator activities, and power plants was associated 
with the Zn-PM2.5 emission in indoor dust. Contini’s study 
in Italy reported that Zn emissions were caused by sintering 
processes and heavy traffic (Contini et al. 2014).

Conclusion

In the current study, the concentration of Zn, Fe, and Mn 
in the indoor air of schools bound  PM2.5 were meta-ana-
lyzed. The concentration of Zn bound to PM in schools’ 
indoor air was higher than in other PTEs. Therefore, it is 
recommended to carry out plans to identify zinc emission 
sources and reduce its emission. The pooled concentration 
of PTEs (Fe, Mn, and Zn) bound  PM2.5 in the indoor air of 
urban schools in Poland and China was higher than in other 

Table 3  Meta-analysis of 
concentration of Zn-bound 
 PM2.5 in indoor air of urban 
school (ng/m3)

3 Effect size (average concentration)

County Number study ES3 Lower Upper Weight (%) Het-
erogeneity 
statistic

Degrees 
of free-
dom

p value I2

Iran 1 68.9 29.738 108.062 1.65 0 0 0%
Turkey 1 48.54 20.95 76.13 3.12 0 0 0%
Chile 2 1.41 0.731 2.089 50.98 1.3 1 0.255 23.00%
Spain 1 42.1 18.171 66.029 3.99 0 0 0
Taiwan 6 57.29 30.149 84.431 25.37 30.21 5 0 83.40%
Italy 1 15.5 6.69 24.31 14.78 0 0 0
Poland 1 267 115.24 418.76 0.12 0 0 0
Overall 13 17.32 12.12 22.51 100 146.88 12 0 91.80%
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countries. Hence, it is recommended to perform  PM2.5 con-
centration control plans in schools’ indoor air, especially in 
these countries.
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