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Abstract
Pig farming is one of the major sources of greenhouse gas (GHG) emissions in the agricultural sector; nevertheless, few 
studies have been undertaken to directly measure or estimate GHGs, particularly carbon dioxide (CO2) from pig barns. 
Therefore, the main objective of the present research was to estimate and predict CO2 emission rate as a function of the mass 
of pigs and feed consumption. Two identical experiments were carried out in experimental pig barns in 2020 and 2021 to 
develop and evaluate the performance of CO2 emission model. The CO2 emission data (ppm) were collected utilizing Live-
stock Environment Management Systems (LEMS) and weather sensors, respectively within the pig barns and the outside 
environment. The models were built using seven statistical and machine learning–based regression algorithms, i.e., linear, 
multiple linear, polynomial, exponential, ridge, lasso, and elastic net. The findings of the study revealed that among the seven 
models, the exponential-based regression model performed the best, with a coefficient of determination (R2) greater than 
0.78 in the training stage and 0.75 in the testing stage being suitable to describe the relationship between the feed intake and 
the rate of CO2 emission. However, when compared to the other models in the testing stage, the lasso model had the worst 
performance (R2 < 0.65 and RMSE > 20.00 ppm). In conclusion, this study recommends employing an exponential-based 
regression model by taking feed intake as an input variable in predicting CO2 for a small number of the experimental dataset.
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Introduction

Increasing carbon dioxide (CO2) emissions from livestock 
farming, as well as their impact on global climate, poses a 
significant challenge to reduce greenhouse gas (GHG) emis-
sions. Enteric fermentation and manure management, feed 
production, and energy consumption all contributed signifi-
cantly to CO2 emission in the livestock sector, either directly 
or indirectly (Rojas-Downing et al. 2017; Ambade et al. 
2021a; Maharjan et al. 2021; Ambade et al. 2022a; Kurwad-
kar et al. 2022). Several authors have recently quantified the 
amount of CO2 emitted by livestock and its contribution to 
global agricultural-induced GHGs emissions (Philippe and 
Nicks 2014; González et al. 2014). It was discovered that 
livestock production alone emitted approximately 8.1 giga-
tons (Gt) of CO2 (FAO 2010; Petrovic et al. 2015), account-
ing for 14.5% of global anthropogenic GHGs emissions in 
2013 (Gerber et al. 2013). According to Prasad et al. (2015), 
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the livestock production process generates nearly 9% of CO2, 
out of which 75% emits only from ruminants.

Pig production is the second largest source of GHGs 
emissions in the livestock industry (FAO 2015), and this 
contribution is on the rise, due to global dietary shifts. 
Pig meat accounts for 45% of the world’s total meat con-
sumption (Pork Chekoff 2018). According to a recent 
report by Gerber et al. (2013), the global demand for pig 
meat will rise by 32% between 2005 and 2030, resulting 
in increased emissions of greenhouse gases. For instance, 
CO2 emissions from pig production accounted for 
approximately 13% of the total emissions of the livestock 
sector in 2010, which is higher than in previous decades, 
and this proportion is expected to grow significantly in 
the upcoming years (FAO 2013). Therefore, determining 
the CO2 emission from a pig farm is a crucial issue for 
mitigating the adverse effects of GHGs on the global cli-
mate. Within this context, this paper aims to quantify the 
amount of CO2 emission from an experimental pig barn.

Given that a variety of environmental, management, 
and housing factors have been shown to affect CO2 emis-
sion, it is critical to identify precise input parameters that 
are more informative for CO2 emission modeling. Addi-
tionally, it is critical to develop a rigorous model with the 
optimal architecture in order to maximize model perfor-
mance. Recently, a variety of models have been used to 
estimate the rate of CO2 emission, including regression-
based equations (Keat et al. 2015; Zhou et al. 2021), 
decomposition models (Cansino et al. 2015; Xiao-wen 
et al. 2021), and empirical models (Lashkenari and Khaz-
aiePoul 2015). According to the decomposition analysis, 
structural adjustment in agriculture, growing affluence, 
and population growth contributed to an increase in the 
GHG emissions of pork production by 23, 41, and 13 Mt 
CO2 eq, respectively (Xiao-wen et al. 2021). According 
to a life cycle analysis (LCA) that takes into account the 
entire process of producing animal products, the live-
stock sector contributes 9% of CO2 to total GHGs emis-
sions (Oonincx et al., 2010). Regrettably, the application 
of these methods for CO2 measurement is further limited 
by the complexities associated with conducting experi-
ments in pig barns. On the other hand, machine learning 
techniques appear to be promising in terms of address-
ing and mitigating the limitations of existing methods 
(Rybarczyk and Zalakeviciute 2018).

Since monitoring CO2 in the air is important for pigs’ 
health and their living environment, it is essential to regu-
late effective controlling systems. The CO2-based model 
can act as an initial step in controlling mechanisms. Evalu-
ating the performance of statistical and machine learning 
models in the field of air quality modeling and forecasting 
has been undertaken in several studies (Austin 2007; Kisi 
et al. 2017; Kang et al. 2018; Shahriar et al. 2020; Ambade 

et al. 2021b; Ambade et al. 2021c; Ambade et al. 2021d; 
Ambade et al. 2022b). However, based on relevant litera-
ture, the study of regression-based CO2 prediction model 
was limited in the experimental pig barn. In this study, 
regression-based models were developed using statisti-
cal and machine learning algorithms to measure the CO2 
emission as a function of feed intake and mass of pigs.

These models are effective in predicting CO2 con-
centrations in experimental pig barns in two ways. To 
begin, the models can be used to understand the emission 
pattern of CO2 in different stages of pig growth, which 
may lead to improved knowledge. Second, they are use-
ful for monitoring the inside environment to describe 
the relationships between feed intake, pig mass, and CO2 
emission. The primary goal of these methods is to inves-
tigate the relationship between observed and predicted 
parameters (Boldina and Beninger 2016). The most com-
mon type of regression-based model is linear form, which 
is used in a wide variety of fields. Regression analysis 
was used in some studies, such as the characterization 
of spatial patterning (Beninger and Boldina 2014), and 
demonstration of the relationship between phytoplank-
ton cell size and abiotic parameters in dynamic energy 
budget (DEB) models (Duarte et al. 2012; Agüera et al. 
2017). Like linear models, polynomial regression models 
are also used in a variety of research fields (Legendre and 
Legendre 2012). Furthermore, the polynomial model is 
preferable because it can easily fit the data. However, 
higher-order polynomials can be difficult to obtain any 
meaningful meaning, which is actually unacceptable in 
some cases (Peng et al. 2017; Muthusamy et al. 2021). 
On the other hand, for nonlinear data, a linear or polyno-
mial-based regression model is difficult to outperform. 
In this case, exponential, ridge, lasso, or elastic net-based 
machine learning performed well (Glazier 2013; Pack-
ard 2013; Joharestani et al. 2019; Shahriar et al. 2020, 
Basak et al. 2022). Such regression-based statistical and 
machine learning models for estimating CO2 emission 
rate from feed intake and pig mass can reduce sampling 
effort and cost while potentially increasing precision in 
cases where samples are difficult to handle.

Measuring CO2 concentrations in an experimental pig 
barn entails a lengthy process that includes setting up 
the experimental setup and maintaining internal environ-
mental conditions, dietary composition, and feed intake, 
among other things. Additionally, the CO2 emission rate 
varies significantly within the same experimental pig 
barn year after year, making measurement even more 
difficult. In this regard, regression-based statistical and 
machine learning models may be advantageous for fore-
casting CO2 emissions. As such, the research objectives 
are to quantify the daily CO2 emission rate per pig using 
livestock environment management systems (LEMS, 
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AgriRoboTech Co., Ltd, Republic of Korea) and then to 
use regression methods to model CO2 emission rate as a 
function of feed intake and mass of pigs.

Materials and methods

Animal Resources, experimental design, and data 
collection

The experimental procedures were approved by Gyeong-
sang National University’s ethical and animal experimen-
tation committee (certification #GNU-150508-R0029). 
Two independent tests were carried out in the Smart 
Farm Systems Laboratory at Gyeongsang National Uni-
versity with six, 2-month-old crossbreed pigs (Ameri-
can Yorkshire × Duroc) in experimental pig barns from 
September 1, to December 15, 2020 and 2021. During 
the both experimental periods, only one pig barn was 
used for rearing pigs which was mentioned as Livestock 
2 (LS-2), and another one was mentioned as Livestock 
1 (LS-1). The average dimension of each experiment 
pig barn was 3.3 m (width) × 5.4 m (length) × 2.9 m 
(height) and 0.05 m thickness of roof and wall (Fig. 1). 
The sidewalls and roof were made of galvanized steel 
and expanded polystyrene, respectively. These materials 
were chosen for their ability to maintain a comfortable 
environment within the pig barn (Moon et al. 2016). A 
constantly ventilated fan and an air inlet damper (Auto-
Damper 250, Sanison Co., Ltd., Korea) were installed at 
1.44 m and 1.72 m above ground level, respectively, for 
air circulation with an average flow rate of 0.16 m3s−1. 

We recorded CO2 data from both experimental pig barns 
(LS-1 and LS-2) at the same flow rate of the ventilated 
fan throughout the entire experimental period.

In both experimental periods, similar sizes of the pigs 
(ages and weights) were studied by providing Growing 
Pigs Late Feed 10 (Nonghyupfeed Co., Ltd., Seoul, 
Republic of Korea) concentrated diet (Table 1). Pigs of 
similar sizes were retained, implying that CO2 genera-
tion rates would be comparable. Each pig received an 
identical amount of feed twice daily at 10 a.m. and 5 
p.m., and the amount of feed consumed was estimated 
using daily records of feed offered and leftovers from 
each pig. Additionally, the mass of the pigs was deter-
mined by averaging weights taken twice daily with a 
load cell. Moreover, the LS-2 barn was equipped with a 
drinker and feeder so that pigs could be restrained with 
halters while eating and drinking (Fig. 1). The LS-2 was 
cleaned of pig manure, including urine and fecal matter 

Fig. 1   a Schematic diagram for measuring CO2 data using livestock environment management systems (LEMS) without pig in livestock barn; b 
schematic diagram for measuring CO2 concentration using LEMS with pig in livestock barn

Table 1   Ingredients of Growing Pigs Late Feed 10 and its contents

Ingredient Contents of ingredient

Crude protein Below 18.0%
Crude fat More than 4.5%
Crude fiber Below 10.0%
Crude ash Below 8.0%
Calcium More than 0.5%
Phosphorus Below 1.2%
Lysine More than 0.9%
Digestible crude protein (DCP) More than 12.0%
Digestible energy (DE) 3500 kcal kg−1
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every 15-day intervals. The experimental setup view of 
the LS-1 and LS-2 was represented in the Supplementary 
Section (Fig. S1).

Environmental data inside the two pig barns such 
as temperature, humidity, and CO2 concentration were 
measured by using LEMS every 5-min intervals. The 
collected CO2 data from the two pig barns were later 
analyzed to obtain the emission rate of CO2 per pig (ppm 
pig−1). To obtain the CO2 emission rate, the emitted CO2 
was subtracted by LS-1 from LS-2, after it was scaled 
by the number of pigs in the pig barn to obtain CO2 pro-
duced by a pig. Weather sensors were used to collect data 
on the outside temperature, humidity, and carbon dioxide 
levels (MetPRO, Producer: Campbell Scientific, United 
States of America) (Fig. S2).

Data pre‑processing and model development

Data collected from the two experimental pig barns in 
2020 and 2021 were used to build models for predicting 
CO2 emission rate. Throughout the model preparation 
stage, pig mass (MP), age, and feed intake (FI) were all 
considered as input variables. However, a high-multicol-
linearity value was discovered between body weight and 
age (correlation coefficient (r) > 0.94); therefore, MP 
and FI were chosen as model input variables. The Z-score 
data normalization technique (Eq. 1) was used to keep 
values within a scale that was applied across all numeric 
columns in the model (Jain et al. 2018):

where Z is the standard score; X is the value in the input 
dataset; μ is the mean of the variable of X, and σ is the 
standard deviation.

Due to the limited number of experimental data on 
input variables (the number of input data is 182), seven 
regression-based statistical and machine learning models 
were evaluated based on how well these algorithms pre-
dicted CO2 emission rate from the three types of datasets 

(1)Z =
X − �

�

presented in Table 2. The mathematical approaches used 
to predict CO2 emission rate were briefly explained in the 
following sections of the methodology part.

Linear regression model

One of the primary objectives of this study was to estab-
lish relationships between pig body mass, feed intake, and 
CO2 emission rate. These relationships are frequently dif-
ficult to detect. The linear regression model is one of the 
most frequently used approaches for fitting a study varia-
ble (dependent variable) to a set of covariables (independ-
ent variables). The linear regression equation is denoted 
by the following notation (Permai and Tanty 2018):

where dependent variable Y indicates approximately a 
linear function of independent variable X, while ε refers 
to the degree of discrepancy of this approximation, �0 
is the model intercept, and �1 is the slope of the straight 
line. The term ε denotes the error of approximating 
the observed value Y by means of the linear estimation 
obtained from the model.

In cases where we have more than one independent 
variable, the multiple linear regression (MLR) model is 
based on the same assumptions as simple linear regres-
sion. The purpose of this MLR model was to investigate 
and quantify the relationship between explanatory (MP 
and FI) and response variables in the current study (CO2 
emission rate). The MLR model is structured as follows 
(Darlington and Hayes 2016):

where Yi is the CO2 emission rate, �0 is the model inter-
cept, β1–βn are the coefficients of regression, X1–Xn are the 
input variables, and ε is the error associated with the ith 
observation.

PR

Polynomial regression describes a nonlinear relationship in 
which the independent variable X and the dependent variable 
Y are modeled as a degree polynomial (Ostertagová 2012). 
Polynomial regression (PR) models comprise squared and 
higher order terms of the dependent variables creating the 
response line curvilinear form (Gendy et al. 2015). A poly-
nomial mathematical model based on experimental data was 
investigated in different orders to study this phenomenon and 
to find the best correlation. The general form of a complete 
second degree PR model with two independent variables X1 
and X2 is shown in Eq. (4) (Gavrilova 2021):

(2)Y = �0 + �1X + �

(3)Yi = �o + �1X1 + �2X2 +⋯ + �nXn + �

Table 2   Year-wise compositions input variables, datasets, and the 
number of data

Year Input variable Dataset Number of data

2020 Pig’s body weight (PBW) D1 184

2021

2020 Feed intake (FI) D2 184

2021

2020 Pig's body weight (PBW) and Feed 
intake (FI)

D3 184

2021
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where �yI(X1,X2) refers to the true mean response for the 
independent variables, �0 is the model intercept, β (1, 2, 3, 4, 
5) are the model parameters, and X1 and X2 (MP and FI) are 
the independent variables. After examining different degrees 
of polynomials (order = 2, 3, 4, 5), in this study, we decided 
to perform 4-degree due to its better performance.

ER

Exponential regression model (ER) model is normally used 
to explain the situation in which growth starts gradually and 
then accelerates quickly without bound; otherwise, decline 
starts quickly and gradually slows down, getting closer 
and closer to zero (Dettea and Neugebauer 1997; Silva and 
Almeida 2018). The ER model is defined as

where the input variable X follows as an exponent. The 
exponential curve is determined by the exponential function, 
and it depends on the value of the X.

RR

A penalty-based regression approach (i.e., ridge regression) 
was also used to model CO2 emission in this study. The ridge 
regression model (RR) has been frequently used to test a vari-
ety of features in a single sample at the same time (Ransom 
et al. 2019; Wieringen 2020). It is a continuous method of 
shrinkage in which the residual sum of squares is diminished, 
as each coefficient is shrunk towards zero, thus decreasing 
the significance or impact of any specific factor (Nagesha 
et al. 2019; Ransom et al. 2019). Although the RR equation is 
quite similar to the least-squares equation, the minimization 
equation is slightly different, as seen in Eq. (6):

where ⇑ y − X∧
�
⇑

2 is called the sum of the squares of all 
coefficients (RSS), and it is also denoted as a loss function, 
and the λ parameter is the regularization penalty.

LaR

Likewise ridge regression, Lasso regression model (LaR) 
also minimizes the residual sum of squares, subject to a 
constraint on the sum of the absolute values of the regres-
sion coefficients (Rajaratnam et al. 2019). The estimation 
of regression coefficients by the lasso regression model can 
be defined as:

(4)
�yI(X1,X2) = �0 + �1X1 + �2X2 + �3X

2

1
+ �4X

2

2
+ �5X1X2 + �

(5)Y = aebX

(6)

Lridge

(
∧
�

)
=

n∑

i=1

(
yi − X

�∧
i�

)2

+ �

m∑

j=1

(
∧
�

)2

j
= ⇑ y − X∧

�
⇑

2
+ �⇑ ∧

�
⇑

2

where 
(
∧
�

)
 is a p-dimensional vector containing the lasso 

estimates of the slope coefficients, and λ is a regularization 
parameter (Rajaratnam et al. 2019).

Elastic net model (ENR)

Elastic net was developed through critiques of lasso 
and ridge regression algorithms, whose variable selec-
tion is highly dependent on data and thus unstable. Like 
ridge and lasso, elastic net is also used to improve the 
performance of linear regression model. To get the best 
performance, elastic net combined the penalties of both 
ridge and lasso regression (Mol et al. 2009). In order to 
have a good understanding of ridge and lasso, and elastic 
net regression model, it was more described in an earlier 
study noted in Aldabal (2020). Elastic net aims at mini-
mizing the following loss function:

where α is the mixing parameter between ridge (α = 0) 
and lasso (α = 1).

Experimental setup and performance metrics

In this study, all models were developed using open source 
libraries in a Python (Python 3.7.0) environment. Python 
is a powerful, interpreted programming language with a 
wide range of applications, including scientific research 
(Tran et al. 2020). Different libraries including NumPy 
(Van Der Walt et al. 2011), Pandas (McKinney 2010), and 
Matplotlib (Hunter 2007) in the Python platform were 
employed for processing, manipulating, and displaying 
data. In this study, 75% of the experimental data were 
used as the training while 25% was used as the testing 
dataset. Two model evaluation metrics such as root mean 
square error (RMSE) and coefficient of determination (R2) 
were used to assess the models’ performance. The Statisti-
cal Package for the Social Sciences (IBM SPSS Statistics 
22.0.0.0, New York, USA) and Origin Pro 9.5.5 were used 
to perform all statistical calculations including analysis of 
variance (ANOVA), correlation of input variables in this 
work (OriginLab, Northampton, Massachusetts, USA).

(7)Llasso

(
∧
�

)
= argmin

{
n∑

i=1

(yi −

p∑

j=1

�jXij)
2

}
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Results and discussions

Data overview

The descriptive statistics for CO2 concentration, air tempera-
ture, and relative humidity data in LS-1, LS-2, and outside 
the livestock are presented in Table 3. Among the three loca-
tions, the highest mean CO2 emission (797.55 ppm in 2020 
and 752.84 ppm in 2021) and relative humidity (67.85% in 
2020 and 60.20% in 2021) were observed in LS-2 and the 
lowest CO2 (121.92 ppm in 2020 and 119.02 ppm in 2021) 
and relative humidity (45.68% in 2020 and 46.98% in 2021) 
were found in LS-1 and outside environment, respectively. 
While the outside environment of livestock was found to 
have the highest air mean temperature of 21.5 °C (21.42°C 
in 2020 and 21.54 °C in 2021), LS-1 was found to have the 
lowest (17.23 °C in 2020 and 19.80 °C in 2021) (Table 3).

Figure  2 depicts the pattern of CO2 emission rate 
changes prior to 15 days of pigs entering LS-2 and 
throughout the experimental period. It was demonstrated 
that when the pigs began rearing in LS-2, the CO2 emis-
sion rate increased dramatically. However, a similar pat-
tern was observed in LS-1 and the surrounding environ-
ment during the whole experimental time. Additionally, 
the current study examined that the differences in CO2 
and relative humidity among the three locations (LS-1, 
LS-2, and outside) were statistically significant (p < 0.05), 

whereas the variation in air temperature between LS-1 and 
LS-2 was statistically insignificant (p = 0.168 in 2020 and 
p = 1.00 in 2021). To gain a better understanding of the 
relationship between ambient environmental parameters 
inside and outside of pig barns, the results of our previ-
ous study were described (Basak et al. 2020). Figure 3 
shows the relationships between the mass of pigs, age, feed 
intake, and CO2 emission in 2020 and 2021.

Model execution

The microclimatic parameters of swine buildings, such as 
temperature, relative humidity, and CO2 concentration are 
widely quantified using statistical models (Besteiro et al. 
2017; Tuomisto et al. 2017). The current study investi-
gated widely used regression-based statistical and machine 
learning models for predicting CO2 levels in a swine build-
ing. The evaluation results from the model execution were 
classified into four categories: input datasets, model per-
formance, model comparison, and proposed model. The 
“Input datasets” section discusses the results obtained 
using datasets D1, D2, and D3. The model performance 
section discusses the results obtained during the training 
and testing stages of those models. Finally, the “Model 
comparison and proposed model” section discuss the per-
centage differences between the results of all models.

Table 3   Mean (μ) and standard 
deviation (±SD) of the air CO2 
emission, relative humidity, 
and temperature data across 
the three locations during 
2020–2021

Place Environmental parameters 2020 2021
Values (mean ± S.D.) Values (mean ± S.D.)

Livestock-1 CO2 (ppm) 121.92 ± 39.69 119.02 ± 35.87
Relative humidity (%) 59.58 ± 17.49 60.15 ± 18.42
Temperature (°C) 17.23 ± 6.08 19.80 ± 5.51

Livestock-2 CO2 (ppm) 797.55 ± 159.08 752.84 ± 171.92
Relative humidity (%) 67.85 ± 9.87 60.20 ± 9.52
Temperature (°C) 18.72 ± 4.53 22.60 ± 4.23

Outside environment CO2 (ppm) 325.02 ± 26.05 311.88 ± 17.54
Relative humidity (%) 45.68 ± 18.40 46.98 ± 19.95
Temperature (°C) 21.42 ± 6.03 21.54 ± 5.97

Fig. 2   CO2 concentration 
around the outside environment, 
livestock-1 and livestock-2 dur-
ing the data collection periods 
for 2020 (a) and 2021 (b). Data 
points represent daily averages 
for all the days during which 
CO2 data was collected. Days 
represent the 3 days interval for 
each year
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Input datasets

The current study considered the use of three datasets, i.e., 
D1, D2 and D3, in predicting CO2 emission. The perfor-
mances of all models with three input datasets were evalu-
ated in the training and testing stages (Table 4). For example, 
the ER model obtained the best performance with D2 (R2 = 
0.757 and RMSE = 16.45 ppm pig−1) in the testing stage. 
The results also indicated that the selected ER model with 
D2 dataset could predict CO2 emission rate for testing stage 
with a 1.67% increase in R2 and a reduction of 18.36% in 
RMSE compared to D1 dataset. Like the ER model, the LaR 
model also had a better performance using D2 (13.44% and 
7.65% increase in R2 and a reduction of 15.62% and 10.34% 
in RMSE, respectively) compared to D1 and D3 datasets. 

Similar results were also obtained for the other regression-
based models; however, the performances of those models 
in training stage were nearly identical (Table 4; Figs. 4, 5, 
and 6).

According to the analysis of input datasets, it was found 
that the amount of feed intake was the most influential factor 
in generating CO2. Numerous studies have been conducted 
to determine the relationship between CO2 emission rate 
and feed intake and body weight of pigs (Gerber et al. 2013; 
Philippe and Nicks 2014; Van Mierlo et al. 2021). According 
to Philippe and Nicks (2015), the feed intake, body weight, 
production level, and physiological stage of the pigs have an 
effect on the amount of CO2 exhaled (E-CO2, pig). Aubry 
et al. (2004) proposed a mathematical equation to predict 
CO2 exhalation (E-CO2, pig, in kg CO2 day−1) in pigs weigh-
ing 20–120 kg body weight, and they estimated that a pig 
weighing 70 kg produces approximately 1.55 kg CO2 per day 
via the respiratory process.

Model performance

In the present study, seven regression-based statistical and 
machine learning models, including linear, multiple linear, 
polynomial, exponential, ridge, lasso, and elastic net models, 
were used. Therefore, it is important to figure out which one 
performs the best. The best model selection for the datasets 
D1, D2, and D3 is depicted in Fig. 7. The results indicate 
that overfitting was perfectly controlled in this study. In CO2 
prediction, most of the models obtained almost the same 
performance (R2 and RMSE) during the training stage. The 
study found that the R2 and RMSE values ranged from 0.692 
to 0.785 and 17.44 ppm pig−1 to 20.85 ppm pig−1 for the 
D1 dataset, 0.673 to 0.788 and 17.10 ppm pig−1 to 21.48 
ppm pig−1 for the D2 dataset, and 0.752 to 0.817 and 16.08 
ppm pig−1 to 18.72 ppm pig−1 for the D3 dataset, respec-
tively, during the training period. Among the models, ER 
showed the best performance in predicting CO2 emission 
particularly for D1 (R2 = 0.660 and RMSE = 19.47 ppm 
pig−1) and D2 (R2 = 0.757 and RMSE = 16.45 ppm pig−1) 
in testing period. Due to its simplicity, this model has been 

Fig. 3   Feed intake, mass of pig, and age with CO2 emission rate in experimental pig barn in 2020 and 2021

Table 4   The performance assessment of LR, PR, ER, MLR, RR, 
LaR, and ENR models along with D1, D2, and D3 input datasets dur-
ing CO2 prediction

Models Dataset Training Testing

R2 RMSE R2 RMSE

Linear D1 0.785 17.44 0.537 22.70
D2 0.773 17.91 0.640 20.01

Polynomial (O=4) D1 0.795 17.00 0.599 21.12
D2 0.772 17.93 0.655 19.58
D3 0.817 16.08 0.606 20.95

Exponential D1 0.775 17.84 0.660 19.47
D2 0.788 17.10 0.757 16.45

MLR D3 0.790 17.22 0.583 21.54
Ridge D1 0.785 17.44 0.540 22.69

D2 0.763 18.28 0.640 20.01
D3 0.789 17.26 0.601 21.08

Lasso D1 0.785 17.44 0.540 22.70
D2 0.763 18.28 0.640 20.01
D3 0.790 17.22 0.580 21.54

ElasticNet D1 0.692 20.85 0.601 21.08
D2 0.673 21.48 0.662 19.46
D3 0.752 18.72 0.601 21.08
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Fig. 4   The comparison results 
between measured and pre-
dicted by LR (a), PR (b), ER 
(c), RR (d), LaR (e), and ENR 
(f) with D1 dataset for CO2 
prediction in testing period; 
the coefficient of determination 
between actual and predicted for 
all the models
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Fig. 5   The comparison results 
between measured and pre-
dicted by LR (a), PR (b), ER 
(c), RR (d), LaR (e), and ENR 
(f) with D2 dataset for CO2 
prediction in testing period; 
the coefficient of determination 
between actual and predicted for 
all the models
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used widely to predict greenhouse gas emission (Petersen 
et al. 2016; Ngwabie et al. 2018; Hempel et al. 2020). The 
exponential equation was used for CH4 emission modeling 
as a function of pigs’ mass, where the models explained 
about 88% of the variations in the measured and predicted 
data (Ngwabie et al. 2018).

The worst performance of ENR (R2 = 0.692 and RMSE = 
20.85 ppm pig−1 for D1; R2 = 0.673 and RMSE = 21.48 ppm 
pig−1 for D2 and R2 = 0.752 and RMSE = 18.72 ppm pig−1 
for D3) was observed in the training period; nevertheless, it 

performed better compared to RR and LaR models during 
the testing period. According to a previous study, the ENR 
model is particularly useful because it solves the limita-
tions of both RR and LaR methods (Zou and Hastie 2005). 
Additionally, though the PR model with D3 dataset had a 
high training accuracy (R2 = 0.817 and RMSE = 16.08 ppm 
pig−1), it performed less in the testing stage (R2 = 0.606 
and RMSE = 20.95 ppm pig−1). This finding indicated that 
there was a strong correlation between the predicted and 
measured data in the training stage; however, it was not 

Fig. 6   The comparison results 
between measured and pre-
dicted by PR (a), MLR (b), RR 
(c), LaR (d), and ENR (e) with 
D3 dataset for CO2 prediction 
in testing period; the coefficient 
of determination between actual 
and predicted for all the models
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consistent during the testing phase of the PR model, which 
might have happened due to the data splitting process (Kim 
and Oh 2021). The study also found that in terms of the 
percentage differences between ER’s training and testing, 
the R2 value in the training stage was 3.93% higher, and the 
RMSE value was 3.80% lower compared to the testing stage. 
In comparison to the testing stage, the training stage’s R2 
value was 25.73% higher, and the RMSE value was 30.27% 
lower for the PR model (Table 4).

Model comparison and proposed model

In this study, ER model performed better in the testing period 
compared to all the statistical and machine learning–based 
regression model (Table 4). In addition, the PR model had 
the highest performance during the training period for D3 
dataset among all models; however, the testing performance 
was lower compared to the ER model. Since the training was 
supervised, the testing results were considered for model 
evaluation substantially (Krishan et al. 2019; Arulmozhi 
et al. 2021). Other than those two models, RR, LaR, MLR, 
linear regression (LR), and ENR were performed in ascend-
ing order (Fig. 7). When compared with ER results, RMSE 
values were 21.64%, 19.03%, 21.64%, 21.64%, and 18.30% 
higher and R2 values were 15.46%, 13.47%, 15.45%, 15.45%, 
and 20.61% lower for the models LR, PR, RR, LaR, and 
ENR, respectively, in the testing stage for the D2 dataset. 
The overall comparison between actual and predicted CO2 
data is illustrated along with the coefficient of determination 
(Figs. 4, 5, and 6).

Additionally, a graphical representation of the actual and 
predicted CO2 values on a graph (Fig. 8) can aid in com-
prehending the capability of ER models. The cumulative 

distribution function calculated from measured and pre-
dicted CO2 data using the ER model indicated that the pre-
dicted CO2 values using the D2 dataset were more accurate 
compared to the D1 dataset. As illustrated in Fig. 8, 73.91% 
of the data in D2 dataset had a residual value between − 20 
and 20, whereas it was 65.22% in D1 dataset for the same 
range. Additionally, the S-curve revealed that a substan-
tial portion of the relationships between independent vari-
ables and CO2 emission is nonlinear, which may affect the 

Fig. 7   Taylor diagram of train-
ing and testing results of LR, 
PR, ER, MLR, RR, LaR, and 
ENR models with D1 (PBW), 
D2 (FI), and D3 (PBW and 
FI) input dataset during CO2 
prediction

Fig. 8   Cumulative distribution function calculated from measured 
and predicted CO2 emission for ER model using D1 and D2 dataset in 
the testing period
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performance of this model. As a result, the exponential 
model was chosen as the optimal model for predicting CO2 
emission rate when feed intake data was used as an input 
dataset (D2). The exponential method has a superior ability 
to describe the CO2 scenarios as the emission begins slowly 
and then accelerates rapidly, resembling the nature of expo-
nential function. Similar findings have been reported in a 
variety of modeling studies (Basak et al. 2019; Borrani et al. 
2021; Rahimpour et al. 2021).

Conclusion

The experiment was designed to assess the model relation-
ships between CO2 emission rate, pig mass, and feed intake. 
Seven regression-based statistical and machine learning 
models were developed in this study to predict CO2 emis-
sion rate using three selected input variables, i.e., feed 
intake, pig mass, and the combination of feed intake and 
pig mass. The study discovered that among the seven mod-
els, an exponential model with a coefficient of determina-
tion (R2) greater than 78% in the training stage and 75% in 
the testing stage was the most suitable for explaining the 
relationships between feed intake and CO2 production rate. 
Apart from the exponential model, the polynomial, ridge, 
lasso, multiple linear, linear, and elastic net models placed 
first, second, third, fourth, fifth, and sixth, respectively. The 
exponential method has a superior ability to describe the 
CO2 scenarios as the emission begins slowly and then accel-
erates rapidly, resembling the nature of exponential func-
tion. Sensitivity analysis revealed that quantity of feed intake 
was the most influential factor in predicting CO2, followed 
by the combination of body mass and feed intake and the 
pig’s body mass. Due to the ease of computing, simplicity, 
and interpretability of the parameters as well as the better 
performance of exponential models, the study may be use-
ful for CO2 emission modeling. However, feed intake and 
body mass may not always be the same when associated with 
CO2 emissions from pig barn. Additionally, attempting to 
achieve high prediction efficiency of CO2 emission modeling 
by applying the same parameters may lead to changes in the 
performance of the models. Therefore, additional research 
may be conducted to optimize this model’s performance effi-
ciency by providing a diverse range of diets and management 
conditions.
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