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Abstract
Manure production and its management in the livestock sector have been increasingly receiving global attention due to its 
contribution to generating greenhouse gases, especially methane (CH4). This study was conducted to quantify and characterize 
daily manure including its moisture, dry matter (DM), ash, volatile solid (VS) contents, and model CH4 production rate as 
a function of feed intake and mass of pigs. Two statistical (multiple linear regression and polynomial regression) and three 
machine learning algorithms (ridge regression, random forest regression, and artificial neural network) were employed to 
predict CH4 emission. The result showed body mass ranged from 60 to 90 kg pig produced around 4.78 kg of manure per day 
consisting of 67% moisture content and 33% DM. The manure’s ash content was 28% DM (0.45 kg pig−1 day−1), while the 
VS was 72% DM (1.21 kg pig−1 day−1). Moreover, the average CH4 production rate was estimated as 0.018 kg pig−1 day−1 
which was lower than IPCC’s (2006) recommended value for Oceania, Western Europe, and even North America regions. 
The current study found that the performance of the ridge regression was comparatively better, where the model with a 
coefficient of determination (R2) greater than 90% was suitable for describing the relationship between the explanatory (feed 
intake and mass of pigs) and the response (CH4 emissions) variables. Further research may be conducted to improve this 
model’s prediction accuracy, providing a wider range of diets and management conditions.
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Introduction

Worldwide agriculture and livestock sectors contribute sig-
nificantly to the anthropogenic emissions of greenhouse 
gases (GHGs), predominantly methane (CH4) (Riaño and 
García-González 2015; Ngwabie et al. 2018). Globally, 
about 18% of anthropogenic emissions occur from livestock 
production whereas 37% of anthropogenic CH4 generates 
only from ruminant enteric fermentation and manure man-
agement (Steinfeld et al. 2006). Among the livestock ani-
mals, pig contributes about 13% of the total emissions of 

GHGs which is the second-highest source of GHGs emission 
in the livestock sector (FAO 2011). In recent years, the total 
pig production in Korea has rapidly increased due to the 
changes in dietary life (Lu et al. 2008; Wang et al. 2010) 
and hence, CH4 emissions are significant from pig farming. 
Ji and Park (2012) noted that the annual growth rate of CH4 
emission from manure management in Korea was 2.6% from 
1990 to 2009, which has a substantial contribution to GHGs 
on climate change. Therefore, CH4 emission modelling can 
act as a preliminary step for controlling the mechanisms of 
GHGs. It gives a clear view of the CH4 emission rate from 
pig manure based on the quantity of feed intake and age of 
pig, which might be helpful to reduce the CH4 emission rate 
in pig barns. Within this context, this study was conducted 
to characterize and quantify pig manure for methane emis-
sion modelling.

Methane emission from pig’s manure is mainly affected 
by environmental conditions, manure properties (e.g., mois-
ture content and pH), manure management practices, and the 
portion of manure anaerobically decomposed (Liang et al. 
2005; Cortus et al. 2012; Hetchler et al. 2015). Moreover, the 
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manure properties primarily depend upon the nutrient value 
of the feed given to the pig and the age of the pig. It is noted 
that the nitrogen excretion rate decreased as a percent of the 
bodyweight of pigs when the concentration of protein in the 
diet was reduced (Ogejo 2019). Since different factors influ-
ence in generating methane, it is essential to select appropri-
ate input variables, which are informative for methane emis-
sion modelling. Moreover, to maximize the accuracy and 
minimize the error of model estimation, it is important to 
develop a precise model with the best architecture. Recently, 
a number of emission models such as regression equations, 
manure-DeNitrification DeComposition (DNDC), empirical 
model of CH4 emissions have been used to estimate the CH4 
emission rate (Olesen et al. 2006; Li et al. 2012; Petersen 
et al. 2016; Ngwabie et al. 2018). For example, the rela-
tionship of CH4 production rate as a function of pigs’ mass 
was described through an exponential equation with coef-
ficients of determination (R2) > 88% (Ngwabie et al. 2018). 
Manure-DNDC modeled results showed that crop cultiva-
tion and lagoon coverage with feed quality changes could 
reduce GHGs emissions by 30% at the farm scale (Li et al. 
2012). These CH4 emission models were developed based on 
various methodologies including emission factors, empiri-
cal equations, and process-oriented mechanisms. The Inter-
governmental Panel on Climate Change (IPCC 2006) also 
prepared guidelines based on the amount of volatile solids 
in manure for estimating CH4 emission in country-specific 
(tier 2 approach). Several studies have been conducted on the 
tier 2 approach to calculate country-specific CH4 emissions 
rate (ANIR 2012; Environment-Canada 2012; Du Toit et al. 
2013; Ngwabie et al. 2018).

Sometimes, it seems challenging to figure out the best 
models among the available mathematical and statistical 
techniques. Considering the previous research, the current 
study evaluates the performance of five models i.e., multi-
ple linear regression (MLR), polynomial regression (PR), 
ridge regression (RR), random forest regression (RFR), and 
artificial neural network (ANN) on CH4 emission modeling. 
Regression-based models is a very common term for a group 
of diverse statistical methods that are widely applied in vari-
ous contexts in different fields (Seuront 2010; Cranford et al. 
2011; Hirst 2012; Carey et al. 2013; Beninger and Boldina 
2014; Ngwabie et al. 2018; Basak et al. 2019; Ekine-Dziv-
enu et al. 2020; Font-i-Furnols et al. 2021). In contrast, ML 
models have been utilized to overcome non-linear data pro-
cessing and accomplish better prediction accuracy efficiently 
(Joharestani et al. 2019; Shin et al. 2000). However, a limited 
study was found to investigate ANN and RFR algorithms for 
environmental pollution modelling (Rybarczyk and Zalak-
eviciute 2018; Shahriar et al. 2020).

Estimating CH4 emission from pig manure requires an 
elaborate process including the establishment of the experi-
mental setup, maintaining environmental conditions, dietary 

composition, quantity of feed intake, etc. Additionally, the 
CH4 emission rate varies considerably from year to year 
and within the same experimental pig barn, making it even 
more challenging to measure. In that sense, regression and 
ML techniques might be useful in predicting CH4 emis-
sion. These techniques reduce sampling efforts and cost 
and increase precision where samples are difficult to handle 
(Basak et al. 2019). As such, the objectives of the research 
are to characterize and quantify the daily manure production 
rates for its moisture, dry matter (DM), ash, and volatile 
solid (VS) daily excretion rates and finally to model CH4 
production rates as a function of the feed intake and mass of 
pigs using regression and ML methods.

Materials and methods

Animal resources, experimental design, and data 
collection

The research methods and procedures were approved by 
the ethics and animal experimentation committee of the 
Gyeongsang National University (certification# GNU-
150508-R0029). Two independent experiments were per-
formed from 1st September to 1st December in 2019 and 
2020 with six 2-month-old Yorkshire breed pigs in three 
experimental pig barns in Smart Farm Systems Laboratory 
at Gyeongsang National University. Three pig barns had 
slatted floors, with sidewalls made of galvanized steel and 
plywood, and an expanded polystyrene roof. In every experi-
mental period, similar sizes of the pigs (ages and weights) 
were studied with three concentrated diets (Table 1). Simi-
lar sizes of pigs were kept in all barns, so that, it could be 
expected that manure production rates were identical. A two-
week observation phase was implemented before beginning 
the experiment to define the best data measuring conditions. 
In both of the experimental periods, the Health-Feed Gat-
don3 (Daejoo Inc., Seoul, Republic of Korea) concentrated 
diet was provided to the pigs allotted to pig barn 1 (PB1), G 
Max Care (Growing pigs) (Nonghyup Feed Co., Ltd., Seoul, 
Republic of Korea feed) for pig barn 2 (PB2) and Grow-
ing Pigs Late Feed 10 (Nonghyup Feed Co., Ltd., Seoul, 
Republic of Korea) for pig barn 3 (PB3). An equal amount 
of feed was provided two times in a day, at 10.00 am and 
17.00 and the amounts of feed intake was estimated from the 
daily recorded of feed offered and leftovers of each pig. The 
load cell was used to determine the pigs’ mass by averaging 
weights measured two times in a day. Moreover, drinkers 
and feeders were installed in the barns to restrain with hal-
ters for feeding and drinking (Fig. 1).

Under each pen, polythene sheets were put to capture 
urine and faecal matter to calculate the rate of manure 
production of various types of diets. For covering the full 
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surface area underneath the pen, slightly larger polythene 
sheets were used. It was raised to stop urine and faecal mat-
ter from escaping from the surface region of the manure. 
The polythenes were placed every morning before feeding 
and removed 24 h later (Ngwabie et al. 2018). The manure 
collected in each pig barn was weighed to measure all the 
pigs’ production rates over 24 h. To estimate the manure 
produced by a pig in a day (kg manure pig−1 day−1), the total 
amount of manure was divided by the number of pigs. The 
manure obtained from each pig barn, a small portion was 

subsequently used in the laboratory to analyze its moisture 
content, DM, ash, and VS content. Moreover, the pig’s body 
surface temperature (PBT) was measured using infrared sen-
sors (IR sensor, model-MI3, Raytek Corporation, CA, USA) 
at 10.00 am and 17.00 two times a day. Temperature, humid-
ity, and carbon dioxide data inside and outside of the pig 
barns were collected by using Livestock environment man-
agement systems (LEMS, AgriRoboTech Co., Ltd, Republic 
of Korea) and weather sensors (MetPRO, Producer: Camp-
bell Scientific, USA), respectively.

Table 1   Three concentrate diets and their ingredients

Ingredient Feed type and ingredient

Health-Feed Gatdon3 G Max Care (growing pigs) Growing Pigs Late Feed 10

Crude protein Below 20.0% Below 18.0% Below 18.0%
Crude fat More than 6.5% More than 3.0% More than 4.5%
Crude fiber Below 5.0% Below 9.0% Below 10.0%
Crude ash Below 8.0% Below 10.0% Below 8.0%
Calcium More than 0.65% More than 0.45% More than 0.5%
Phosphorus Below 1.0% Below 1.5% Below 1.2%
Lysine More than 1.25% More than 0.9% More than 0.9%
Digestible crude protein (DCP) More than 16.5% More than 12.0% More than 12.0%
Digestible energy (DE) 3,600 kcal kg−1 3,350 kcal kg−1 3,500 kcal kg−1

Fig. 1   Layout of the experimental pig’s barn
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Measurement of manure parameters

The pH level in each manure sample was measured using a 
portable pH meter (HP9010, Trans Instruments (S) Pte Ltd, 
Singapore) in a day. The DM and VS in manure were cal-
culated according to the method 1648 of the U.S. Environ-
mental Protection Agency (Telliard 2001). The overall pro-
cedure was conducted in the following steps. (i) A portion 
of manure in each sample was weighed using an electronic 
mass balance (model-FX-300iWP, A&D Company Limited, 
Tokyo, Japan) to obtain its wet mass (Mw). (ii) It was oven-
dried at 105 °C for 12 h using 5E-DHG6340 drying oven 
(Shelves for 5E-DHG6310: 2 Layers, Changsha Kaiyuan 
Instruments Co., Ltd, China), after which it was weighed 
to obtain the dry mass (Md). (iii) Eqs. (1), (2), and (3) were 
applied to calculate the percentage of DM and the daily DM 
excreted by each pig as well as the moisture content of the 
manure. (iv) In order to calculate the VS content from each 
oven-dried sample, a part of the sample was weighed in a 
crucible of known mass Mc to obtain its mass (M1). The 
crucibles with samples were then placed in a muffle furnace 
(Digital Muffle Furnace 14 Lit “FX-14” 1,000 °C, Korea) 
and heated at 450 °C for 4 h. After cooling the sample in the 
furnace, the remaining part of the heated sample (ash) and 
crucibles were weighed again to obtain the mass M2. The VS 
and ash as a percentage of the DM were calculated according 
to Eqs. (4) and (5). (v) Finally, Eq. (6) was used to calculate 
the daily VS excreted per pig.

Measurement of methane production rate

The CH4 production rate from pig manure was calculated 
using the IPCC tier 2 approach shown in Eq. (7) (IPCC 

(1)DM =
Md

Mw

× 100

(2)DMpig =
DM%

100
×MPig

(3)Mc(%) =
Mw −Md

Mw

× 100

(4)VSDM(%) =
(M1 −Mc) − (M2 −Mc)

(M1 −Mc)

(5)AshDM(%) = 100 − VSDM(%)

(6)VSpig =
VSDM(%)

100
× DMpig

2006). Several studies have used the same approach to cal-
culate the CH4 production rate (ANIR 2012; Du Toit et al. 
2013; Shin et al. 2016; Ngwabie et al. 2018). According 
to the IPCC tier 2 approach, the model requires country-
specific input values for VS excreted from manure, the maxi-
mum CH4 producing capacity (B0) for pig manure, and CH4 
conversion factor (MCF). Here, MCF indicates that the per-
centage of VS in manure converts to CH4 compared to the 
theoretical maximum.

where EF is the CH4 production rate (kg CH4 
pig−1 day−1). VS is the daily volatile solid excreted (kg VS 
pig−1 day−1) from manure in the present experiment. The 
B0 value primarily depends on the type of diet (Kumar et al. 
2014). It is reported that feeding a high forage diet leads to 
more methane emissions compared to a concentrated diet 
(Won et al. 2014). In Korea, pig-breeding circumstances pre-
fer a more concentrated diet than forage (Won et al. 2014). 
Thus, in the present work, B0 value of 0.0579 m3 CH4 Kg−1 
of VS excreted (Won et al. 2014) and MCF value of 0.39 
(Park et al. 2006) were used to calculate the CH4 produc-
tion rate, while 0.67 is the conversion factor from m3 CH4 
to kg CH4.

Data analysis and model development

Data obtained through two experimental periods from the 
three pig barns were used to develop statistical and machine 
learning methods for CH4 emission modelling. During the 
model preparing stage, the mass of pig (MP), age, and feed 
intake (FI) are considered input variables. However, high 
multicollinearity was examined between body weight and 
age values (correlation coefficient (r) = 0.93); thus, MP and 
FI were selected as inputs variables in the present study. 
The Z-score data normalization technique (Eq. 8) was used 
to keep values within a scale applied across all numeric col-
umns used in the model.

where z is the standard score; x is the value in the data 
set; μ is the mean of all values in the data set; and σ is the 
standard deviation.

Recently, many statistical and machine learning (ML) 
methods are being utilized for both prediction and infer-
ence in different research fields. In this study, two statistical 
models, i.e., multiple linear regression (MLR) and polyno-
mial regression (PR), and three ML algorithms, i.e., ridge 
regression (RR), random forest regression (RFR), and feed 
forward-back propagation (FFBP), in ANN were evaluated 
based on how well these algorithms predicted CH4 emission 

(7)EF = VS × B0 ×MCF × 0.67

(8)Z =
x − �

�
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from the four datasets presented in Table 2. One of the main 
reasons for using statistical models is that they help for 
intuitive visualizations of data that aid in identifying rela-
tionships between variables and making predictions. ML 
models, on the other hand, focus on prediction, employing 
general-purpose learning algorithms to uncover patterns in 
often complex and unwieldy data. Moreover, the rationale 
for using these ML models was its specialty to predict non-
linear interactions between the experimental and predictor 
variables. In the following sections of methodology, the sta-
tistical and ML approaches used for predicting CH4 emission 
are briefly discussed.

Multiple linear regression

Multiple linear regression (MLR) has the ability to model 
explanatory (MP and FI) and response variables (CH4 emis-
sion rate) more simply and comprehensively (Tabachnick 
and Fidell 2001). In the present study, the MLR model was 
developed according to the Eq. (9) (Darlington and Hayes 
2016):

where Yi is the CH4 emission rate, β0–βn are the coeffi-
cients of regression, X1–Xn are the input variables, and ε is 
the error associated with the ith observation.

Polynomial regression

The polynomial regression (PR) is also a form of regression 
in which a non-linear relationship between the explanatory 
and response variables is modeled as a degree polynomial. 
Therefore, PR is considered to be a particular case of the 
MLR model (Ostertagová, 2012). The general form of a 
complete second-degree PR model with two independent 
variables X1 and X2 as shown Eq. (10).

(9)Yi = �0 + �1X1 + �2X2 + ............. + �nXn + �

(10)
�yI(X1,X2) = �0 + �1X1 + �2X2 + �3X

2

1
+ �4X

2

2
+ �5X1X2 + �

where �yI(X1, X2) is the true mean response for the two 
independent variables (MP and FI), β (0, 1, 2, 3, 4, 5) is 
the model parameters, and X (1, 2) is the independent vari-
able. After experimenting on different degrees of polyno-
mials (order = 2, 3, 4, 5), the present work decided to use 
3-degree polynomial regression due to its better performance 
compared to others.

Ridge regression

In the present research work, a penalty-based regression 
procedure (i.e., ridge regression (RR)) was also used to 
model CH4 emission. The RR has been widely utilized to 
measure many characteristics of a single sample simulta-
neously (Tibshirani 1996; McDonald 2009; Ransom et al. 
2019; Wieringen 2020). It is a continuous form of shrinkage 
in which the residual sum of squares is minimized as each 
parameter's coefficient is adjusted near to zero, thus reduc-
ing the importance or influence of any particular parameter 
(Hoerl and Kennard 2000; Ransom et al. 2019). RR equation 
is also very close to least square, but the minimization equa-
tion is slightly different, as shown in Eq. (11). Specifically, 
it is as follows.

where ‖y − X∧
B
‖2 is called the sum of the squares of all 

coefficients (RSS) and it is also denoted as a loss function, 
and the λ parameter is the regularization penalty.

Random forest regression (RFR)

In recent times, random forest regression (RFR) is consid-
ered one of the most effective machine learning algorithms 
(Biau and Scornet 2016). It has been applied to a wide range 
of learning tasks, but most prominently to classification and 
regression (Biau et al. 2008; Biau 2012; Denil et al. 2014; 
Ransom et al. 2019; Shahriar et al. 2020). RFR model is 
an ensemble of trees, where the construction of each tree 
is made randomly. After building an ensemble of trees, the 
RFR model makes predictions by averaging the prediction 
of an individual tree. Even for very high-dimensional prob-
lems, RFR often makes accurate and robust predictions 
(Biau 2012). The random forest estimator associated with 
the tree collection is defined by the Eq. (12).

A more comprehensive introduction to random forest 
algorithm was reported by Friedman et al. (2009) and Biau 
and Scornet (2016).

(11)
Lridge(�

∧) =
�n

i=1

�
yi − x

�

i �
∧)

2
+ �

�m

j=1
(�

∧)
2

j
= ‖y − X∧

B
‖2 + ���∧

B
‖2

(12)

∼
η
n�T (x) ∶=

1

T

T∑

j=1

∼
η
n,Aj(x) =

1

T

T∑

j=1

1

N(Aj(x))

n∑

i=1

Yi1Xi∈Aj(x)

Table 2   Year wise compositions diets, pig barns, datasets and num-
ber of data

Year Diet Pig barn Dataset Data

2019 Health-Feed Gatdon3 PB1 F1 184
2020
2019 G Max Care (Growing 

pigs)
PB2 F2 184

2020
2019 Growing Pigs Late 

Feed 10
PB3 F3 184

2020
2019, 2020 F1, F2, F3 PB1, PB2, PB3 FC 552
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Artificial neural network

The artificial neural network (ANN) models consist of 
interconnecting artificial neurons by transferring signals to 
another, along with weighted connections (Feng et al. 2015). 
The input, hidden, and output layers are needed to create an 
ANN topology. Every input value is regarded as a neuron 
in the input layer. All input values are weighted randomly 
at first, and then, the weighted values are processed into the 
hidden layers. In the hidden layers, every neuron produces 
output values for the success of the ANN model. ANN mod-
els are widely used to analyse non-linear data (Shin et al. 
2000). Different architectures of ANN, like feed forward-
back propagation neural network (Basak et al. 2020), adap-
tive logic network (Qu et al. 2001), radial basis function 
network (Boilot et al. 2002), self-organizing map network 
(Sinesio et al. 2000), time-delay neural network (Zhang et al. 
2003), and hybrid Bi-GRU-ARIMA model (PAHM) (Jaihuni 
et al. 2020) have been applied to analyze data in a number 
of studies. After experimenting on several multilayer per-
ceptrons (MLP) structures with neurons and three transfer 
functions (Log-sigmoid, linear transfer function (purelin), 
and Tansigmoid), the study decided to employ FFBP neural 
network, gradient descent weight and bias learning func-
tion, one hidden layer and log-sigmoid transfer function. The 
output of an ANN network was noted by Hydrology (2000).

where yt is the network output (pig’s body temperature), 
n is the number of hidden nodes, m is the number of input 
nodes, f is the transfer function, βij {i = 1, 2,…, m; j = 0, 1,…, 
n} are the weights from the input to hidden nodes, αj {j = 0, 
1, …, n} are the vectors of weights from the hidden to the 
output nodes, and α0 and β0j denote the weights of arcs lead-
ing from the bias terms.

Application methodology and performance metrics

All the statistical and ML models were developed using 
open-source libraries under the Python (Python 3.7.0) envi-
ronment in the present work. Python is a high-level, inter-
preted programming language that can be used for different 
uses, including for scientific purposes (Tran et al. 2020). 
In the Python platform, different libraries such as NumPy 
(Van Der Walt et al. 2011), Pandas (McKinney 2010), and 
Matplotlib (Hunter 2007) were used for processing, manipu-
lating, and visualizing data. In the current study, 70% of the 
data was selected as the training set, while the remaining 
30% was used as the testing dataset. The performance of 
the models was evaluated on the basis of the two statistical 

(13)yt = �0 +

n∑

j=1

�jf

(
m∑

i=1

�ijyt−1 + �0j

)
+ �t

quality parameters, i.e., root mean square error (RMSE) 
(Eq. 14) and coefficient of determination (R2) (Eq. 15).

where n is the number of data, Oi is the observed values, 
Pi is the predicted values, and the bar denotes the mean of 
the variable. All statistical calculations in this study were 
performed with Statistical Package for the Social Sciences 
(IBM SPSS Statistics 22.0.0.0, NY, USA) and Origin Pro 
9.5.5 (OriginLab, Northampton, MA, USA).

Results and discussions

Environmental data measurement

Manure temperature was measured from the collected sam-
ples ranging from 25.6 to 31.7 °C, 24.3 to 30.8 °C, and 26.1 
to 32.4 °C at pig barns 1, 2, and 3, respectively. Variations of 
air temperature, humidity, and pig’s body temperature of the 
three pig’s barns for both experimental periods are shown in 
Fig. 2. In summary, the air temperature in the PB1 ranged 
from 9.4 to 31.6 °C, 9.1 to 33.3 °C for PB2, and 9.3 to 
32.6 °C for PB3 during the two experimental periods in 2019 
and 2020. The average pig’s body temperatures for PB1, 
PB2, and PB3 were 32.28 ± 2.66 °C, 32.29 ± 2.87 °C, and 
32.18 ± 2.53 °C, respectively in 2019, and the correspond-
ing average for 2020 were 32.53 ± 2.63 °C, 32.01 ± 2.63 °C, 
and 31.95 ± 2.54 °C, respectively. In order to have a good 
understanding of the relationship of ambient environmental 
parameters and the body temperature of pigs, the result was 
described in our earlier study (Basak et al. 2020).

Estimation of methane production rate

The first step in this section in addressing this question was 
to find out if there was a significant statistical difference 
between the three concentrated diets and the manure pro-
duction rate. An analysis of variance using the three types 
of concentrated diets and manure production resulted in an 
insignificant two-way interaction (p = 0.85). Manure pro-
duction rates, moisture DM ratios, ash, and VS production 
rates according to the diets are presented in Table 3. It is 
noteworthy that manure production rates, DM, and VS pro-
duction from manure increased with the growing of pigs’ 
mass and feed intake. Though the barns had different diets, 

(14)RMSE =

�∑n

i=1
(Oi − Pi)

2

n

(15)R2 =

∑n

i=1
(Oi − O)(Pi − P)

�∑n

i=1
(Oi − O)2 ×

�∑n

i=1
(Pi − P)2

Air Quality, Atmosphere & Health (2022) 15:575–589580



1 3

therefore, comparable DM and VS data were measured. The 
study result showed that manure DM excretion rates were 
1.95 ± 1.10, 1.94 ± 1.13 and 1.86 ± 1.12 kg pig−1 day−1 for 
PB1, PB2, and PB3, respectively and manure VS concen-
trations were 1.42 ± 0.80, 1.41 ± 0.84 and 1.35 ± 0.82 kg 
pig−1 day−1 for barns PB1, PB2, and PB3, respectively in 
2019. It should, however, be noted that there really was 
no significant effect of the concentrated diets on varying 
the production rate of DM (p = 0.82) and VS (p = 0.88). 
There was not a statistically significant difference between 
the diets and DM (p = 0.82) and diets and VS concentra-
tion rates (p = 0.88). Combining the results of the three 
pig’s barns showed that with body mass ranging from 60 
to 90 kg, a pig produced around 4.78 ± 1.21 kg of manure 
per day consisting of 66.51 ± 4.46% moisture content 
and 33.49 ± 4.46% DM. The manure’s ash content was 
28.74 ± 4.44% DM (0.46 ± 0.16 kg pig−1 day−1), while the 
VS was 71.26 ± 4.44% DM (1.13 ± 0.32 kg pig−1 day−1). 
Likewise, manure characteristics have been reported in some 
studies (Hamilton et al. 1997; IPCC 2006; Won et al. 2014; 
Dennehy et al. 2017; Shin et al. 2017; Ngwabie et al. 2018). 

According to Ngwabie et al. (2018), a 50 kg pig produced 
approximately 3 kg of manure per day, of which 2.09 kg 
(~ 70%) was the moisture content and 0.91  kg (~ 30%) 
was the DM content. It has been widely reported that the 
diet ratio is crucial in DM and VS production. Another 
study on corn-based ration showed that pigs of 23–79 kg 
produced 2.7–3.6 kg of manure per day, of which the VS 
was 0.24–0.33 kg day−1 as excreted (Hamilton et al. 1997; 
Chastain et al. 1999). A similar report by Chastain et al. 
(1999) stated that a 60 kg pig produced about 5 kg of manure 
per day of which 0.51 kg is the VS.

The average CH4 production in all three barns is pre-
sented in Table 3, as seen the mean CH4 emission rates were 
in PB1: 0.021 ± 0.012 kg pig−1 day−1, PB2: 0.020 ± 0.013 kg 
pig−1 day−1, and the PB3: 0.019 ± 0.012 kg pig−1 day−1. 
Combining the results from the three barns, the average 
CH4 production rate was 0.020 ± 0.012 kg pig−1 day−1. Fig-
ure 3 shows the relationships between the mass of pigs, feed 
intake, and manure production from pigs with three concen-
trated diets (F1, F2, and F3) in 2019 and 2020. The modelled 
CH4 production ranged from 7.20 to 7.70 kg pig−1 year−1 
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which was lower than the IPCC 2006 value specified 
for Oceania (11–13  kg pig−1  year−1), Western Europe 
(6–21 kg pig−1 year−1), and even North America (10–23 kg 
pig−1 year−1) regions for market swine. One of the main rea-
sons beyond this may be due to giving a more concentrated 
than forage diet in Korea. Several studies were conducted 
to find out the relation between diets and CH4 emission rate 
(Hamilton et al. 1997; Kumar et al. 2014; Won et al. 2014). 
It is reported that feeding high forage diet leads to more CH4 
emission compared to a concentrated rich diet (Won et al. 
2014). This is congruent with Beauchemin et al.’s (2008) 
findings for both diets, which also show that concentrated-
based diets such as starch-rich grains produce less CH4 than 
forage-based diets. It is found that concentrated diets reduce 
enteric CH4 production by inhibiting the capacity of ruminal 
methanogens to take up hydrogen by reducing ruminal fluid 
pH and favoring the production of propionate over acetate 
(Van Kessel and Russell 1996; Pirondini et al. 2015). Piron-
dini et al. (2015) revealed that propionate production in the 
rumen decreases CH4 production because propiogenesis uses 
metabolic hydrogen that would otherwise be available to 
produce CH4. For instance, CH4 production decreased up 
to 31% when 50% of dietary forage fed to dairy cows was 
replaced with a concentrated wheat grain diet (Moate et al. 
2014). The daily minimum ruminal pH, which was linked 
to CH4 generation, was responsible for the difference in 
CH4 production (Moate et al. 2017). Moreover, it should be 
noted that the manure management system, environmental 

conditions, and storage time also influence the CH4 emission 
(Wood et al. 2014).

Evaluating statistical algorithms for CH4 emission 
modelling

The performance of two statistical models (multiple linear 
regression and polynomial regression) (F1, F2, F3, and FC) 
is shown in Table 4. Comparatively, the PR model per-
formed better than the MLR in the training stage. However, 
the performance of the two models was almost similar in 
the testing stage. Table 4 indicated that PR-based statistical 
models yielded R2 and RMSE values as 0.914 and 0.0035, 
which were the highest and lowest values, respectively in the 
training set as compared to the values obtained from MLR. 
Moreover, apart from the F1, F2, and F3 datasets, PR regres-
sion showed better results for the FC dataset (Table 4). The 
two models’ overall performance in terms of R2 is reason-
ably good, indicating that they explained more than 89% of 
the variations in the measured and predicted data. In gen-
eral, the efficiency of all regression-based statistical models 
depends on the existence of linear relationships between 
explanatory and response variables. Due to their simplicity 
in nature, these models have been used widely to predict 
CH4 emission (Petersen et al. 2016; Ngwabie et al. 2018; 
Hempel et al. 2020). An exponential equation was used for 
CH4 emission modeling as a function of pigs' mass, where 
the models explained about 88% of the variations in the 

Fig. 3   Mass of pig, feed intake and manure production from pigs 
with three concentrated diets (F1, F2, and F3). 2019 a Mass of pig 
(kg pig−1) vs. CH4 emission rate (kg pig−1  day−1) in 2019; 2019 b 
Feed intake (gm pig−1 day−1) vs. CH4 emission rate (kg pig−1 day−1) 
in 2019; 2019. c Manure production (kg pig−1  day−1) vs. CH4 emis-

sion rate (kg pig−1 day−1) in 2019; 2020 (a): Mass of pig (kg pig−1) 
vs. CH4 emission rate (kg pig−1  day−1) in 2020; 2020 b Feed intake 
(gm pig−1  day−1) vs. CH4 emission rate (kg pig−1  day−1) in 2020; 
2020 c Manure production (kg pig−1 day−1) vs. CH4 emission rate (kg 
pig−1 day−1) in 2020
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measured and predicted data (Ngwabie et al. 2018). Besides, 
the differences between the preceding and the current study 
were the selection of input variables and the algorithms used 
for CH4 modelling. As shown in the scatter plots (Fig. 4), the 
predicted CH4 emission rates have a very close distribution 
pattern with measured values with R2 = 0.892, 0.894, 0.866, 
and 0.885 for F1, F2, F3, and FC, respectively during the 
testing set for MLR and the corresponding values of R2 for 
PR model are 0.889, 0.879, 0.877, and 0.894.

Evaluating machine learning algorithms for CH4 
emission modelling

Determining the ML algorithm that best incorporates the 
mass of pigs and the quantity of feed intake into the CH4 
emission rate depends on the investigatory priority. The 
performance metrics of RR, RFR, and ANN are given in 
Table 4. The result showed that the RR model performed 
slightly better than RFR and ANN in the testing stage, 
whereas they were almost the same for the training stage. 
Table 4 indicated that the RR model yielded R2 and RMSE 
values as 0.908 and 0.0035, which were the highest and low-
est values, respectively in the testing set as compared to the 
values obtained from RFR and ANN. When the results of the 
ANN are compared to other machine learning models, ANN 

performance was slightly lower. Moreover, the ANN model 
showed some better results using a large dataset; however, 
RFR was overestimated in the training stage and showed 
lower performance in the testing stage.

In contrast, the RR showed good performance (R2 ≥ 0.90 
and RMSE ≤ 0.0038) even within the reduced dataset 
(Table 4). Several studies reported that in general, ANN 
and RFR models are more efficient and doing better perfor-
mance compared to the RR method when there is a highly 
non-linear and complex relationship exist between output 
and inputs variables (Singh et al. 2003; Abdel-Rahman 
et al. 2013; Gholipoor et al. 2013; Khairunniza-Bejo et al. 
2014; Mansourian et al. 2017; Qin et al. 2018; Basak et al. 
2020). To better understand the distribution of data and the 
ML models’ ability to predict the CH4 emission rate, the 
predicted and measured data for testing datasets were pre-
sented and compared in the scatter plots (Fig. 4). As shown 
in these plots (Fig. 4), the predicted CH4 emission rate has a 
very close distribution pattern with measured data, and both 
have almost the same pattern with R2 values of 0.922, 0.904, 
0.907, and 0.901 for F1, F2, F3, and FC dataset, respec-
tively for the RR model. From this standpoint, RR would 
be preferred due to its simplicity and interpretability of the 
parameters and performed better, even using a small dataset 
compared to other ML algorithms in this study.

Model comparison and proposed model

All regression-based models performed better compared 
to the artificial neural network models in this study. The 
selected RR model could predict CH4 emission rate for train-
ing and testing stages with a 2.50 and 6.20% increase in R2 
and a reduction of 11.25, and 17.98% in RMSE, respectively, 
compared with the ANN model. The superiority of the RR 
model to the other statistical and ML models is also well 
defined by considering standard deviation and correlation 
metric (Fig. 5). A graphical presentation of the actual and 
predicted values by the statistical and ML models over a 
graph (Fig. 5) could better understand these models' abili-
ties. As shown in Fig. 4, there is somewhat a linear relation-
ship between the input and output variables, which may be 
one of the main reasons for performance variation among 
those models.

Moreover, some other studies also showed that ANN 
models could not significantly improve the prediction 
accuracy compared to the statistical models due to the lin-
ear nature of variables (Özesmi et al. 2006; Craninx et al. 
2008). The difference in performance among those models 
to predict the CH4 emission rate showed the importance of 
choosing a proper model. According to the performance of 
those models, it can be concluded that the mass of pigs and 
the quantity of feed intake somewhat had a linear relation-
ship with manure production and VS, which are closely 

Table 4   Performance metrics (R2 and RMSE) of the models dur-
ing testing and training period. The values in italics indicate the best 
results among the models

Model name Dataset Training Testing

R2 RMSE R2 RMSE

MLR F1 0.897 0.0039 0.879 0.0040
F2 0.913 0.0036 0.889 0.0039
F3 0.901 0.0038 0.851 0.0045
FC 0.901 0.0038 0.878 0.0041

PR (order-3) F1 0.912 0.0036 0.872 0.0041
F2 0.908 0.0037 0.876 0.0041
F3 0.911 0.0036 0.863 0.0043
FC 0.914 0.0035 0.890 0.0038

RR F1 0.918 0.0035 0.908 0.0035
F2 0.913 0.0036 0.902 0.0037
F3 0.915 0.0035 0.905 0.0035
FC 0.911 0.0036 0.897 0.0038

RFR F1 0.980 0.0017 0.823 0.0048
F2 0.992 0.0011 0.863 0.0043
F3 0.986 0.0015 0.845 0.0046
FC 0.982 0.0016 0.845 0.0046

ANN F1 0.885 0.0042 0.852 0.0044
F2 0.893 0.0040 0.865 0.0042
F3 0.887 0.0041 0.819 0.0049
FC 0.904 0.0037 0.865 0.0043
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associated with the CH4 emission rate. Therefore, in terms 
of developing the statistical and machine learning models in 
predicting CH4 emission from livestock manure, the study 
recommends the use of regression-based algorithms to 
reveal more fruitful results.

Conclusion

Measurements were carried out in three experimental pig’s 
barns with three different types of concentrated diets to 
characterize manure production. The quantity of manure 
produced per pig, moisture content, DM, ash, and VS 
contents increased with the mass and feed intake of pigs. 
Body mass ranged from 60 to 90 kg a pig produced around 
3.35 kg of manure per day consisting of 66% moisture 
content and 34% DM. The manure's ash content was 28% 
DM (0.47 kg pig−1  day−1), while the VS was 72% DM 

(1.15 kg pig−1 day−1). In the present study, the pigs’ mass 
and the quantity of feed intake were used as explanatory 
variables to model the CH4 production rate. Five statis-
tical and ML algorithms were evaluated based on three 
statistical qualitative parameters for CH4 emission model-
ling. The results showed that the regression-based models 
performed better than the ANN model. Moreover, the RR 
model was selected as the best model among those models 
in predicting CH4 production. This priority for RR models 
may be because of the existing linear association between 
the mass of pigs and the quantity of feed intake with the 
CH4 production rate. The RR model can explain more than 
90% of the variations in all measured and predicted data 
in both the training and testing stages. With the ease of 
computing, simplicity, and interpretability of the param-
eters and better performance of RR models, it might be 
effective for CH4 emission modelling. However, the above-
described input parameters may not always be the same 

Fig. 4   Scatter plots of measured 
versus predicted CH4 emission 
rate using F1, F2, F3, and FC 
datasets and MLR, PR, RR, 
RFR, and ANN models
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when associated with CH4 emission from pig manure. 
Additionally, trying to achieve high prediction efficiency 
of CH4 emission modelling using the same attributes may 
lead to changes in the performance of the models. There-
fore, research might be conducted to improve this model’s 
prediction accuracy providing a wider range of diets and 
management conditions.
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