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Abstract
The spatiotemporal heterogeneity of the air pollutants complicates appropriate monitoring. The collective measures or crowd-
sensing is a promising approach to achieve a better air pollution assessment because it includes the local concentration of 
pollutants, as well as the position and mobility of people. Thus, compared to traditional static monitoring, the participatory 
sensing data by low-cost sensors can avoid the misclassification of exposition to air pollutants, enabling a comprehensive 
understanding of their health effects. This systematic review integrates each core part of what is required to achieve crowd-
sensing for air pollution: sensors, portable devices, and data models. Despite the limitations of sensors in terms of sensitivity 
and selectivity, it has been possible to use portable air monitors to determine pollution hotspots around the world. However, 
limited models for data processing, performance issues when using low-cost devices, in addition to lack of community 
engagement, are the challenges to overcome for the feasibility of air pollution assessment with portable monitors.
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Introduction

The New Urban Agenda published by the United Nations 
in 2017 emphasized the unprecedented growth of cities 
globally. The population living in urban areas is projected 
to double by 2050. Therefore, urbanization in the twenty-
first century will be recognized as one of the significant 
trends that will generate more profound transformations in 
socio-urban dynamics and will result in major challenges 
to maintain sustainability in cities (Evans et al. 2016). The 
severity of the world’s air pollution problem resulted in the 

World Health Organization’s agenda to include (a) actions 
to reduce the global epidemic of noncommunicable diseases 
and climate change, with the reduction of air pollution as a 
fundamental pillar; (b) a “Call for Urgent Action” by health 
and other sectors to reduce the 7 million deaths per year; 
(c) consensus to develop a “Global Clean Air Movement” 
with commitments by ministers, mayors, intergovernmen-
tal organizations, and non-state actors to achieve air quality 
levels in line with the WHO 2030 Air Quality Guidelines; 
and (d) improved evidence on the health impacts of air pol-
lution, acute episodes along with new tools to estimate the 
impacts and related costs, and benefits required to improve 
air quality (Loomis et al. 2013).

Air pollution is one of the main challenges to urban health 
and environmental sustainability. It is defined as the pres-
ence in the air of one or more substances at a concentration 
above natural levels, with the potential to produce an adverse 
impact on human and environmental health (Seinfeld and 
Pandis 2016). At present, according to the World Health 
Organization (WHO), approximately 91% of the world’s 
population lives in places where air quality exceeds the 
limits established as safe. The Global Burden of Diseases, 
Injuries, and Risk Factors Study 2015 included air pollution 
as one of the main causes of the increase in global morbid-
ity, mainly in developing countries (Cohen et al. 2017). The 
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costs of pollution are myriad, but the most damaging eco-
nomic cost is represented by the premature mortality toll.

Concentrations of outdoor air pollutants vary across time 
and geographical space depending on source characteristics, 
causing varying degrees of air pollutants exposure, which 
is defined as the contact between a person and a chemi-
cal, physical, or biological agent carried by air (Kampa 
and Castanas 2008). A typical urban area is affected pre-
dominantly by environmental background pollutants in the 
surrounding region, which has derived from a variety of 
anthropogenic and natural processes. The increase in pol-
lutant concentrations in a region is related to urban activities 
and their diverse emissions, characteristic of highly popu-
lated areas, causing high levels of a variety of pollutants 
depending on the size of the city (Loomis et al. 2013). In 
addition to the mixing of pollutants in urban areas, locally 
elevated levels of pollutants emitted on site occur at smaller 
scales (from zero to hundreds of meters). Specific locations 
affected by high levels of air pollution include sites near 
and on roadways (also in vehicle cabins), industrial plants, 
or fire plumes. On the local scale, large exposure gradients 
around factories and industrial complexes can also occur. In 
contrast, plumes from power plants and fires can extend tens 
or thousands of kilometers around. Another example is dust, 
which has impacts at multiple scales; locally generated dust 
can have an impact in limited areas, in contrast, dust storms 
can lead to intercontinental transport (Jonson et al. 2018).

Personal air pollutant exposures are a critical link 
between air pollution and negative human health effects 
and therefore a key variable to conduct epidemiologic stud-
ies. However, estimating personal exposures and identifying 
their sources present significant challenges due to exposure 
variability (Snyder et al. 2013). It is well known that both 
the pollutant emission sources and the physical or chemical 
processes affect pollutant concentrations. However, factors 
such as location, human activities, or behavior can heav-
ily affect the levels of people exposure (Dias and Tchepel 
2018). Thus, proper assessment of the air pollution impact 
on individuals is limited by the availability of reliable public 
data, the cost and time of high-resolution data collection, 
data privacy and confidentiality issues, and the management 
of communication and computational data. Alternatively, a 
collective participation system in which individuals meas-
ure local air pollution conditions via mobile devices can 
be employed. This type of collaborative contribution, also 
known as crowdsensing, is a promising approach to achieve 
greater accuracy in the assessment of air quality and its het-
erogeneity (Guo et al. 2015). Nevertheless, Yoo et. al men-
tion that recording the activity of individuals using portable 
monitoring devices or travel diaries remains impractical as 
it is time-consuming and subject to the inaccuracy of meas-
urement and is therefore not suitable for epidemiological 
studies with large sample sizes (Yoo et al. 2015). Thus, 

comprehensive studies on air quality are vital to under-
standing the problems associated with it. Previous reviews 
have clearly highlighted a relationship between a realistic air 
quality measure and the sensor quality, mode of transport, 
local exposure, and big data analysis (Cepeda et al. 2017; 
Commodore et al. 2017; Thompson 2016). Nevertheless, 
the rapid development of sensors for mobile devices and 
epidemiological studies based on crowdsensing data make 
necessary a summary concerning all the recent advances. 
Thus, the aim of this review is the presentation of an up-to-
date and comprehensive panorama of the progresses on air 
monitoring for personal exposure assessment, considering 
aspects ranging from sensor operation principles and data 
treatment to future challenges in air pollution measurement.

Methodology

The systematic review was conducted using scientific data-
bases, including Scopus, PubMed, and Google Scholar. 
Only papers in the English language and published in peer-
reviewed journals were considered. Congress proceedings 
were not contemplated. Due to the accelerated developments 
in the field of crowdsensing of air pollutants, the search was 
limited to publications from 2015 to the date of submission 
of this review. The keywords used in databases were “air 
pollution crowdsensing,” “portable sensors air monitoring,” 
and “personal sensing air quality pollutants.” Multiple pub-
lications of the same project were consolidated or only the 
most relevant of them were included.

Air pollution composition

Initially, air pollution was conceived as a local problem in 
urban areas, but due to the growth of industrial and resi-
dential areas, the burning of biomass, and the increase in 
transportation demand, it has evolved from a regional to a 
global problem. The wide diversity of contaminants makes 
difficult their classification that can be performed by consid-
ering their origin, size, composition, etc. For example, Fig. 1 
presents a diagram with a general classification of air pol-
lutants, which can be extended to more detailed subgroups. 
WHO has identified the pollutants with the most evidence 
of public health concern which include particulate matter 
(PM), ozone, nitrogen dioxide, carbon monoxide, and sulfur 
dioxide. There is increasing evidence of the health effects 
associated with air pollution from the particulate matter of 
less than 10 (PM10) and 2.5 (PM2.5) microns in diameter. The 
particles, as they are small enough, can penetrate lung tis-
sues and reach the bloodstream, causing cardiovascular, cer-
ebrovascular, and respiratory events. Even the high concen-
tration of PM per day has been associated with an increased 
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risk of ischemic stroke (Kampa and Castanas 2008). Stud-
ies suggest a deeper impact of traffic pollution on human 
health, rather than the one given by the natural contaminants 
(Yitshak Sade et al. 2015). According to the World Health 
Organization (WHO), outdoor air pollutant exposure is a 
major cause of death and disease globally. Health problems 
are reflected in an increase in medical attention and hospi-
tal admissions for pollution-related illnesses, as well as an 
increased risk of premature death. Ambient air pollution is 
associated with heart disease, stroke, and other lung condi-
tions, resulting in an estimated 4.2 million premature deaths 
worldwide (Organization 2016).

According to the United States Environmental Protection 
Agency (EPA), the common air pollutants named “criteria 
air pollutants” are the ground-level ozone (O3), particu-
late matter (PM), carbon monoxide (CO), lead (Pb), sulfur 
dioxide (SO2), and nitrogen dioxide (NO2). Unfortunately, 
exposure to particulate matter is currently regulated in PM 
standards that only discriminate between particle size but not 
between the composition or origin of the particulate matter 
(Silva et al. 2020). Nevertheless, as methods of analysis and 
epidemiological studies improve, new compounds will be 
added, for example, the black carbon (BC) which is a frac-
tion of the PM related to combustion processes (Dekoninck 
et al. 2015). Indoors, for example, in homes or workplaces, 
where there are no apparent sources of air pollutant emis-
sions, a variety of chemicals are emitted from a wide range 

of sources, such as building materials, paints, air condition-
ing or fans, cosmetics, pesticides, personal care products, 
cooking, and other everyday household products (Kruza 
et al. 2020). Thus, a spatial classification of air pollution 
can be divided into outdoor and indoor air.

Personal air monitoring

Most fixed monitoring stations continuously monitor air pol-
lution in urban areas and provide highly accurate measure-
ments. They consist of instruments based on very precise 
instrumental techniques specific for analyzing a wide variety 
of contaminants (Magno et al. 2016). However, monitoring 
stations present certain disadvantages, for example, the large 
infrastructure for their installation (expensive and heavy 
instruments, large areas, etc.), rigorous protocols for their 
operation, and, finally, the excessive costs of periodic main-
tenance and calibration. These drawbacks limit the number 
of air pollution monitoring stations deployed on the territory. 
Consequently, a sparse number of stations in large cities is 
inadequate to detail the microenvironments of the millions 
of people who live in the area (Bales et al. 2019; Bashir 
Shaban et al. 2016).

The concentration of atmospheric pollutants depends on 
the location, and therefore, also the time and space of the 
pollutant concentration are important to avoid dangerous 

Fig. 1   Air pollutants classifica-
tion and examples
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exposures of humans (Magno et al. 2016). For this reason, 
the individual pollution exposure measured through a per-
sonal monitoring device is indispensable; this approach 
generally enables to compute instantaneous concentration 
measurements leading to pollutant exposure time series (or 
exposure profile). Using this methodology, the profile of 
each individual can be summarized through comprehensi-
ble data in order to estimate a target population exposure 
distribution. Characterizing the exposure of individuals 
who move in different environments is a difficult task. The 
composition of pollutants in the air is not entirely defined 
and only the most abundant ones are considered in routine 
measurements. Many trace contaminants are simply taken 
as part of a certain class of pollutants, for example, organic 
compounds or particulate matter (Cohen et al. 2017).

Therefore, two different approaches to assessing human 
exposure to air pollutants can be used. The first is a direct 
approach where exposure levels are measured for each 
individual through the personal monitoring or by using 
biological markers. The second approach is indirect, as 
exposure levels are usually estimated or modeled from 
environmental measurements, exposure models, and sur-
veys. Additional methods for assessing exposure may 
include measurement at a specific site or only where expo-
sure occurs in the individual (a specific area of the body), 
reconstruction of internal exposure by using internal indi-
cators (such as biomarkers) after exposure has taken place, 
and estimation of contaminant concentrations considering 
scenarios from models that consider exposure time. There 
are other less commonly used models for personal expo-
sure because they consider all individuals indistinguish-
able and the concentration of contaminants homogeneous 
(Dias and Tchepel 2018).

In general, three types of variability can be identified: 
(a) spatial variability that can occur both at regional (mac-
roscale) and local (microscale) levels; (b) temporal vari-
ability, which refers to variations over time whether short 
or long term; and (c) interindividual variability which can 
be either human characteristic and human behaviors/prefer-
ences. Individual locations, activities, or behaviors are not 
necessarily independent of variations in pollutant-specific 
emissions or processes. For example, pollutant concentra-
tions and personal activities at a specific location may vary 
according to weather conditions or between weekdays and 
weekends (Gao et al. 2020). It is also possible to rely on 
additional information that is predictive of instantaneous 
exposure. Such information is provided by covariates, like 
location, activity, and behavior. Covariates can be used to 
stratify an individual’s instantaneous exposure, where each 
stratum can be identified as a specific microenvironment. For 
example, the location of an individual can be used to define 
microenvironments such as outdoor not in transit, outdoor 
biking, and outdoor in the park.

This methodology should ensure that the use of sensors 
is non-intrusive, allowing their integration into everyday 
objects and environments, for example, in cars, bicycles, or 
offices and homes. A desirable approach is that sensors are 
combined or communicated with other everyday portable 
devices (smartphones, tablets, and laptops) providing instan-
taneous and easily understandable information readings. An 
advantage for sensor development would be to contain as 
many contaminant detectors as possible at the same time, 
resulting in a challenge for most of the currently developed 
sensors and integrated platforms, due to the rapidly increas-
ing size and complexity of both hardware and software 
instruments required to operate the different technologies 
(Oluwasanya et al. 2019).

Personal air monitoring is not only limited to deter-
mine the concentration of pollutants but it has also been 
recognized as useful to change the habits and behaviors of 
users, allowing an improvement in lifestyle (Heydon and 
Chakraborty 2020). Hence, new air pollutant detection tech-
nologies can revolutionize health epidemiological studies 
by providing reliable exposure data at a well-defined level 
of geospatial resolution to investigate the underlying mech-
anisms of air pollution health effects (Chatzidiakou et al. 
2019).

Sensors for air quality

Measuring atmospheric pollutants is challenging. Some 
of the difficulties in the analysis of air pollutants are their 
low concentration, complex chemical composition, and the 
presence of mixtures of compounds in the air. Standard 
monitoring devices applied to calculate pollutant exposure 
use a variety of measurement methods depending on the 
class of pollutants being measured. For instance, particu-
late matter concentrations are measured through gravimetric 
analysis and light-scattering devices. Light-scattering (LS) 
monitors use a laser beam to shine particles located in a 
chamber. A light detector then measures the scattered light 
which depends on the concentration and size of the particles; 
then, a constant air flow to feed particles into the chamber is 
required to produce reliable estimates (Chen et al. 2018b). 
Although the LS monitors measure the size and number of 
the particles with high accuracy, it does not measure their 
mass directly, and an additional estimation is required. As an 
alternative, the microbalance method has been proposed as 
a low-cost sensor for quantifying the mass concentration of 
PM, where the resonance frequency of a piezo transducer is 
changed due to particle deposition (Qin et al. 2019).

The identification and quantification of volatile organic 
compounds are sometimes necessary through traditional 
analytical techniques such as gas chromatography (GC) 
and mass spectrometry (MS), which provide high sensibil-
ity, chemical specificity, and a wider range of chemicals 
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detected. However, these high-resolution analytical sys-
tems have high manufacturing and operating costs, as well 
as large size and weight, and their application in mobile air 
quality monitoring is not feasible (Fung et al. 2019). On the 
other hand, the same techniques could be applied through 
the miniaturization of the sensor, resulting in a practical 
device with low energy consumption (Dong et al. 2016; 
Tryner et al. 2019).

Since Jonathan E. Thompson published a great review of 
the state-of-the-art of sensors for air quality studies (Thomp-
son 2016), new advances have been made in the last years. 
For this reason, here we present the new technologies and 
proposals of sensors for air monitoring. Table 1 enlists the 
most recent developments in portable sensors. Depending on 
the pollutant, the principle of detection can be either chemi-
cal or physical, but the predominance of electrochemical 
techniques is noted, as they are very sensitive, selective, and 
do not require complex electrical circuits. The chemoresis-
tors commonly are based on metal oxide semiconductors, 
where the change in conductivity or resistance caused by 
chemical-adsorption of gas molecules at the surface of the 
semiconductor is measured at high temperatures, requiring 
a high energy consumption (Güntner et al. 2016; Yu et al. 
2017). As an alternative, graphene-based materials have 
been proposed due to the electrical conductivity of graphene 
is sensitive to adsorption of gas molecules down to ppb level 
even at low temperatures (Kim et al. 2016; Magno et al. 
2016; Melios et al. 2018; Oluwasanya et al. 2019). The sens-
ing mechanism of chemosensors on graphene is dominated 
by sorption-based swelling; the sorption of a given target 
analyte onto the sensing film is modulated by surface and 
edge defects that affect film conductivity and sensor per-
formance. However, the detailed mechanism of the interac-
tions between the gases and the nanosensor has not yet been 
described (Patel et al. 2018). Electromechanical sensors are 
another interesting proposal for low-cost sensors because 
they do not need a power supply to work and the contami-
nants are detected through physical changes perceptible to 
the naked eye (Fraiwan et al. 2016; Qin et al. 2020).

Due to the growing use of smartphones in the world 
population, these devices are ideal as a basic tool for imple-
menting all kinds of sensors. For example, the smartphone 
camera can be used as a simple color detector (Salcedo 
and Sevilla 2017), to measure mechanical shifts (Qin et al. 
2020), or even to detect radiation (Keller et al. 2019). Nev-
ertheless, to facilitate the widespread use of portable and 
low-cost gas sensors, some challenges must still be over-
come. The broad types of pollutants in the air complicate 
the full characterization because, despite the selectivity of 
the sensors, the presence of certain compounds can interfere 
with the measurements. Relative humidity and temperature 
are the first challenges for reliable measurements, and cali-
bration or adjustments must be necessary to obtain accurate 

readings (Manikonda et al. 2016). Technological advance-
ments on accurate sensors might improve personal air pol-
lution exposure assessment. Even if the technology is not 
available, plants can be used as monitors of air pollutants, for 
example, tobacco and recently musses and liches (Cocozza 
et al. 2016; Van der Wat and Forbes 2015). Perhaps in the 
future, biological sensors will be much more efficient and 
accurate so that they can coexist with urban environments 
helping to purify and monitor the air.

Mobile monitors

Urban areas generally have national air pollution monitoring 
stations which are expensive and scarce due to the high-
precision instrument required and their size (Lin, Chi and 
Lin 2020). Air pollution monitoring using traditional fixed 
measurement stations is severely limited by the availability 
of land and high maintenance costs (~ $30,000 per year), 
making it difficult to obtain measurements of air pollution 
concentrations with sufficient resolution to distinguish the 
most polluted points in a large urban area (Liu et al. 2019). 
Therefore, many sites with potentially high concentrations 
of air pollutants remain outside the coverage of the monitor-
ing network. Direct measurements of fine-grained air pollu-
tion can provide fidelity and accuracy unbeatable by other 
methods, but the measurement requires a large number of 
air monitors.

The accuracy of mobile monitors of air pollutants remains 
in discussion. Coefficients of determination (R2) are used to 
assess the strength of correlations (linear or not) between 
a tested device and a certificate professional monitor. For 
example, a mobile monitoring platform called SentinAir, 
which measures CO2, NO2, and O3, was evaluated in real 
outdoors and indoors resulting in an effective monitor plug-
and-play for local environments, but the validation shows R2 
values as low as 0.507 for NO2 (Suriano 2020). Although 
there is a good correlation in laboratory tests, it decreases 
during in-field experiments (Jerrett et al. 2017; Zimmer-
man et al. 2018). For example, five portable sensors namely 
Speck, Dylos 1100Pro/Dylos 1700, AirAssurePM2.5 IAQ 
Monitor, and AirSense were tested (Manikonda et al. 2016). 
Experiments were carried out in an indoor chamber, with 
constant temperature, relative humidity, and particle source. 
In these ideal conditions, all monitors correlated coefficients 
near to 1, although in some cases the correlation was not lin-
ear. In contrast, the real in-field conditions, such as daylight 
hours with sunshine, affect measurements performed by the 
electronics housed inside the low-cost monitor, providing 
readings with higher values, most probably due to the solar 
radiation heating the enclosure components (N. Genikom-
sakis et al. 2018). It has also been shown that bias caused 
by heat stress can be more notable than those ones induced 
by cold stress (Gillooly et al. 2019). In a study involving the 
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test of O3 sensors at a different relative humidity and flow 
rate, it was observed that when the changes were abrupt, 
the sensors did not provide accurate measurements (Pang 
et al. 2017). However, if the change in RH or flow rate is 
slow enough, a simple correction in the calibration model 
is sufficient to obtain an accurate reading. In general terms, 
it can be considered that the error affecting the personal 
air monitoring is significantly smaller than the error intro-
duced when estimating personal exposure based on sparsely 
distributed outdoor fixed monitoring stations (Chatzidiakou 
et al. 2019). Nevertheless, frequent calibrations constitute 
the necessary maintenance, which costs are in addition to 
the study expenses, without including the personnel effort 
required to conduct ongoing maintenance and evaluation.

Modifications or interventions to improve the perfor-
mance of commercial devices are also a viable possibility. 
For example, while the commercial device Aeris sensor is 
currently not a replacement for the most sensitive research-
grade instrumentation available, it remains useful for moni-
toring formaldehyde in specific conditions (Shutter et al. 
2019). Even though there are commercially available devices 
for air pollution monitoring such as AirBeam, there are still 
limitations to overcome, such as sensitivity, cost, or port-
ability. Sensor modules are typically characterized for their 
small and light weight, relatively short response time, and 
low-power consumption. With the development of mobile 
tracking and sensing technologies (e.g., global position-
ing systems (GPS) and portable air pollution sensors), the 
acquisition of accurate, high-resolution data on individual 
movement, and personal exposure to air pollution has been 
driven (Park and Kwan 2017). However, low-cost sensors 
are often sensitive to environmental conditions and exhibit 
interferences when the contaminant mixture is complex, 
which historically have not been accounted for in laboratory 
calibrations, limiting their usefulness for monitoring (Park 
and Kwan 2017). The heterogeneous calibration models per-
formed around the globe make difficult the standardization 
of air monitoring; however, it must be guaranteed the appli-
cation of the recommendations to achieve the minimum data 
quality for personal exposure measurement (Zimmerman 
et al. 2018). In particular, frequent calibrations are needed 
for the newly developed sensors (Apte et al. 2017).

Although the determination coefficient is the most used 
method for the validation of personal monitors, other statisti-
cal methods can also be used such as Pearson, Kendall, and 
the Spearman correlation coefficients. Depending on the lin-
ear or non-linear behavior of the data, a specific coefficient 
could be more adequate. A comparison between the different 
functions in field studies is available (Fishbain et al. 2017).

In terms of energetic consumption, mobile devices are 
generally powered by batteries, which should provide suf-
ficient energy autonomy for field studies. Adding a higher 
capacity battery increases the cost and weight of the device, Ta
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so alternatives have been studied to lower their power con-
sumption. This result can be achieved by utilizing an opti-
mized data acquisition process, for example, a quality-driven 
sensor management function to continuously select the best 
sensors for a predefined sensing task, avoiding the acquisi-
tion of non-useful data (Marjanović et al. 2016). There are 
cases in which continuous measurements are not necessary, 
in these circumstances, a duty-cycling powering scheme that 
periodically turns on and off the sensors, could save up to 
90% energy as compared to the continuous operating mode 
(Burgués and Marco 2018). Thus, a toolbox for air pollu-
tion monitoring must include hardware: sensors, transmit-
ters, displays, and software (data analysis and collection) 
(Karami et al. 2018).

The mobile devices for air pollution monitoring can be 
very useful to ensure the safety of workers with high expo-
sure to contaminants such as welders (McManus and Haddad 
2019) or firefighters (Amorim et al. 2016). In this case, the 
monitor implementation is technically challenging even with 
small, portable instruments because it must not compromise 
the comfort and safety of the protective equipment. The 
monitoring of air pollutants with mobile devices has also 
been used to study the risk to people working on industrial 
fracking sites over extended periods, finding marked eleva-
tions of BC and NO2 concentrations in downwind proximity 
to diesel engine exhaust emissions from fracking equipment 
(Ezani et al. 2018).

There are still some aspects that need to be considered in 
air monitoring through mobile devices to more realistically 
assess air pollution. For example, considering each person’s 
inhaled dose would be ideal to inform each individual of 
their exposure risk. Air pollutant absorption tends to be 
higher during intense individual physical activity; therefore, 
the use of inhaled dose as an exposure metric is necessary 
for environmental epidemiology studies (Dons et al. 2017). 
Devices with replaceable parts or modular plug-and-play 
sensors can make the epidemiological studies with this 
device more convenient and user-friendly (Deng et al. 2016; 
Yi, Leung and Leung 2017). Alternatively, measurements 
with mobile monitors can be made using sensor networks 
mounted on robots configured to find PM hot spots (Cashi-
kar et al. 2019).

Data analysis

The development of reliable air pollution models applica-
ble to different environments provides an accurate estimate 
of the impact of air pollution on human health (Manekiya, 
Donelli and Donelli 2019). Currently, measurements of air 
pollution zones are limited to data collection but do not give 
a clear view of the degree of exposure for individuals. Thus, 
it results necessary to develop a framework to collect real-
time pollution data related to the main aspects related to 

the issue: traffic conditions, emissions, ambient pollutant 
concentration, and human exposure (El Alaoui El Abdal-
laoui et al. 2019).

The use of mobile computing, machine learning, and 
artificial intelligence tools has experienced an increased 
presence in air pollution exposure modeling (Messier et al. 
2018). The process of air quality assessment involves not 
only the acquisition of data, but also its proper analysis and 
processing. Having a source of big data through mobile air 
quality sensors enhances exposure models. This has made 
it possible to determine significant variabilities over short 
distances and time due to the non-uniform distribution of 
emission sources, dilution, and weather conditions. For 
example, data mining techniques considering spatial vari-
ables have been used to explore the determinants of spa-
tial patterns in air pollution levels and distribution (Kamel 
Boulos et al. 2019). The implementation of fast air pollution 
sensors can address the problems of variability and improve 
spatiotemporal accuracy by achieving a spatial resolution in 
the order of meters. This approach provides a spatial preci-
sion of 4–5 orders of magnitude higher than those ones pos-
sible with current central site ambient monitoring systems 
(Messier et al. 2018). Schemes based on a social coopera-
tive inference to determine environmental conditions can 
be complemented with modified non-Bayesian social for 
data integration in mobile crowdsensing to allow users to 
exchange information with their neighbors and cooperatively 
infer pollution rates, which is the goal of the crowdsensing 
task, otherwise not measurable directly (Meng et al. 2018). 
In addition to measuring pollution levels, the use of mobile 
devices can help to understand the factors that influence air 
pollutants. A study based on multivariate models found that 
the combination of traffic, urban design, and meteorological 
variables mainly impacted air quality. However, the limita-
tion in capturing and modeling all existing variables results 
in 40% unexplained variability (Miskell et al. 2018). There-
fore, more studies in this field are necessary for air quality 
prediction and the consequent adoption of preventive meas-
ures in a reliable way.

On the other hand, validation of portable sensors must 
be performed with the correct processing data to establish 
quantitative relationships between readings from portable 
air pollution monitors and reference measurements. In some 
cases, the response of the portable device is not necessarily 
linear with respect to the reference and must be adjusted 
through mathematical models (Lin et al. 2017; Suriano 
2020). To facilitate the calibration process, the category-
based calibration approach (CCA) for air monitoring sensors 
has been proposed (Wang et al. 2020b). Unlike traditional 
calibration approaches where single models are employed, 
the CCA adopts multiple regression models based on pol-
lutant type and concentration. In the calibration process, 
the responses of the various sensors are classified and then 
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calibrated using the appropriate regression models that are 
selected according to the appropriate weighting based on the 
type of contaminant. This approach allows the instrument to 
learn and adjust the sensor readings to ensure data quality.

It is important to note that although the quantitative per-
formance and validation of portable monitors can be accu-
rately tested under controlled laboratory conditions, the per-
formance of the monitors must also be validated in the field. 
A comparison between portable monitors using a site-spe-
cific calibration proved that the variables and environmental 
conditions must be considered for proper calibration (Zus-
man et al. 2020). In some cases, an unacceptable baseline 
drift and a variable correlation coefficient were observed in 
a large fraction of acquisitions performed through portable 
monitors. These issues must be addressed to obtain reliable 
data (Sagona et al. 2018; Zhang et al. 2018). For example, 
the relationship between the measurements by the QT-50 
light-scattering PM2.5 monitor and by the parallel gravimet-
ric measurements was used to establish a field calibration 
method for low-cost optical sensors (Larcombe et al. 2017). 
However, even when the QT-50 instrument was calibrated 
with respect to the gravimetric method and considering 
temperature and relative humidity, it was observed that the 
QT-50 measurements overestimated the concentration levels. 
In the case of the Aeroqual 500 series monitors with O3 sen-
sors, the application of correction models, including ambient 
temperature and RH influence, was sufficient to reproduce 
the values obtained from a standard monitor (Masiol et al. 
2018). Universal software has been developed to acquire 
data and to perform the calibration of heterogeneous devices, 
sensors, or instruments allowing remote and real-time con-
trol (Zheng et al. 2016). Some calibration models are sum-
marized in the literature (Maag et al. 2018). Detailed reviews 
about the promising hardware of IoT architectures and tech-
nologies and models of air pollution monitoring systems 
are proposed in (Alvear et al. 2018) and (Idrees and Zheng 
2020) respectively.

Data transmission is also an important feature to improve 
personal detection. To achieve the best performance, the air 
sensing information needs to be transmitted and processed in 
time. Thus, low-power wide area (LPWA) technology based 
on machine-to-machine (M2M) communications can be used 
to provide ubiquitous coverage, low-power consumption, 
and costs for devices that send or receive messages infre-
quently and with limited data rates (Masiol et al. 2018). On 
the other hand, a modulated scattering technique adapted 
to the sensors has been proposed to operate in the X band 
at 10 GHz, to guarantee a reasonable compromise between 
device dimensions and costs, in comparison with the wire-
less sensor networks (Manekiya, Donelli and Donelli 2019).

The impact of the sampling strategies on prediction 
accuracy is under active research. A combination of the 
sampling and modeling strategies to improve the accuracy 

of pollutant exposure assessment could be a feasible, 
cost-saving solution in cohort studies (Zhu et al. 2019). 
Although sampling and calibration designs improve pre-
dictions and reduce the uncertainty of the low-cost sen-
sors, they are inevitably limited to the quality and number 
of sensors (Yoo et al. 2020). A study comparing four types 
of monitors showed that only two, the microAeth BC and 
Aeroqual O3 monitors, were most consistent in instrument 
response, achieving the stability of calibration (Lin et al. 
2017). In an other study using the MicroPEM monitor, 
hourly averages of measurements showed a strong cor-
relation with the standard monitor, but they were featured 
by slopes less than 1. The average personal PM2.5 level in 
most enclosed spaces like buses, restaurants, and subway 
stations was higher than the outdoor ones, at least during 
non-hazy days (Zhang et al. 2017). Water vapor can cause 
interference when measuring PM, as it condenses on the 
suspended particles making them grow hygroscopically. 
On this basis, an algorithm based on Köhler’s theory has 
been proposed to generate a correction that significantly 
improves the performance of the sensor and preserves fun-
damental information about the composition of the parti-
cles (Di Antonio et al. 2018).

In order to inform the public of air pollutant measure-
ments, it is necessary to establish a simple and easily iden-
tifiable scale. Currently, the Air Pollution Index (API) is 
used as a reference number to communicate to the public the 
current or predicted level of air pollution. The API is useful 
for non-expert users to identify the degree of air pollution or 
pollution criteria; it is foreseen that its use will spread more 
and more. Ideally, all air quality monitoring devices should 
have the ability to notify users of current air quality through 
an intuitive display (colors, numbers, single adjectives) that 
can indicate the level of air quality in real-time (Gunawan 
et al. 2018; Tiele et al. 2018). As an alternative to com-
municating the air quality, a web page on an open-source 
cloud platform has been proposed to display and analyze the 
air quality data from the sensors and an e-mail can be sent 
when the air composition is in an unhealthy state (Zakaria 
et al. 2018).

Many Internet of Things (IoT) applications have been 
proposed for monitoring the values of API either indoor or 
outdoor (Karar et al. 2020). The framework of IoTs has been 
implemented using 1176 portable air quality PM2.5 sensors 
called “AirBox” (Lin, Chi and Lin 2020). The spatiotempo-
ral distribution between the AirBox sensors and the local 
stations was different, requiring data fusion and correlation. 
The model for spatiotemporal estimation of the AirBoxes 
was based on the theory of Optimal Linear Data Fusion and 
integrated with a Kriging method of multiple time steps. 
This model showed that combining the PM2.5 concentration 
data from the low-cost AirBoxes improved the spatiotempo-
ral PM2.5 concentration estimation.
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Measurements of personal exposure to air pollution 
through wearable devices can be attached to wristbands, 
belts, and backpacks for continuous recording of air qual-
ity during daily activities. Thus, spatial big data collected 
by wearables can be processed and analyzed with data sci-
ence methods and incorporated into epidemiological stud-
ies focused on disease prevention. Non-linear associations 
and integration of multiple sources of spatial big data can 
be improved using machine learning, improving predictive 
performance. For example, using random forest models or 
neural networks, multiple predictors (mobile sensors, fixed 
stations, satellite images) can be included to predict environ-
mental pollution from previously defined categories (traffic, 
urban pollution, weather, UV radiation) (Kamel Boulos et al. 
2019).

Crowdsensing must guarantee user privacy and data 
authenticity. Quality of information (QoI) in mobile crowd-
sensing is key to obtain reliable data and requires the devel-
opment of models that ensure the correct detection of valid 
data (Restuccia et al. 2017). Although there is not much 
discussion on the subject, a block-chain structure to col-
lect the data in collective measurements has been proposed 
(Kolumban-Antal et al. 2020). This improves the security 
and privacy of data, processing, and transmission time have 
to be optimized, preventing any form of data manipulation.

Crowdsensing of air pollution

Measurements from atmospheric monitoring stations are fre-
quently used as a measure of exposure in epidemiological 
studies on the health effects of air pollution. However, these 
fixed stations do not provide spatial and temporal resolution 
of pollutants. Consequently, traditional measurements often 
mask the variability of exposure in the population studied 
and are therefore not optimal for obtaining representative 
exposures of individuals or groups with health problems 
(Bell et al. 2020).

It is clear that air pollution levels change continuously 
over space and time. As individuals also move through 
space, the level of an individual’s exposure to ambient air 
pollution is also conditioned by the mobility of the per-
son, resulting in air pollution exposure levels that not only 
change across space, but can also change between hours 
or even minutes. This is important to take into account 
in order to correctly weigh spatiotemporal variations and 
dynamic interactions between pollutants and humans at a 
high resolution (Yoo et al. 2015). Hence, it is more useful 
to monitor air pollution at short intervals of time compared 
to a daily or monthly average. By adopting this strategy, 
vulnerable people would have more reliable information 
to make decisions on their spatiotemporal behaviors and 
minimize their exposure in different microenvironments 

(Park and Kwan 2017). Based on the above elements, we 
can conclude that air pollution monitoring with traditional 
techniques has practical limitations since it assumes a 
homogeneous distribution of people; in addition to this 
element, we must consider that contamination levels are 
equal in the surroundings and for long periods (Chen et al. 
2018a).

For example, Roy et al. studied the statistical relation-
ships between fungal spore concentration and different cli-
matic factors (Roy et al. 2017). After prolonged sampling, 
a significant correlation was observed between fungal spore 
concentration, air pollutants, and allergic manifestation. 
Improved estimates of personal exposure can potentially 
enhance environmental epidemiology studies (which often 
rely on data from fixed ambient air monitoring stations). The 
conjunction of air pollution sensors, physiological sensors, 
and location (GPS) sensors can establish a stronger connec-
tion between a person’s exposure environment and health 
indicators (Snyder et al. 2013).

Consequently, the low spatial coverage of air pollutant 
measurements and the oversimplification of hypotheses 
about the mobility of people do not allow visualizing the 
spatial complexity and the temporal dynamic characteris-
tics of personal exposure, affecting the reliability of epide-
miological studies (Yoo et al. 2015). Therefore, estimates 
among individuals may be similar despite differences in their 
mobility, which is incorrect (Ma et al. 2019). Even for the 
naturogenic pollutants, it is necessary the personal exposure 
monitoring. For example, the estimation of population expo-
sure to PM2.5 has been proposed considering the population 
distribution, but not the air pollution variation at a personal 
scale (Liu et al. 2019). Then, social intermediaries should 
be the most valuable tool to achieve more realistic epide-
miological research.

Mobile crowdsensing is an unprecedented technique that 
enables the collection of sensing data on a large scale (e.g., 
in a community or city). Modern mobile devices used by 
many people (e.g., smartphones) can be equipped with mul-
tiple sensors or software to collectively capture and share 
data (Liu et al. 2019). Crowdsensing is a complex process 
that requires a variety of tools. Figure 2 shows an overview 
of everything that is needed for crowdsensing. To imple-
ment the crowdsensing, high-precision sensors are needed, 
and they must be assembled in devices sufficiently small 
to be easily transported; then, measurements of the local 
environment are completed, and the data is processed on 
remote servers. Finally, users, through a friendly interface, 
can know about the air quality in their environment. The 
fundamental part of crowdsensing is based on encouraging 
people to participate in the acquisition of useful information 
for the study of various phenomena by providing real-time 
measurements combined with contextual information such 
as location and temperature (El Alaoui El Abdallaoui et al. 
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2019). Unfortunately, collective participation is limited by 
time consumption and privacy issues. Several proposals have 
been made to improve citizen participation, such as the pay-
ment of an incentive (Haddad and de Nazelle 2018; Restuc-
cia et al. 2017; Yang et al. 2019). Comfort is another point 
to consider since the noise or weight of the devices can be a 
disadvantage for volunteers (Sagona et al. 2018).

An example that shows that crowdsensing is not an easy 
process is the project of Taiwan’s Environmental Protec-
tion Administration, a nationwide project where large-scale 
distributed sensors were deployed to effectively monitor and 
manage the emission of pollutants (Chen and Liu 2020). 
However, the methods used to optimize sensor distribution 
were inadequate for deploying thousands of sensors because 
geographic features were not considered. Due to the signifi-
cant challenges to estimating personal exposures described 
above and the practical limitations of existing personal 
monitors, epidemiological studies often rely on pollutant 
concentrations as the primary basis for exposure estimation. 
Only rarely these methodologies are specifically designed 
for exposure assessment (Cepeda et al. 2017; de Bont et al. 
2020; Wu et al. 2020b).

At the same time, it is important that projects using 
mobile air quality sensors consider the potential effects of 
their use on the attitudes and behaviors of volunteers, as they 
are generally not experts. One study suggests that partici-
pation where people are holding the sensors, compared to 
traditional monitoring, generates greater motivation among 
participants. In addition, sensor use generates interest in 
learning more about air pollution and risk perception (Oltra 
et al. 2017).

Epidemiological research has continually required more 
reliable estimates of human exposures. The higher the level 
of refinement in contaminant characterization, the more 

accurate and useful the information from exposure esti-
mates. For example, exposure indicators could be improved 
by implementing the use of mobile monitors among people 
in order to increase the spatial resolution of measurements 
within an area typically covered by a central site monitor or 
by increasing data acquisition at specific times where cen-
tral site measurements are not available (Chen et al. 2018a; 
Park and Kwan 2017). Although several options have been 
considered for monitoring air pollution in urban settings, 
crowdsensing is an emerging technique of great interest; the 
implementation of this technique could become widespread 
in the short term (Ma et al. 2019).

Urban and intraurban areas

Individual exposure to air pollution is a dynamic process 
consisting of several iterations between the person and the 
urban environment, which depend on both the spatiotempo-
ral distribution of air pollutants and the daily activities of the 
individual. Consequently, the configuration and functioning 
of urban spaces are closely related to the manner in which a 
person is exposed to airborne pollutants. For example, urban 
environments affected by heavy traffic (urban mobility) and 
the lack of walking streets could result in high pollutant 
exposures for pedestrians as has been shown in Ma et al. 
(2019) and reviewed by Cepeda et al. (2017). For these rea-
sons, a quantitative and qualitative understanding of urban 
dynamics is an important piece of evidence to design epi-
demiologic studies of outdoor air pollution. Furthermore, 
a proper understanding of the urban dynamics and air pol-
lution could help the development of actions to palliate 
the negative effects of pollution on human health through 
regeneration and urban acupuncture techniques (Dekoninck 
et al. 2017).

Fig. 2   Crowdsensing elements 
and process
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Epidemic models based on stationary air pollutant moni-
tor recordings are susceptible to give unreliable and even 
erroneous results because the mobility of people is not con-
sidered. Most people move to areas outside residential areas 
to carry out their daily activities; therefore, each person is 
exposed to different contexts despite living in the same 
neighborhood. Therefore, mobility to sites with higher pol-
lution must be carefully weighed for the assessment of expo-
sure to poor air quality. For example, employees and young 
people, in contrast to pensioners and older people, will have 
higher exposure due to their higher levels of daily mobil-
ity (Alvear et al. 2017; Liang et al. 2019). Thus, participa-
tory sensing data can avoid underestimation of exposure to 
pollutants.

Kwan et al. have identified two major methodological 
problems that are particularly relevant when assessing indi-
vidual exposure to air pollution: the uncertain geographic 
context problem (UGCoP) and the neighborhood effect aver-
aging problem (NEAP) (Kim and Kwan 2020). The UGCoP 
is the problem that using different delineations of spatiotem-
poral contexts could lead to different research results of the 
health effects of environmental influences on individuals 
and the NEAP results when the mobility of individuals and 
their exposures to nonresidential contexts is ignored, causing 
biased estimates of personal exposure.

Thus, spatiotemporal variability of air pollution and indi-
vidual daily movement patterns in exposure and health risk 
assessment is fundamental to perform a realistic epidemio-
logic model (Ma et al. 2019). Kwan et al. conducted a study 
on air pollution in California by considering individual-
level movement patterns, participants’ residential locations, 
hourly air pollution levels, and daily pollution averages (Park 
and Kwan 2017). In this study, they illustrate from 3D geo-
visualization how air pollution levels are spatiotemporally 
dynamic and how potential health effects are likely to vary 
as a function of mobility through the day. Although they did 
not measure individual air pollution or consider indoor air 
pollution, the influence of the spatiotemporal variable and 
people’s mobility is evident.

The latest published projects in local exposure to air pol-
lution are listed in Table 2. Although most mobile monitor-
ing is focused on citizen use, motorized vehicles (Freder-
ickson et al. 2020; Söderena et al. 2020; Zhang et al. 2020) 
or bicycles (Dekoninck et al. 2015; Ueberham et al. 2019; 
Wu et al. 2020a) have been successfully implemented as 
a mobile medium, which avoids requesting consent from 
individuals.

In a preliminary study, using three portable sensors, it 
was possible to demonstrate that these devices are useful to 
distinguish different environments such as commuting trips 
or indoor environments (Languille et al. 2020). For another 
study, an app was developed to obtain environmental, posi-
tion, and mobility data with more than 1500 participants 

(Ottaviano et al. 2019). This approach enabled the large-
scale collection of citizen science data with higher data 
spatial resolution, providing predictive analytic solutions 
to empower citizens with urban, environmental, and health 
recommendations. The accuracy of mobile monitors is rarely 
discussed in field studies; however, Chatzidiakou et. al dem-
onstrated that the errors of portable devices for measuring 
air pollutants is significantly lower than the error introduced 
when estimating personal exposure from measurements 
from sparsely distributed fixed outdoor monitoring stations 
(Chatzidiakou et al. 2019). Thus, it is possible to use port-
able monitoring devices to achieve reliable exposure metrics 
that would allow extending their use even for domestic use 
as a health prevention tool to avoid unnecessary exposures.

The core problem for the assessment of air pollutants lies 
in the complex variety of chemical components. These affect 
individuals differently (depending on inhalation rates, lung 
volumes, and physical activity, combined with the enormous 
spatiotemporal variability of external exposure) making the 
correlation of their health effects significantly more compli-
cated. The ensemble of various disciplines could correlate 
multiple weighted factors to refine air pollution studies (Yoo 
et al. 2015). Thus, the study of the effects of poor air quality 
on people should be interdisciplinary enough to be able to 
quantify individual differences in exposure, to motivate par-
ticipants to be constantly informed, and to track the temporal 
variability of pollutant concentrations at the local level that 
can be related to traffic conditions, road types and meteorol-
ogy, etc. (Kim and Kwan 2020; Liu et al. 2020).

Indoor areas

People tend to spend most of their time indoors; therefore, 
an evaluation of risk factors solely on the basis of exposure 
to outdoor air pollutants is erroneous. The distribution and 
amount of pollutants in indoor environments can be very 
different from that of outdoor environments, as it depends 
on factors specific to indoor environments, such as ventila-
tion, air conditioning, and concentrations of harmful sub-
stances from sources such as tobacco smoke and, in gen-
eral, combustion-related activities (cooking or heating) (Ma 
et al. 2019). Because the study of indoor air quality is more 
complicated by privacy issues, epidemiological research on 
indoor air pollution is scarce. However, current scientific 
studies show that the time spent in a given place is a deter-
mining factor in correctly assessing the effects of air pollut-
ants on people’s health (Park and Kwan 2017).

Table 3 shows indoor air quality studies based on personal 
or mobile sensors. In general, the highest exposure to air 
pollution on a quotidian day is not from vehicle emission 
but from the use of air conditioning systems, air fresheners, 
cooking, etc. (Sinaga et al. 2020). Indoor air quality (IAQ) is 
directly related to the number of people in the household, to 
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the activities carried out in those places, and also to the vari-
ability concerning the heterogeneous daily activities of the 
inhabitants (Ghahramani et al. 2019). Poor air quality in the 
spaces we commonly use for daily activities is an important 
factor that directly affects our health. Fortunately, improv-
ing IAQ is possible by simply opening windows or ensuring 
good ventilation to reduce the concentration of pollutants 
retained in the enclosed environment. A study in com-
mon indoor places found that increase in PM10 was due to 
movements of the occupants of the room, which caused the 

re-suspension of coarse particles (Ragazzi et al. 2017). In the 
case of PM2.5 and PM1 concentrations, it was observed that 
they remained at high levels even at the end of the activities 
that generated them. CO2 levels are closely related to the 
number of individuals and ventilation in concordance with 
other studies (Gall et al. 2016). When indoor ventilation is 
poor, CO2 easily exceeds 1000 ppm, which is linked to low 
comfort of building occupants, headaches, drowsiness, and 
attention deficit (Ragazzi et al. 2017).

Table 2   Studies on air pollution exposure in outdoors at the local scale

Pollutant Location Participants Personal sensing and data Ref

PM2.5 and PM10, CO2, NO2 London, UK 14 Low-cost air pollution sen-
sor nodes fitted in waste 
removal trucks, hospital 
vans, and taxis

Frederickson et al. (2020)

PM2.5, PM10, NOx, and 
VOCs

Sheffield, England 45 Plume Labs “Flow” air 
quality monitor

Heydon and Chakraborty 
(2020)

PM2.5, PM5, PM10, and CO2 China 36 shared bikes UbiAir and IoT box Wu et al. (2020a)
CO, NO2, O3 29 Sensor board connected to 

Android smartphone
Bales et al. (2019)

PM, CO, NO, NO2, and O3 UK and China 400 Low-cost sensors/GPS Chatzidiakou et al. (2019)
CO, NO2, and O3 Paris, Singapore, Birming-

ham, Barcelona, New 
York, Pavia, and Keelung

1500 2 developed sensors/Pul-
sAir mobile app

Ottaviano et al. (2019)

NO2 and VOCs London, UK 22 Sensor and smartphone app Haddad and de Nazelle 
(2018)

PM, NO2, and black carbon Paris, France 15 3 commercial devices tested Languille et al. (2020)
PM2.5 Los Angeles, USA 18 AirBeam portable air 

monitor
Johnston et al. (2019)

PM2.5 Beijing, China 112 Portable air pollutant sen-
sor/smartphone GPS

Ma et al. (2019)

PM2.5 New York, USA 43 Local air monitoring sta-
tions/GPS by smartphone 
app

Yoo et al. (2015)

PM Beijing, China 50 TE-STR portable monitor 
and CHO platform

Liang et al. (2019)

PM Leipzig, Germany 66 cyclists Particle number counts 
device

Ueberham et al. (2019)

NOx, O3 California, USA 2737 Diary activity-travel/co-
kriging model

Kim and Kwan (2020)

NO2, O3 Beijing, China 6 Multiple alphasense sensors 
in a backpack

Liu et al. (2020)

NO2, O3 Montreal, Canada 76 sites Aeroqual sensors Deville Cavellin et al. 
(2015)

NOx Finland Four diesel passenger cars Portable emissions Meas-
urement system

Söderena et al. (2020)

NOx China 31 vehicles Portable emissions meas-
urement system

Zhang et al. (2020)

NO2 Barcelona, Spain 12 Aeroqual sensor Oltra et al. (2017)
O3 New Jersey, USA 10 Portable ozone monitor Sagona et al. (2018)
Black carbon Antwerp, Barcelona, and 

London
122 microAeth black carbon 

aerosol monitor
Dons et al. (2017)

Black carbon Ghent, Belgium 209 trips by bicycle Micro-aethalometer Dekoninck et al. (2015)
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Among the activities commonly performed indoors is 
cooking, which produces the highest levels of PM2.5 reach-
ing levels of 100 μg/m3 while cooking (Cao and Thompson 
2017). The concentration of PM2.5 is also related to the use 
of personal care products such as skin creams, hairsprays, 
and antiperspirants. A short-time increase of VOC occurs 
after working hours, which can be the result of the temporary 
existence of a contaminant source such as cleaning materials 
(Karami et al. 2018). The use of mosquito coils during the 
night causes exposure peaks during sleeping hours, being 
more common in wet seasons (Sinaga et al. 2020).

Homes are not the only indoor spaces where polluted air 
is a risk. Air monitoring has been implemented in work-
places where hazardous gas emissions are a risk. The moni-
tor of nitrous oxide levels in the breathing zones of dental 
employees demonstrates that more than half of the meas-
urements exceeded the maximum recommended concentra-
tions (Cheng et al. 2019). In the case of healthcare personnel 

and patients who undergo endoscopy procedures, they are 
exposed to unhealthy levels of CO2 and VOCs (Bang et al. 
2019).

The viability of the use of a low-cost monitor for indoor 
air quality was studied for PM measures. Six low-cost sen-
sors were exposed to diverse indoor air pollutants, but only 
semi-quantitative responses were achieved due to the poor 
detection limit (Wang, Delp and Singer 2020). The measures 
are limited by the variability in the response due to the mul-
tiple sources of contaminants, which complicates their use 
for the quantitative assessment of indoor concentrations and 
exposures. Recently, a study of commercial portable sensors 
for air pollution was achieved to test their reliability inside a 
building (Goletto et al. 2020). The authors found that none 
of the devices commercially available to the mass public was 
able to meet the quantitative standard for indoor air pollution 
measures. Furthermore, a qualitative analysis of air pollut-
ants is possible using domestic sensors. On the other hand, 

Table 3   Indoor air monitoring using portable sensors

Pollutant Location Participants Personal sensor Ref

PM2.5 Apartment in Santa Clara, CA 1 Research-grade and low-cost 
air monitors

Cheng et al. (2019)

PM2.5 Pittsburgh 26 Speck sensor Wong-Parodi (2018)
PM2.5 Bandung, Indonesia 50 AS-LUNG portable monitor Sinaga et al. (2020)
PM2.5 Daily activities 2 Sharp PM2.5 dust sensor Cao and Thompson (2017)
PM2.5 Residential (Baltimore) One year of monitoring 3 low-cost sensors Zamora et al. (2020)
PM2.5 3 residences One week of monitoring 4 low-cost sensors Manibusan and Mainelis 

(2020)
PM2.5 Quotidian environments 3 personal monitors 3 low-cost dust sensors Agrawaal (2020)
PM10, PM2.5 Residential home - DC 1700 PM sensor Han et al. (2016)
PM10 and PM2.5 Inside of circulating cars 10 cities Portable air quality and GPS Kumar et al. (2021)
CO2, PM Netherlands 280 classrooms Wall-mounted stationary 

nodes
Palacios Temprano et al. 

(2020)
CO2, PM2.5 Living rooms and bedrooms 117 Two low-cost sensors Dai et al. (2018)
CO2, PM An office, a computer-room, 

and two bedrooms
- GRIMM analyzer and Sensor-

drone devices
Ragazzi et al. (2017)

CO2 Environmental climate 
chamber

41 2 wearable CO2 sensor Ghahramani et al. (2019)

CO2 Daily activities 16 Battery-operated sensor Gall et al. (2016)
CO Ghana 38 cooking areas CO sensor/Bluetooth Low 

Energy (BLE) Beacon
Technology

Piedrahita et al. (2019)

CO2, VOCs, PM2.5, 
NO2, CO, and O3

Gastrointestinal endoscopy 
unit

- 9 portable passive air quality 
monitoring sensors

Bang et al. (2019)

PM2.5 and O3 Children’s bedrooms 39 Plantower PM and 
Alphasense O3 sensors

Barkjohn et al. (2020)

CO2, CO, PM10, NO2 Housing area 5 occupants Sensors connected by Blynk 
IoT platform

Taştan and Gökozan (2019)

VOCs, CO2, PM2.5 Computer lab - Sensors connected to Arduino 
Uno boards

Karami et al. (2018)

N2O 7 dental operatories 18 2 commercial monitors Hansen et al. (2019)
NO Shipyard 43 Colorimetric detector tubes McManus and Haddad (2019)
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the validation of the portable sensor DC 1700 (Dylos) was 
well correlated with mass concentrations of PM2.5 measured 
using the reference monitor Grimm 11-R, resulting in a coef-
ficient of determination of R2 = 0.778 for PM2.5 (Han et al. 
2016). The portable sensor can be inaccurate because the 
complexity of the chemical composition of the measured 
aerosols cannot be properly analyzed, resulting in a poor 
correlation between the coarse PM readings of the portable 
monitor and the reference monitor. A proposed device for 
formaldehyde exposure monitoring at home or work was 
tested in real indoor air, resulting in excellent correlation 
with the reference; thus, this device can detect formaldehyde 
from different wood product emissions (van den Broek et al. 
2019). A recent review about the characteristics of low-cost 
indoor air monitoring device development can be found in 
(Chojer et al. 2020).

Contamination and mobility mapping of people in indoor 
environments (schools, buildings, etc.) can be applied to 
track exposure hotspots. Fixed monitors are useful for spatial 
mapping of indoor air quality (discrete fixed points); how-
ever, a “Lagrangian” (mobile) monitoring method offers a 
way to measure continuous spatial profiles of concentration. 
An indoor positioning system (IPS) in combination with tra-
ditional activity recordings for personal exposure assessment 
would be useful to identify spontaneous location changes 
(e.g., leaving the kitchen temporarily while cooking) and 
provides more detailed exposure assessments despite not 
detecting emissions from sporadic sources (Cheng et al. 
2019; Taştan and Gökozan 2019).

On the other hand, the use of wireless sensor networks in 
indoor areas can be useful to monitor air quality and addi-
tionally serve as a security alarm in case of a risk event 
such as a gas leak or fire (Jelicic et al. 2015). The benefit of 
including people in air quality studies is that the participants 
reach more action to reduce indoor air pollution after using 
the sensor. If low-cost, high-precision mobile air quality 
monitoring devices are successfully developed, they may 
be routinely used in the future to ensure patient health safety 
in hospitals, schools, and generally in enclosed spaces where 
people’s health may be compromised.

Challenges and opportunities of mobile 
monitoring

The monograph published in 2016 by WHO’s International 
Agency for Research on Cancer (Humans 2016) has stated 
that “[…] studies of relationships between air pollution 
exposure and cancer require long periods of observation 
and large populations. Therefore, it is virtually impossible 
with currently available approaches to assess exposure via 
personal monitoring.” To the best of our knowledge, an inte-
gral, scalable, and cost-effective approach to reliably assess 

exposure via personal monitoring to reveal health impacts 
of air pollution, acute episodes, and estimating impacts and 
the related cost is nonexistent.

Today, however, recent advances in mobile and cloud 
computing, ubiquitous computing, crowdsourcing/crowd-
sensing, machine learning, artificial intelligence, big data 
analysis, and sensor IoT technology open a promising avenue 
to measure individual exposure practically and cost-effec-
tively. The application of these methodologies in this context 
was envisioned in The 2012 National Academy of Sciences 
report Exposure Science in the 21st Century: A Vision and 
Strategy (National Research Council 2012). This report 
identified “[…] ubiquitous sensors as one of the technolo-
gies that will likely substantially enhance exposure science 
and provide a more accurate and comprehensive personal 
exposure data. A more complete understanding of personal 
exposure to air pollution will support the development and 
implementation of air quality management policies.”

However, air pollution crowdsensing has still failed to 
address completely two main problems. First is the poor 
quality of measurements from commercial devices, which 
are limited to quantifying one or a few pollutants, are prone 
to interference between pollutants, and do not provide a 
convenient method for the user to perform recalibration 
or maintenance. Secondly, since not everyone is willing to 
cooperate with air quality data collection during their day-
to-day activities, user privacy is a critical issue that we must 
pay attention to during implementation (Wang et al. 2020a; 
Yang et al. 2019).

To successfully achieve all the scopes of crowdsensing, 
it is necessary, in the first place, to increase people’s inter-
est. To achieve that, it should not only involve rewards but 
efforts should also be made to ensure that information from 
monitoring devices can be easily interpreted by any user so 
that they might take actions that will help improve air qual-
ity. For example, communities may be less concerned about 
absolute concentrations and more about relative compari-
sons across sites. Since exposure levels are directly related to 
human dynamics, it is important to study and generate mod-
els for predicting the behavior of individuals from mobile 
crowdsensing. Ensuring the quality of the information is also 
a fundamental task in crowdsensing data collection. How 
to determine if the sensors are working properly or if the 
sensor is actually exposed to the outside air and not inside a 
backpack? These details will need to be considered for future 
studies using crowdsensing (Restuccia et al. 2017).

Regarding the state-of-the-art of the current sensor tech-
nology, although the number of commercially available 
sensors is increasing, the information on data quality and 
sensors performance compared to conventional analyzers on 
the field is limited. It is clear that the weather causes inter-
ference with low-cost sensors; hence, software and hard-
ware development focused on automatic calibration is key 
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to achieve a reliable implementation of mobile devices for 
air monitoring. Because papers reporting negative results 
have low priority, only a few studies have been published 
concerning the stability and sensitivity issues (Lewis and 
Edwards 2016). On the other hand, portable monitor hard-
ware is usually battery powered so that their limited energy 
budget presents a research and design challenge because 
reducing cost inevitably reduces the quality of the analysis.

Measuring air pollutants on a personal scale provides 
more realistic data on individual air quality. However, air 
pollutants’ dosage also depends on increased physical activ-
ity, as it increases the amount of air inhaled. Therefore, 
measurements or models that take this into account would 
be much more accurate and useful for epidemiological stud-
ies (Cox 2021).

In the era of big data, crowdsourcing images would sig-
nificantly enhance the existing remote sensing database. 
However, current progress has mostly been limited to small 
regions and objects. Large-scale data acquisition still relies 
on professional satellite and airborne platforms, where some 
challenges such as low-frequency observations and expen-
sive high-resolution images still remain (Wang et al. 2020a). 
In summary, the ideal crowdsensing must contemplate, low 
cost (of acquisition, calibration, and maintenance), selectiv-
ity and sensitivity, weather influences (indoor and outdoor), 
and the mode of transport (pedestrian, vehicles, etc.). In 
parallel, the development of data transmission and storage, 
management, dissemination, and privacy, would also need 
to be addressed.

Conclusions

The development of new sensors and portable devices 
for air pollutants has demonstrated that estimation of air 
quality with typical monitoring stations is not sufficiently 
accurate on an individual scale. The spatiotemporal varia-
tion of atmospheric pollutants requires the use of tools such 
as portable and low-cost sensors to obtain data at higher 
resolution, and citizen participation through crowdsensing 
offers a promising alternative for data acquisition. The latest 
research on air pollutant monitoring through crowdsensing 
shows that the exposure to pollutants not only depends on 
the area in which people live, but also depends directly on 
the work activities and their mode of transportation. The 
portable monitors have also allowed indoor air monitoring, 
being useful to know the sources of emission of pollut-
ants and the possible alternatives to avoid them. However, 
in order to achieve an accurate mapping of air pollutants, 
it is necessary to continue developing more selective and 
energy-efficient sensors, devising models to guarantee the 

robustness of the data and, above all, encouraging citizen 
participation.
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