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Abstract

Statistical models to evaluate the relationships between large-scale meteorological conditions, prevailing air pollution levels and
combined ozone and temperature events, were developed during the 1993-2012 period with Central Europe as regional focus.
Combined ozone and temperature events were defined based on the high frequency of coinciding, health-relevant elevated levels
of daily maximum tropospheric ozone concentrations (based on running 8-h means) and daily maximum temperature values in
the peak ozone and temperature season from April to September. By applying two different modeling approaches based on lasso,
logistic regression, and multiple linear regression mean air temperatures at 850 hPa, ozone persistence, surface thermal radiation,
geopotential heights at 850 hPa, meridional winds at 500 hPa, and relative humidity at 500 hPa were identified as main drivers of
combined ozone and temperature events. Statistical downscaling projections until the end of the twenty-first century were
assessed by using the output of seven models of the Coupled Model Intercomparison Project Phase 5 (CMIPS5). Potential
frequency shifts were evaluated by comparing the mid- (2031-2050) and late-century (2081-2100) time windows to the base
period (1993-2012). A sharp increase of ozone-temperature events was projected under RCP4.5 and RCP8.5 scenario assump-
tions with respective multi-model mean changes of 8.94% and 16.84% as well as 13.33% and 37.52% for mid- and late-century
European climate.
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Introduction

Air pollution poses the single largest environmental risk to
human health in Europe resulting in a substantial public health
burden for the European population (EEA 2019).
Tropospheric ozone (Os), representing one major air pollutant,
is not directly emitted to the atmosphere, but produced by a
photochemical chain reaction in the presence of solar
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radiation. It is formed by the reaction of precursor gases such
as volatile organic compounds (VOC), carbon monoxide
(CO), or nitrogen oxides (NOy) that is enhanced by rising air
temperatures and solar radiation.

Elevated levels of O5 cause a variety of human health ef-
fects primary affecting the cardio-pulmonary system
(Nuvolone et al. 2018; Srebot et al. 2009; WHO 2006;
WHO 2013). The severity and extent of symptoms are highly
determined via duration and intensity of the exposure to the
reactive and oxidative O; gas. Elevated concentrations have
irritating effects on eyes, mucous membranes, and airways.
Lung inflammation and tissue damage, asthma, a reduction
of the self-cleaning mechanism of the bronchi, cardiac ar-
rhythmia, heart attacks, and heart failure are possible resulting
respiratory or cardiovascular diseases (Eis et al. 2010; Srebot
etal. 2009; WHO 2006). Elevated mortality levels were linked
to tropospheric Os, while potentially susceptible people with,
e.g., corresponding previous illnesses show a higher disease
and mortality risk (Eis et al. 2010; WHO 2013). The Ambient
Air Quality Directive (AQD) of the European Union suggests
120 pg/m’ (daily maximum 8-h mean) as a target value for
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protecting human health from O3 (EEA 2019). The WHO
even recommended the use of 100 pg/m® in their Air
Quality Guidelines (AQG), admitting that even under this
threshold, some sensitive individuals may suffer from nega-
tive health effects (WHO 2006). The WHO (2013) assumed
that the implemented target values to protect humans from
ozone pollution are all in all too high. Hertig et al. (2019)
analyzed the relationship between daily maximum 1-h ozone
concentrations and myocardial infarction (MI) frequencies.
The city of Augsburg (Bavaria, Germany) was the regional
focus. In conclusion, they argued that the existing AQD target
value is only suitable to a limited extent as enhanced MI risks
already occurred at median to moderately high ozone pollu-
tion levels. A maximum risk was found at approximately the
75th percentile with the value referring to 116 pg/m’.

Elevated air temperature levels (Baccini et al. 2008; Hajat
and Kosatky 2010; Song et al. 2017) and heatwave episodes
(Anderson and Bell 2011; Gasparrini and Armstrong 2011;
Guo et al. 2017; Robine et al. 2012) can negatively affect
human health and were associated with increased mortality.
A higher cardiovascular, cerebrovascular, or respiratory mor-
tality rate just represents the final extreme end of a variety of
adverse impacts on human health. Increasing thermal load can
lead to or worsen health effects, for example, severe dehydra-
tion, heat exhaustion, cramps, syncope, oedema,
thrombogenesis, heat rush, and life-threatening heatstrokes
(McGregor et al. 2015). Health impacts are determined by
the level of exposure with respect to duration, severity, and
frequency as well as the exposed population and its sensitivity
(Matthies et al. 2008). There exist a vast number of worldwide
as well as national-based indicators and target values to de-
scribe extreme temperatures and periods of excessive heat
(e.g., DWD 2020; ETCCDI 2009).

As indicated, due to the specific characteristics of ozone
formation and further underlying processes, high ozone con-
centrations often co-occur with elevated air temperature levels
(Fiore et al. 2015). As exposure to poor air quality as well as
thermal load both already affect human health independently,
their combined occurrence poses an even intensified threat to
human life, especially as synergistic effects lead to a risk be-
yond the sum of their individual effects (Katsouyanni and
Analitis 2009; WHO 2008). Thus, for example, ozone pollu-
tion is an enhanced threat to human health on hot days
(Pattenden et al. 2010), while with prolonged periods of heat
associated mortality is higher during ozone pollution events
(Analitis et al. 2014).

The occurrence of high temperatures and elevated levels of
ozone are substantially influenced by meteorological and air
pollution conditions. As both health stressors are apparently
target variables to assess health burden occasions for the
European population and are dependent on recent and future
climatic conditions, a variety of assessments exist, investigat-
ing separately air temperature or Os levels in Europe. Future
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changes of these health stressors are additionally analyzed in
terms of anthropogenic induced global climate change. Recent
studies found that precursor emissions show a substantial im-
pact on the relationship between the strongly correlated ozone
and temperature target variables (Bloomer et al. 2009; Coates
et al. 2016; Sillman and Samson 1995). Meteorological and
synoptic conditions influencing O3 pollution (Carro-Calvo
et al. 2017; Otero et al. 2016) or elevated air temperatures
on single or consecutive days (Black et al. 2004; Krueger
et al. 2015) were evaluated for Europe. Various studies ana-
lyzed future health outcomes related to air pollution (Fang
et al. 2013; Hendriks et al. 2016) or heat events (Gasparrini
et al. 2017; Takahashi et al. 2007) under twenty-first century
climate change. A growing number of days with temperature
extremes and heat waves were identified in Europe (Jacob
et al. 2014; Meehl and Tebaldi 2004; Schoetter et al. 2015).
By not considering future anthropogenic mitigation strategies
and emission policies, an increase of surface ozone concentra-
tions over Europe in summer was found (Katragkou et al.
2011), largely for high-percentile O levels and polluted envi-
ronments (Schnell and Prather 2017). Even if future-projected
ozone concentration levels are highly determined by changing
precursor emission levels, there is growing evidence that the
increasing effect of a warming climate could negate recent and
future pollution mitigation strategies and policies (Colette
etal. 2015; Hendriks et al. 2016). Even with a strong reduction
of precursor emissions, ozone standards may still be violated
in the future at individual stations or regions (Moghani and
Archer 2020).

Only a rare number of studies investigated concurrent ele-
vated temperature and O5 levels under recent and future
climatic conditions. Hertig (2020) assessed the relationship
between large-scale meteorological mechanisms and elevated
levels of daily maximum ground-level temperature and ozone
concentrations for Bavarian cities. Furthermore, combined
threshold exceedances of both target variables were analyzed.
Projections under RCP8.5 were provided to illustrate changes
of'these health stressors under future climate change. A strong
frequency increase of co-occurring O; pollution and thermal
load events was identified. A recent study by Meehl et al.
(2018) investigated the relationship between heat waves and
surface ozone concentrations around the world under RCP6.0
emission scenarios in the twenty-first century. For most areas,
a decline was found in ozone concentrations on even intensi-
fying future heat wave days compared to non-heat wave days.
In contrast, an increase was assessed for most areas by keep-
ing anthropogenic precursor emissions strongly influencing
O; pollution levels constant at 2005 levels.

In summary, merely a few assessments exist analyzing the
co-occurrence of combined elevated temperature and O;
levels representing a relevant threat for human health in
Europe. Enhanced attention should be paid to the possible
impacts of future climate change on these harmful occasions.
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Thus, the motivation for this study is to assess the relation-
ships between meteorological conditions and the joint occur-
rence of elevated tropospheric ozone concentrations and air
temperature values over Central Europe. Co-occurring high
levels of the two variables are considered to define combined
ozone and temperature events (hereafter “o-t-events™; please
refer to Table S1 in the Supplementary Material (Online
Resource 1) to get an overview of all used abbreviations and
acronyms). The response of the o-t-events to meteorological
factors as well as prevailing atmospheric and O3 pollution
conditions is investigated to better understand the main drivers
of these highly health-relevant events. Projections providing
an integration of climate change scenario assumptions until
the end of the twenty-first century are presented based on
seven models of the fifth phase of the Coupled Model
Intercomparison Project (CMIP5) (Taylor et al. 2012). Thus,
potential frequency shifts of such health burden occurrences
under future climate conditions are assessed.

This paper is organized as follows. The “Data” section
presents the initial selection and preprocessing of predictand
and predictors by additionally referring to their underlying
respective datasets (e.g., reanalyses and earth system model
(ESM) output). The “Methods” section introduces all applied
statistical model techniques and approaches, the framework of
their implementation, the metrics to evaluate their perfor-
mance to assess the occurrence of combined o-t-events, and
the employment of the subsequent projections. The “Results”
section presents the results of all statistical modeling and
projecting processes. Finally, the discussion and concluding
remarks can be found in the “Discussion” and “Conclusion”
sections.

Data
Predictand data

Since the main drivers of concurrent elevated air temperature
and O; levels as well as possible future frequency shifts are
assessed, the o-t-events represent the target variable for the
statistical downscaling models and subsequent projections.
Accordingly, stations with measurement data on surface daily
maximum ozone and air temperature in Europe were selected
to define these combined events.

Station-based air quality and temperature data

Station-based ozone data were retrieved from the European air
quality database data product AirBase version 8 maintained
by the European Environment Agency (EEA) (EEA 2014).
Data collected within the subsequent Air Quality e-
Reporting starting from 2013 based on new rules for recipro-
cal exchange of information and reporting were disregarded to

assess homogenously submitted and prepared air quality mon-
itoring data and information sets. Valid daily maximum ozone
values (selected by EEA’s predefined quality flags indicating
the quality of the data) based on running 8-h means (hence-
forth named “MDAS8O3”) calculated from the corresponding
hourly data were retrieved. An observational base period of 20
years from 1993 to 2012 was chosen as temporal focus.
Beside the large-scale prevailing meteorological and climatic
conditions, location-specific ozone concentrations are influ-
enced by various station environment characteristics. To guar-
antee the best possible homogeneity of the database, the im-
pact of factors other than meteorological variables, e.g. altitu-
dinal vegetation change, crucially influencing ozone concen-
trations was minimized for all selected stations. Thus, only
ozone stations located primarily in the planar up to the colline
zone with an altitude height under 700 m were considered.

Station-based daily maximum surface air temperature
(hereafter “TX”’) observations based on adjusted, homoge-
nized blended temperature series were obtained from the
European Climate Assessment & Dataset project (ECA&D)
(Klein Tank et al. 2002). Only valid TX observations (selected
by ECA&D’s predefined quality code) in the country-based
blended series of the ECA&D dataset were considered. Only
temperature stations in the spatial vicinity of the ozone sta-
tions were selected. In order to reproduce the respective tem-
perature as accurately as possible, merely temperature stations
located at a distance of at most 10 km and with a maximum
altitude difference of 200 m to the corresponding ozone sta-
tion were chosen.

Station selection

Based on the respective database, all possible station pairs
were evaluated to select suitable matches. To minimize the
influence of missing values, each ozone and temperature sta-
tion was required to have at least 75% of valid daily data (valid
data for MDA8O3 and TX as defined above). Spearman rank
correlation coefficients calculated between the daily and
monthly MDASO3 and TX time series of each station pair
show primarily a strong relationship between both variables
in spring to late summer. Thus, all analyses are based on the
months from April to September, herein after referred to as the
ozone-temperature season (hereafter “o-t-season”). Only sta-
tion pairs with an on average monthly correlation coefficient
of at least 0.5 in the o-t-season were selected, leading to an
exclusion of eight ozone stations. All of these stations but two
(located in Greece) were spread over Northern Europe (name-
ly Great Britain, Finland, and Sweden), showing a weaker
correlation between both target variables probably due to the
overall, high latitude-based lower solar radiation durations,
and intensities. Temperature time series were directly assigned
to the paired ozone station to create a combined time series per
location. Only station pairs with at least 75% of valid season-
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specific data across all years, based on their combined time
series, were selected.

As a result, 85 station pairs in Central Europe build the
regional focus of the study. The mean distance and the mean
altitude difference between all paired stations is 4.72 km (min
0.2, max 9.91, median 4.64) and 31.54 m (min 0, max 146,
median 10), respectively. These location differences between
TX and MDAS8O3 are not further referred to throughout the
paper, but should always be kept in mind. Hereafter, “station”
is used to refer to these linked ozone and temperature station
pairs, with all spatial station information being represented for
the respective ozone station. An overview of all finally chosen
ozone stations with more detailed station metadata and station
pair characteristics is given in Table S2 in the Supplementary
Material (Online Resource 1).

To assess the different air quality settings of each location,
the finally selected stations are categorized in five station clas-
ses based on EEA’s predefined types of station and area as
follows: urban traffic (“ut”, 13 stations), urban background
(“ub”, 37 stations), suburban background (“sb”, 27 stations),
rural industrial (“ri”, 2 stations), and rural background (“rb”, 6
stations). The selected stations are spread across five different
countries in Central Europe, namely Austria, Belgium,
Germany, The Netherlands, and Switzerland. Throughout
the remaining sections, the term “Central Europe” is used to
refer to this set of countries. The specific location of each
analyzed station together with its respective class, highlighted
by shape and color, is shown in Fig. 1. On this and all follow-
ing maps showing spatial distributions and locations, x- and y-

a

2 4 6 8 10 12 14 16 18

Fig. 1 Location of all 85 selected stations in Central Europe. Color and
shape of points indicate the class of each station. Classes are specified as
follows: b = rural background, ri = rural industrial, sb = suburban
background, ub = urban background, ut = urban traffic
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axis represent longitude and latitude. Apart from that, hereaf-
ter, only the shape of the stations indicates the class of each
station.

Combined events

Health-relevant, co-occurring high levels of MDASO3 and
TX were used to define o-t-events. Based on a 31-day win-
dow, the 75th percentiles for both target variables were calcu-
lated with respect to daily mean averages across all years in
the base period. As a result, fixed daily values to define thresh-
old exceedances for each variable and day in the o-t-season for
all subsequent analysis in the observation, historical, and fu-
ture projection period were generated. The selection of the
75th percentile was determined by the results of previous
health-related studies presented and outlined in the
“Introduction” section as well as the actual respective ozone
and temperature values the percentiles amounted to taking into
account all analyzed stations in Central Europe. More details
on this will be given in the “Results” section. Temperature
levels as well as ozone concentrations need to exceed these
percentile-based thresholds. Additionally, ozone pollution
levels surpassing a threshold of 100 pg/m® were also consid-
ered as a health-relevant ozone event in accordance with the
WHO AQG. Thus, days with thermal load or TX exceedances
were observed if TX values rose above the 75th percentile-
based thresholds, while MDA8O3 exceedances were defined
for days with ozone pollution levels beyond the respective
75th percentile-based or 100 pg/m® thresholds. If not other-
wise specified, herein after TX and MDA8O3 exceedances
refer to these definitions.

On combined event days, mean and median MDAS8O3 and
TX levels in the o-t-season amounted to 121.55 ug/m® (min
39.75 ug/m3, max 262.73 ug/m3) and 119.15 pg/m> as well as
27.5°C (min 12.4 °C, max 40.2 °C) and 27.9 °C, respectively.
Frequency analyses in the base period revealed a higher
amount of event days from April to September compared to
the remaining months, confirming the defined o-t-season
based on spearman rank correlation coefficients.

Predictor data and selection

Predictor metrics belonged to two different types. The first
type was considered as “meteorological”. Suitable predictors
to assess and project o-t-events were chosen and preselected
based on a preliminary screening process using reanalysis and
ESM data. The second type was considered as “persistence-
based” and comprised only O3 pollution persistence metrics.

The initial selection of predictor variables was determined
by literature review (e.g., Carro-Calvo et al. 2017; Hertig
2020; Krueger et al. 2015; Otero et al. 2016), data availability
in the chosen ERAS reanalysis (from the European Centre for
Medium-Range Weather Forecasts (ECMWF); Hersbach and
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Dee 2016), and earth system models (ESMs) as well as own
analysis. The following large-scale meteorological variables
formed the initial database: geopotential heights at the
850 hPa and 500 hPa levels (GH850, GH500), mean sea level
pressure (MSLP), mean air temperatures at 850 hPa, 500 hPa,
and 2 m (MT850, MT500, and MT2m), relative humidity at
850 hPa and 500 hPa (RH850, RH500), surface solar radiation
downwards (SSRD), surface thermal radiation downwards
(STRD), total cloud cover (TCC), and zonal and meridional
winds at 850 hPa and 500 hPa (UWind850, UWind500, and
VWind850, VWind500). Predictor data was retrieved with a
0.75° x 0.75° resolution. Matching predictor data for projec-
tions under scenarios historical, RCP4.5, and RCP8.5 (CMIP5
label: historical, rcp45, rcp85) were extracted from seven
CMIP5-ESMs listed in Table 1. RCP4.5 and RCPS8.5 repre-
sent one intermediate and the highest representative concen-
tration pathway with a radiative forcing stabilized at approx-
imately 4.5 W/m? by or still rising, greater than 8.5 W/m? after
2100, respectively (for detail, refer to IPCC 2013).

The first run of the available ensemble was chosen for all
variables. Thus, differences arising from the use of different
ESMs were considered, whereas uncertainties from different ini-
tial conditions were not regarded. In accordance with the periods
considered in the statistical downscaling models and projections,
historical runs from 1993 to 2005 and scenario runs from 2006 to
2100 were used. Model data was regridded by nearest neighbor
remapping to match the ERA5 resolution. Based on the geo-
graphic coordinates of each of the 85 stations, the mean of the
nine grid boxes covering the area over and around the respective
station location was calculated for all predictor variables.

The chosen statistical downscaling approach uses only ob-
servational data for both predictand and predictors (reanalysis)
to train the statistical models. The models are later applied to
ESM output assuming that the ESMs provide large-scale
fields similar to the observed atmospheric variability. A sim-
ple linear scaling bias correction technique, used, e.g., by
Gohar et al. (2017) and Teutschbein and Seibert (2012), was

chosen and adapted to remove the monthly mean bias between
reanalysis and climate model data.

The monthly mean difference between reanalysis and cli-
mate model data from 1993 to 2005 was used to bias-correct
the respective ESM data from 1993 to 2100. Brands et al.
(2013) assess the ESM performance to reproduce observed
climatology not just on the basis of analyzing mean differ-
ences (bias), but also by examining distributional differences
between reanalysis (ERA-Interim) and ESMs. Accordingly, to
compare the distributional similarity between ERAS reanaly-
sis and ESM data, the two-sample Kolmogorov-Smirnov test
(KS test) was applied. The used monthly time series were
centered to have zero mean by subtracting the specific mean
of the o-t-season from each timestep. Distribution differences
were tested on the 95% significance level. To ensure a high
consistency between ERAS and ESM predictor data, all vari-
ables for which significant distributional differences remained
for at least one station across all respective ERAS-ESM pairs
were rejected. As a result, RH850, TCC, and UWind500 as
well as UWind850 were hereafter neglected.

Indicated by previous research work, persisting pollution
levels represent one of the most important drivers of ozone
concentrations for specific locations in (Hertig et al. 2019) and
across Europe (Otero et al. 2016). Thus, to account for pre-
vailing pollution episodes, six MDAS8O3 persistence metrics
were added to the initial model input predictor set of each
station. Persistence metrics were calculated by averaging the
MDAS8O3 concentrations of one to up to six preceding days.

Methods
Statistical downscaling models
Main drivers of o-t-events from April to September were an-

alyzed by station-based statistical models representing the fi-
nal results of two multistep modeling approaches. Initially,

Table 1 CMIPS Earth System Models considered in this study
ESM Institution Atmospheric grid resolution
ACCESS1-0 Commonwealth Scientific and Industrial Research Organization (CSIRO) and 1.25° x 1.88°
Bureau of Meteorology (BOM), Australia
CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.79° x 2.80°
CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy 3.71° x 3.75°
CNRM-CM5 Centre National de Recherches Météorologiques/Centre Européen de Recherche 1.40° x 1.41°
et Formation Avancée en Calcul Scientifique, France
IPSL-CM5-MR Institut Pierre-Simon Laplace, France 1.27° x 2.50°
MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 2.79° x 2.81°
Research Institute (The University of Tokyo), and National Institute for
Environmental Studies, Japan
MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.87° x 1.88°
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logistic regression (LR) was used to directly assess the prob-
ability of combined o-t-events. For comparison, multiple lin-
ear regression (MLR) was applied to assess at first separately
the drivers of MDAS8O3 concentrations and of TX values
(henceforth named “MDA8O3-MLR” and “TX-MLR”, re-
spectively). Subsequently, the occurrence of o-t-events was
deduced based on a combination of each single modeling
result. According to the holistic European focus, a final
European-wide predictor set was defined within both model-
ing processes. This set was then used across all stations to
generate final station-based downscaling models. The impor-
tance of a predictor at each location is primarily expressed by
its respective regression coefficient. Projections of o-t-events
until the end of the twenty-first century were generated for
each specific station based on these statistical downscaling
models. To analyze health-relevant o-t-events under current
but also future climatic conditions, the final predictor set
should desirable meet the following criteria:

* contain at least one circulation dynamic, thermal, radia-
tion, and humidity-based predictor as well as an ozone
persistence metric to cover each climate change-relevant
information content

* include only those predictors which carry physically
meaningful and substantially relevant information of the
predictand

* be based on unique, out-standing predictors; i.e., predic-
tors of almost same information contents are eliminated to
avoid overfitting the final station models

Standardized time series of all predictors entered the statis-
tical models. Standardization based on respective means and
standard deviations was done to ease interpretability of regres-
sion coefficients and thus the identification of main drivers. In
order to achieve consistent and comparable results from the
downscaling process, identical predictors were used for all
predictands and modeling approaches, with the exception that
no pollution persistence metrics entered the TX-MLR model-
ing process. Regression was performed within the free soft-
ware environment for statistical computing R.

Logistic regression

Logistic regression (Peng et al. 2010; Wilks 2006)
representing a common technique for probability forecasts
was used to model the likelihood of o-t-events. For this ap-
proach, o-t-events were coded as binary time series with
values of 0 (non-event) and 1 (event). LR is based on a logit
transformation with the response not having to follow a nor-
mal distribution. To analyze the relationship between all pre-
dictors and the predictand variable and to identify the main
drivers of o-t-events, lasso (lasso, least absolute shrinkage and
selection) regression (Hastie et al. 2009; Hastie et al. 2015;
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Tibshirani 1996; Tibshirani 2011) was used and embedded in
a tenfold cross-validation process. Lasso regression tries to
enhance prediction accuracy by shrinking or setting some co-
efficients to 0. Thus, lasso performs a variable selection lead-
ing to a subset of predictors showing the strongest impact on
the predictand, accounting for multicollinearity of predictors.
Hence, it is favored to ease interpretability of the statistical
models. Within lasso, a tenfold cross-validation was used to
determine tuning parameter t. The parameter t controls the
amount of shrinkage applied to the estimates. Due to the high-
ly imbalanced data sets, resulting from low numbers of ex-
ceedance days with mean and median non-event to event ra-
tios of 5.3 (min 4.5, max 8.0) and 5.2, a stratified resampling
method was embedded in the modeling process. Applying the
SMOTE algorithm (Chawla et al. 2002) for unbalanced clas-
sification problems, an equally distributed dataset was gener-
ated (using R’s DMwR package). The package glmnet was
used for lasso regression. Predictors chosen in at least 90% of
all cross-validation training models entered the final predictor
set to build a lasso regression model per station based on all
observations. As a result of the screening process, an opti-
mized predictor set for every station was extracted. A final,
unified European-wide predictor set was created by choosing
only predictors selected by more than half of the station-
specific LR models. Since predictors which carry the same
information, but occur on different pressure levels (e.g.,
VWind500 and VWind850), entered the model building pro-
cess, the variable with the higher mean absolute standardized
regression coefficient across all models was finally chosen to
limit similar information contents. Final station-based LR
models were built based on the generated uniform, for whole
Europe standardized final predictor set and later used for
projections.

Multiple linear regression

MLR is considered as an effective tool to study the impact of
predictors on the mean of the response variable. Thus,
MDAS8O3 concentrations and TX values were predicted sep-
arately and the results subsequently combined to assess the
occurrence of o-t-events. The performance of this approach
to model o-t-events was evaluated and compared to the LR
model results. In accordance to the previously described ap-
proach, a similar multistep predictor selection process was
used and adapted within the MLR model building process.
The selection of predictors to create a specific optimum for
each station was conducted through a backward regression
procedure starting with models including all potential predic-
tors. Step by step, the least important variables were sequen-
tially removed from the regression equation according to the
Akaike Information Criterion (AIC, Akaike 1974). To ac-
count for multicollinearity, variables with a variance inflation
factor (VIF) larger than 10 were excluded from the equation
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(James et al. 2013). The two separate final European-based
predictor sets for the MDA8O3-MLR as well as TX-MLR
models were created analogously to the LR approach.

Model performance

Typical evaluation metrics as accuracy and error rate are not
suitable for highly imbalanced data sets when the primary goal
is the identification of rare events (Branco et al. 2016).
Performance of the LR statistical downscaling models was
thus evaluated using various typical performance metrics for
two-class situations and imbalanced datasets. The common
and most often applied metrics especially in machine learning
with imbalanced data sets are precision, recall and the F1-
score (He and Ma 2013). Recall also named true positive rate
(TPR) is used to measure the fraction of actual observed
events that are correctly predicted, whereas the true negative
rate (TNR) measured the fraction of actual observed non-
events that are correctly predicted. Precision is used to mea-
sure the fraction of the predicted events that did actually occur.
Precision and recall range from 0 to 1 with a perfect score of 1.
The F1-score is based on precision and recall and gives equal
weight to both measures. Besides these, various other metrics
were used for model evaluation and are given in Table S3 in
the Supplementary Material (Online Resource 2). For the
MLR models, additionally, the coefficient of determination
R? is used to determine the model performance. The perfor-
mance evaluation of the final LR and MLR station models
was also embedded in a tenfold cross-validation procedure.

Projections

Statistical projections of o-t-events and thus potential frequen-
cy shifts of these health-relevant occurrences until the end of
the twenty-first century were assessed by comparing time slice
differences under RCP4.5 and RCP8.5 scenario conditions.
Therefore, 20-year periods in mid-century (2031-2050) and
late-century (2081-2100) climate were compared to the base
period (1993-2012). Twenty-year periods are suitable time
slices because they are expected to be long enough to average
out internal variability. Thus, air quality and temperature im-
pacts representing the consequence of changes in forcing can
be reliably assessed. Projections were conducted by exchang-
ing the ERAS predictor data used for modeling building with
the corresponding ESM data. As a consequence of the carried
out performance evaluation, the LR models were chosen for
projections. More details on this will be given later in the
“Statistical model performance and predictors” section. As
ozone persistence predictor data with a daily resolution is
not provided by the chosen ESMs, MDA8SO3-MLR models
were used to project the ozone pollution concentrations under
future climate conditions. As previous day ozone concentra-
tions represent a predictor in the MLR models themselves, a

proxy calculated by averaging all daily-based observations
across all years in the base period for March 30th was used
as a start value. The approach is accompanied by the funda-
mental assumption that future MDAS8O3 concentrations in
spring are similar to recently observed values. Several advan-
tages exist by using an observation-forced proxy as start value.
The accumulation of possible uncertainties and error sources
based on the underlying model equations and simplifications
are reduced by integrating an annual constant initial start val-
ue. Projecting the remaining MDA8O3 concentration levels in
the o-t-season using ESM data also guarantees that the statis-
tical relationships, their linked underlying processes, and
causal relations regarding the predictors themselves as well
as between predictors and predictand are accounted for.
Projections of o-t-events could thus be interpreted against
the background of stabilized ozone persistence conditions,
with daily and monthly fluctuations presented in future ozone
concentration predictor data. To evaluate the goodness of this
approach, statistically modeled ozone values were used. Thus,
MLR models based on only original predictor data and models
including the start dummy are compared to each other. The
results show a strong agreement across all models with a mean
and median monthly correlation of 0.83 (min 0.35, max 0.98)
and 0.86. Only seven stations (DEBB021, DEBE027,
DEBEO034, DEBE051, DEMV003, DEMV007, NL00639)
showed significant distributional differences between both
time series (a = 0.05). Thus, MDA8O3 concentrations were
projected by using the proxy as initial yearly start value across
all 85 stations and seven ESMs as well as under both, RCP4.5
and RCP8.5, scenario conditions.

Results
Co-occurrence of health-relevant levels

The seasonal median value of TX was 21.07 °C with 25% and
75% of data being below 17.27 °C and 24.88 °C, respectively.
All values were calculated as means over all 85 stations by
only considering the months in the underlying o-t-season.
According seasonal median MDA8O3 concentrations were
82.02 ug/m’ with 25% and 75% of data being below 65.68
pug/m? and 101.34 ug/m’, respectively. For each station, mean
TX and MDAS8O3 values from April to September over the
years are shown in Table S2 (Online Resource 1). The mean
TX and MDAS8O3 concentration level over Central Europe in
the o-t-season was 20.97 °C and 84.85 pg/m’, respectively.
Considering station characteristics, the upper 25% of
MDARSO3 data exceeded on average the WHO AQG across
all stations for all but two classes (ri and ut), highlighting the
utility of the applied 75th percentile-based and 100 ug/rn3
thresholds to define o-t-events.
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The strong observation-based relationship between
MDARSO3 concentrations and TX values in the o-t-season is
shown in Fig. 2. Significant (« = 0.05), high monthly corre-
lations from April to September become visible for all 85
stations. A high frequency of co-occurring values of
MDAS8O3 and TX exceeding the 75th thresholds in the base
period became apparent. Elevated TX values were often ac-
companied by high MDAS8O3 pollution levels; on average,
66% of days with elevated thermal load also showed
MDAZ8O3 values surpassing the 75th threshold (min 50,
max 74, median 68). Thus, thermal load occurrences were
associated with coinciding O5 pollution. Averaged across all
85 stations, on 592 days (min 380, max 671) in the base period
(approx. 16% of all days in the o-t-season), combined 75th
threshold exceedances of both target variables were observed
with a median of 602 days. The spatial distribution over
Central Europe, shown in Fig. 3, revealed a higher absolute
and relative amount of these occasions especially in central to
northern parts of the study region.

Taking the additional threshold of 100 ug/m® used to de-
fine combined o-t-events into account, the occurrence of ther-
mal load was connected with co-occurring MDASO3
exceedances on average on 75% of days (min 50, max 88,
median 75). A total of 670 days (ca. 18% of all days in the
o-t-season) with o-t-events (min 381, max 802, median 674)
were overserved on average per station. As may be expected
in accordance with the “Introduction” section presented anal-
ysis (e.g. EEA 2019) and the described ozone formation in the
presence of solar radiation, the spatial distribution (not shown)
revealed that especially stations in southern Central Europe
show a higher proportion of heat days with MDASO3
exceedances and a higher frequency of o-t-events. Thus, at
these stations, MDA8O?3 concentrations exceeded more often
the WHO AQG.

Statistical model performance and predictors
The final predictor set of the LR models subsequently

used for projections contained the following meteorolog-
ical variables: GH850, MT850, RH500, STRD, and

20 40
station

VWind500. Beside these meteorological variables, only
ozone pollution levels of the first previous day of all ini-
tial chosen persistence metrics were identified as one
main driver of o-t-events, henceforth named “LagO3”.
Thus, the final predictor set contained at least one circu-
lation dynamic, thermal, radiation, and humidity-based
predictor as well as an ozone persistence metric, all iden-
tified to have a strong effect on the probability of occur-
ring o-t-events. Regarding statistical model performance,
the mean and median Fl-score of the LR model results
across all stations was 0.63 (min 0.49, max 0.74). Thus,
the models showed in general an acceptable performance
to predict o-t-events. The TPR and TNR means and me-
dians amounted to 0.83 (min 0.74, max 0.89) and 0.84 as
well as 0.81 (min 0.75, max 0.85), respectively. Hence, a
similar, balanced performance of the models was achieved
to identify known events and non-events. Additional re-
sults concerning LR model performance analysis and
evaluation can be found in Table S3 in the
Supplementary Material (Online Resource 2). In compar-
ison, the second model approach based on the combina-
tion of results of the two separate MLR models showed
considerably less performance to model o-t-events. These
final predictor sets for the MLR models sets were both
composed of RH500, SSRD, and VWind500. For
MDAS8O3-MLR models, LagO3 was additionally selected
within the predictor screening process. The cross-
validated mean and median Fl-score amounted to 0.36
(min 0.25, max 0.45) across all stations. As the respective
MLR models aimed to assess the mean of the TX and
MDAS8O3 response, not surprisingly, on average, TNR
values with a mean and median of 0.94 (min 0.85, max
0.97) were accompanied by low TPR values with a mean
and median of 0.28 (min 0.17, max 0.37) and 0.27. As
might be expected, the high TNR in comparison to the
low TPR values indicated in general the inability of the
models to assess elevated levels of both target variables.
Since the LR models clearly outperformed the combined
MLR models in capturing o-t-events, only the first model
approach was used to analyze and project future
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Fig. 2 Spearman rank correlation coefficients between observed MDA8O3 concentrations and TX values for each station in Central Europe during the
1993-2012 period. Station numbers depicted on the x-axis are in accordance with Table S2 in the Supplementary Material (Online Resource 1)

@ Springer



Air Qual Atmos Health (2021) 14:563-580

571

5 10 15

I
400 450 500 550 600 650
number of days

0.5 0.55 0.6 0.65 0;7 0.75
proportion of days

Fig. 3 Spatial distribution of the number of days with observed combined exceedances of MDA8O3 and TX values over the 75th threshold (a) and the
proportion of these event days to the total number of days with thermal load (b)

frequency shifts in these combined events. As the
MDAS8O3-MLR models were applied to generate the
LagO3 predictor for subsequent statistical projections,
their ability to assess the mean of the surface daily max-
imum ozone response was additionally evaluated. The co-
efficient of determination R? ranged between 0.43 and

0.73 with mean and median values of 0.58 across
Central Europe. The spatial distribution of the F1-score
for LR models and R* for MDA8O3-MLR models is
shown in Fig. 4. Although model performances were sat-
isfactory in general over Central Europe to reliably project
future MDAS8O3 concentrations and frequency shifts in o-
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Fig. 4 Spatial distribution of the F1-score for LR (a) and of R? for MDASO3-MLR (b)
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t-events, station-specific findings should always be treated
with caution and be evaluated against the background of
the respective individual model quality.

As MDA8O3-MLR models are used for projecting
MDAS8O3 concentrations and LR models to assess future fre-
quency shifts in the occurrence of o-t-events, the two model
approaches build the focus of the following sections.

Main Drivers
Drivers of MDASO3

The strength and kind of a relationship between a predictor
and a respective target variable can be interpreted in terms of
the magnitude and the sign of the predictor’s standardized
regression coefficient. Consequently, LagO3 was identified
as the most important driver (MID) of MDASO3 concentra-
tions not just on average across Central Europe with a mean
standardized coefficient of 17.23 (min 11.93, max 26.66, me-
dian 16.95), but also as the most important driver at each
single station. The respective mean coefficient for SSRD
was 4.37 (min 1.74, max 10.88, median 3.91) representing
the second most important driver (“SMID”) across Central
Europe. The predictors VWind500 and RH with values of —
2.43 [min — 8.55, max 1.70, median — 2.65) and — 1.79 (min —
3.16, max 1.09, median — 1.92) showed in general a smaller
and negative influence. Thus, for example, rising relative hu-
midity levels reduce in general MDASO3 concentrations.
Since tropospheric ozone is formed in the presence of sunlight
based on the reaction of precursor gases showing an increased
reactivity by rising air temperatures and solar radiation, the
statistical model equations capture the underlying physical
processes of O; formation. As air temperature can mostly be
regarded as a proxy for solar radiation in the o-t-season, the
identification of SSRD as one of the most important drivers
within the study region highlights and confirms previous find-
ings identifying the strong relationship between temperature
and ozone (Coates et al. 2016; Jacob and Winner 2009;
Oswald et al. 2015). The overall found impact of VWind500
is in good agreement with earlier studies showing that wind
speed and direction influence ozone concentrations (Duefias
et al. 2002; Gardner and Dorling 2000; Husar and Renard
1998). Elevated relative humidity values indicate increased
instability and cloudiness and thus reduced incoming solar
radiation. The negative impact of RH on O3 concentrations
was also specified in previous studies (Camalier et al. 2007;
Demuzere et al. 2009; Dueiias et al. 2002). The spatial distri-
bution of the SMID and TMID reflect the importance of dif-
ferent MDAS8O3 governing mechanisms. In the western parts
of Europe, VWind500 plays a major role, indicating that in-
flow from remote sources is important for MDASO3 concen-
trations, while in the eastern parts of Europe, in situ radiation-
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related predictors are primarily related with spring and sum-
mertime ozone concentrations.

The identification of main drivers in general concurs well
with Otero et al. (2016). By examining the influence of syn-
optic and local meteorological conditions on MDAS8O3 con-
centrations over Europe, the authors found evidence that next
to ozone persistence also some meteorological parameters
play an important role in explaining most of the observed
ozone variance, e.g., maximum temperature, relative humidi-
ty, and solar radiation. Figure 5 shows the spatial distribution
of the identified second and third most important driver
(“TMID”) of MDASO3 concentrations in Central Europe.

Drivers of combined events

Table 2 gives an overview of the averaged standardized re-
gression coefficients over Central Europe for the LR models.
The results emphasize the physical validity of the models as
MT850 and LagO3 were in general identified as the strongest
influencing factors of o-t-events. The spatial distribution of
main drivers in Central Europe, grouped by the most (a), sec-
ond most (b), and third most important drivers (c), is shown in
Fig. 6. The respective odds ratio (OR) is depicted for each
driver (d—f) representing the odds that an o-t-event will occur
given the presence of the specific main driver, compared to the
odds of the event occurring in the absence of that predictor.
Thus, OR above 1 indicate higher odds of an o-t-event to
appear. Respectively, OR below one lower the odds of an o-
t-event.

It became apparent that LagO3 was the MID in northwest-
ern Central Europe. Hence, the persistence of ozone pollution,
i.e., prevailing high pollution levels due to an incomplete deg-
radation of previous day concentrations of Oz, may play a
substantial role in driving MDAS8O3 concentrations in these
regions. Persistence can cause long-lasting or day-to-day in-
creases of high concentration levels leading to persistently
elevated ozone levels on subsequent days. MT850 represented
the MID for the majority of stations in southern to eastern
Central Europe with some predictors showing occasional ele-
vated to extremely high OR (d). At these stations, it became
evident that o-t-events could mainly be explained by mean
temperature levels above the boundary layer at the 850 hPa
level.

STRD was in general the third most important impactor
factor (Table 2) in Central Europe, with low radiation values
favoring the occurrence of o-t-events. This is also supported
by the low OR < 1 (Fig. 6¢ and f) shown for stations selecting
STRD as the second and third most important driver. STRD is
mainly controlled by water vapor and aerosols such as cloud
water droplets as well as mainly determined by the shallow
layer close to the surface. Hence, it may be a proxy for high
specific, thermal radiation-relevant trace element loadings and



Air Qual Atmos Health (2021) 14:563-580

573

a

® RH500 ® SSRD

VWind500

Fig. 5 Spatial distribution of the second most important (a) and third most important driver (b) of MDA8O3 in MLR. The shape of the legend symbols

has no meaning

pollution events as well as moist and humid conditions. Thus,
days with lower STRD favored the occurrence of o-t-events.

VWind500 is an indicator of airflow conditions, with pos-
itive values representing wind from southern directions.
GHS850 represents a circulation dynamic predictor with low
values also being considered as indicator for cold, moist, and
humid conditions. VWind500 was only selected twice as
TMID and GH850 were occasionally selected as SMID and
TMID at stations in the northwestern part of Central Europe
with, according to the OR, low wind levels, and high
geopotential heights (associated with low humidity values)
favoring the occurrence of o-t-events. These findings are not
just in good agreement with the results of the MDASO3-MLR
models at these stations, but also confirm the underlying phys-
ical processes and key factors known to determine tempera-
ture and ozone levels. The relevance of these drivers at the
specific stations may also be associated with their location in

Table 2 Standardized regression coefficients in LR for each predictor
variable. Numbers are the mean and median across all stations; minimum
and maximum values are shown in brackets

Predictor Mean Median
GHB850 0.64 (0.13, 1.15) 0.69
LagO3 1.21 (0.82, 1.68) 1.22
MT850 1.78 (0.12, 4.86) 1.57
RHS500 —0.24 (- 0.65, 0.15) -0.24
STRD -1.30 (- 2.91,-0.30) -1.24
VWind500 —0.34 (- 0.98,0.43) -0.35

the westerly wind zone close to the North Atlantic. Transport
of moist air masses from the ocean inlands leads generally to
increased relative humidity levels, the evolution of clouds, and
precipitation in coastal regions. No distinct differences were
found regarding station characteristics, so main drivers of o-t-
events are primary related to synoptic influences rather than
individual station classes.

Projections for the twenty-first century
Projections of MDA8O3

A comparison of values statistically modeled using historical
ESM predictor data with reanalysis-modeled data in the his-
torical period from 1993 to 2005 showed good agreement.
Monthly biases were extracted by calculating the monthly
mean differences between the statistically modeled values
using either historical ESM predictor data or reanalysis-
based data. Biases were normalized by the standard deviations
of'the reanalysis-based data. Throughout this section, numbers
in brackets refer to minimum and maximum values grounded
on ESM projection results averaged across all stations. Mean
and median monthly biases across all ESMs amounted to 0.28
(min — 0.60, max 0.66) and 0.24, respectively. Across all
seven ESMs, only one station (AT900ZA) showed for two
ESMs significant monthly distributional differences between
the statistically modeled time series (v = 0.05).

As the downscaling models per se showed a good perfor-
mance in the historical period over Central Europe, statistical
MDAS8O3 projections were conducted by exchanging the
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Fig.6 Spatial distribution of the most important (a), second most important (b), and third most important (¢) driver of o-t-events in LR. The odds ratio is
shown for the respective identified main driver at each station (d—f). The shape of the legend symbols has no meaning

ERAS predictor data with corresponding ESM data.
MDARSO3 values were modeled for 1993 to 2100 under both
scenario conditions. Considering the ensemble mean over
Central Europe across all seven ESMs under RCP4.5 scenario
assumptions, a mean and median change of — 0.19% (min —
9.84, max 35.12) and — 0.59% for the mid-century as well as —
0.10% (min — 11.68, max 40.15) and — 0.54% for the late-
century period were assessed. Thus, on average, no relevant
overall change became apparent, under the assumption of sta-
tionarity of the start value of MDAS8O3 concentrations as well
as of governing statistical relationships. Similar results be-
came apparent for RCP8.5 scenario conditions with a mean
and median change of 1.09% (min — 18.65, max 19.74) and
1.05% for the mid-century as well as — 0.32% (min — 25.27,
max 12.68) and — 0.22% for the late-century period. With
respect to spatial distributions, no distinct pattern became ev-
ident with only one station (CHOO11A) showing elevated
multi-model mean increases of MDASO3 concentrations of
24.54% (mid-century) and 27.34% (late-century) under
RCP4.5 and multi-model mean decreases of 0.01% (mid-
century) and 16.06% (late-century) under RCP8.5 scenario
assumptions. Although the projections for this station were
comparably strong across all applied ESMs, the very different
ensemble-mean percentage changes of this station for almost
all time slices were highly determined by the results of one
ESM (IPSL-CM5A-MR) with a modeled change of over
185% and 210% (RCP4.5) and over — 70% and — 80%
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(RCP8.5), respectively. As the multi-model mean of this sta-
tion is highly dependent on one model outlier, a note of cau-
tion should be sounded with regard to projections for this
station. In summary, stabilized MDA8O3 concentrations
throughout the twenty-first century were assessed for Central
Europe under both scenario conditions and the previously
outlined, underlying modeling assumptions showing no rele-
vant spatial differences across the vast majority of stations.

Projections of combined events

Table 3 provides an overview of the multi-model time
slice differences, statistically downscaled under RCP4.5

Table 3  Changes (%) regarding the amount of days with o-t-events
between the periods 2031-2050 and 2081-2100 compared with 1993—
2012 under RCP4.5 and RCP8.5 scenarios. Numbers refer to the ensem-
ble mean and median across all seven ESMs. Numbers in brackets give
minimum and maximum changes based on single ESM projections aver-
aged across all 85 stations

Scenario Period Mean (%) Median (%)

RCP4.5 2031-2050 8.94 (— 0.39, 22.70) 7.80
2081-2100 16.84 (—1.23,39.77) 16.22

RCP8.5 2031-2050 13.33 (0.04, 33.18) 11.37
2081-2100 37.52 (— 1.85,96.42) 33.92
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and RCP8.5 scenario assumptions. It is evident that pro-
jections point to an on average growing number of days
with concurrent occurrences of thermal load and ozone
pollution in Central Europe. Not surprisingly, considering
the identified main drivers in LR and the stronger radia-
tive forcing by greenhouse gases and the related enhanced
rise in global mean temperatures, comparably stronger
frequency shifts were assessed under RCP8.5 scenario as-
sumptions for mid- and late-century climate conditions.
For example, a substantial projected increase of o-t-
events in the period 2081-2100 compared to the period
1993-2012 was revealed for both scenarios, but for
RCP4.5 with about 17% only being less than half as
strong as for RCP8.5 with about 38%.

The shown multi-model results were based on the climate
change signal of seven individual ESMs showing for almost
all periods the same sign, but a different magnitude of change.
The respective projected changes of each single ESM can be
found in Table S4 in the Supplementary Material (Online
Resource 2).

An overview of the spatial distribution is provided in Fig. 7
showing the multi-model mean changes for every single sta-
tion under RCP4.5 (upper) and RCP8.5 (lower) scenario con-
ditions for mid- (left) and late-century (right section of figure)
climate. In general, stronger frequency shifts over Central
Europe for late-century and under RCP8.5 scenario conditions
became apparent. The single most striking observation to
emerge from the spatial analysis was the clear identification
of hotspot regions across all scenarios and periods. In general,
the respective strongest increases in o-t-events were projected
for south- to mid-eastern Central Europe. Under RCP4.5 sce-
nario, assumptions projected changes ranged from — 0.39
(BETR740) to 22.70% (DEBY079), with 83 stations for
mid-century climate showing an increase of o-t-event days.
For comparison, late-century changes ranged from — 1.23
(BETR740) to 39.77% (DEBY088) with a growing number
of event days projected for 84 stations. Similar results became
apparent under RCPS8.5 scenario conditions. For the mid-
century period, all 85 stations showed an increase in o-t-
events. Projected changes reached from 0.04 (DEHB002) up
to 33.18% (DEBY079). Until the end of the twenty-first cen-
tury, a higher frequency of o-t-events was assessed for 84
stations, ranging in general between — 1.85 (BETR740) and
96.42% (DEBY063).

The stations showing a late-century increase of at least 60%
(16 stations) under RCP8.5 were all located in the German
federal states of Bavaria and Baden-Wuerttemberg or close
to the southern German border in Austria and Switzerland.
As in general south- to central-eastern parts of the study region
could be identified as hotspots of regional change, a low cli-
mate change signal became apparent in general at stations in
the northern and northwestern part of Central Europe. As
shown in Fig. 6, the most influencing drivers for the vast

majority of stations in the identified hotspot regions are
MT850, LagO3, and STRD according to the LR models.
The MDA8O3-MLR models assessed stabilized MDASO3
concentrations throughout the twenty-first century (refer to
chapters Projections and Projections of MDASO3 for detail).
These values entered later as LagO3 predictor the LR model-
based projection process. Consequently, primary projected
changes of MT850 and STRD may mainly affect the projected
frequency increases of o-t-events under both scenario assump-
tions, also highlighted by the substantial OR. In agreement
with the previous analysis of main drivers of o-t-events, other
than regional hotspots, no significant and consistent depen-
dence of the changes from station characteristics became ap-
parent. Additional analysis about monthly mid-century to late-
century percentage changes in the future occurrences of o-t-
events based on multi-model means under RCP4.5 and
RCPS8.5 can be found in the Supplementary Material
(Figures S1-S4, Online Resource 3). In summary, the down-
scaling results indicated a considerable increase in the occur-
rence of combined o-t-events from April to September and
hence of thermal and air pollution load in the future.
Regional hotspots of rising frequencies of o-t-events became
apparent. Projected high frequency shifts became primarily
evident in south- to mid-eastern regions of Central Europe.

Discussion

The occurrence of combined ozone-temperature-events for
Central Europe based on the selection of 85 stations with
different air quality settings in Austria, Germany, Belgium,
The Netherlands, and Switzerland was assessed. The primary
presumption of a strong positive correlation between surface
daily maximum temperature and surface daily maximum
ozone concentrations was confirmed for all analyzed stations.
Due to the photochemical ozone formation with increased
reactivity at higher temperatures and enhanced solar radiation,
this relationship was evident primarily within the defined o-t-
season from April to September. Burden-inducing, combined
were defined by quantile (75th) as well as threshold
exceedances (100 pg/m’). Different modeling approaches
were tested to model the occurrence of combined o-t-events.
As a result of an extensive model performance evaluation,
statistical downscaling models based on logistic regression
were the final chosen modeling approach in this context.
The models were at first developed to assess the relationship
between large-scale predictors, ozone pollution levels, and
local-scale events in the observational period. A holistic ap-
proach for Central Europe was chosen, accompanied by the
greatest possible standardization of the model building pro-
cess across all stations. Using a screening procedure primary
based on lasso regression, a unified predictor set was assessed
for all individual LR station models over Central Europe.
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Fig. 7 Spatial distribution of projected changes (%) with respect to the number of days with o-t-events between the periods 2031-2050 (left) and 208 1—
2100 (right) compared with 19932012 under RCP4.5 (top) and RCP8.5 (bottom) scenario. Numbers refer to the ensemble mean across all seven ESMs

MT500, STRD, and LagO3 were found to be the main drivers
of co-occurring high levels of MDA8O3 concentrations and
TX levels.

The LR models were then used for projections under future
scenarios. For this purpose, ESM data entered the statistical
models and projections of o-t-events under RCP4.5 and
RCP8.5 scenario assumptions to account for the ongoing cli-
mate change until the end of the twenty-first century. As the
seven chosen ESMs of the CMIPS project did not provide
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surface daily maximum ozone levels, a MLR modeling ap-
proach to generate MDASO3 projections until the end of the
twenty-first century subsequently integrated as LagO3 predic-
tor in the LR models was used. Multi-model mean changes
(%) in the occurrence of o-t-events of 8.94% and 16.84% for
mid- and late-century climate in comparison to 1993-2012
were found for the RCP4.5 scenario across all stations.
Accordingly, changes of 13.33% and 37.52% under RCP8.5
scenario assumptions were generated. Regarding spatial
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distributions, regional hotspots in south- to central-eastern
parts of Central Europe became apparent, but no obvious de-
pendence of the projections on station classes was evident.

Concerning this study, it is plausible that a number of lim-
itations may have influenced the results obtained. All findings
need to be interpreted with regard to the chosen holistic focus
of the study on Central Europe as the main spatial scale. In
order to identify more subtleties and differences within the
study area and thus to highlight, e.g., station class-specific
differences, a more individual approach would have to be
used. An initial focus of the study was to generate a homog-
enized database based on preselected ozone and temperature
station pairs with similar boundary conditions (e.g., altitude
levels) showing a strong relationship between ozone and tem-
perature. To incorporate a sufficient number of stations spread
across the study region, no further selection process based on
the types of air quality settings (e.g., urban traffic stations vs.
rural background stations) was incorporated. Consequently,
the direct influence of emissions of precursors and hence re-
active pollutants affecting ozone production and depletion as
well as air pollution transport processes on varying spatial
scales were not further considered and incorporated in the
analysis. A more detailed and differentiated approach
concerning the varying ozone production chemistry and un-
derlying processes should be integrated in further analysis. As
the investigations presented here have mainly focused on an
European-wide scale, for comparison, a more regional- and
station-specific approach should be the target of future work.
Thus, along with a more individualized predictor screening
process, final station models based on their station-specific
predictor optimum could be generated and applied for projec-
tions. As aresult, frequency shifts of o-t-events until the end of
the twenty-first century based on station-specific models and
on the here presented unified approach could be compared and
relevant differences assessed. Additionally, combined events
for both underlying target variables could be more station- or
region-specific and might not just integrate worldwide air
quality guidelines and percentile thresholds but also use,
e.g., individual recommendations of national- or regional-
wide institutions. This would also account for current and
future demographic and health-relevant developments of the
Central European population, as, e.g., aging and pre-existing
conditions lead to a more vulnerable population to thermal
load and concurrent air pollution.

A major source of uncertainty is based on the method ap-
plied to assess future MDA8O3 concentrations later used for
projecting o-t-events. Even though the statistically modeled
values were in good agreement with observations and
reanalysis-modeled values, the assumed stationarity of the
start value of MDASO3 concentrations as well as the perfor-
mance of the MLR models themselves influenced and may
lead to inaccuracies in the subsequent projections. The perfor-
mance of the generated MDASO3-MLR models was in

general satisfactory for Central Europe, but slightly disap-
pointing for some individual stations. This is to a large part
due to the objective to find holistic downscaling models with a
fixed predictor set for all stations, but it has to be especially
kept in mind when interpreting station-specific developments
and projections. The here presented findings should be read
with regard to the chosen framework conditions of the study.
The projected MDASO3 levels should be interpreted to be a
result of recent and future mitigation strategies and policies
not comprising new or other sources of precursor emissions
counteracting or strengthening these measures under future
European climate conditions. Hence, the results must be
interpreted against the background of these stabilized
projected MDASO3 concentrations entering as LagO3 predic-
tor the LR models to project future o-t-events under both sce-
nario assumptions. Consequently, as comparably stable ozone
persistence conditions are assumed, changes of all meteoro-
logical predictors—mostly future projected MT850 and
STRD conditions showing the highest standardized regression
coefficients in the LR models (see Table 2)—may strongly
affect the general projected increase in future o-t-events across
Central Europe.

One negative factor regarding the projections for the
twenty-first century is inevitable and is connected to the in
general coarse resolution of the seven ESMs being regridded
to match the spatial resolution of the ERAS reanalysis data.
Data errors and inaccuracies might have emerged due to in-
terpolation, processing, generalizations, and uncertainties in
the CMIP5 climate projections themselves. Associated limita-
tions were accounted for by not just only bias-correct the data
but as well as pre-select predictor data based on significant
distributional differences between reanalysis and ESM data.
Even if the initial shortcomings and limitations of the ESM
data are accounted for in the predictor preparation, modeling,
and projection process, the use of ESMs with higher spatial
resolution would be beneficial. Thus, future work needs to be
undertaken by means of global climate model simulations of
subsequent Coupled Model Intercomparison Project phases
(i.e., CMIP6). Furthermore, longer MDA8O3 and TX time
series with more recent observational data should be integrat-
ed in future studies to confirm the modeled relationships and
to assess even more reliable statistical downscaling models
and projections.

Conclusion

In general, a strong correlation between daily maximum ozone
concentrations and temperature values was found from April
to September in Central Europe accompanied by a high fre-
quency of concurrent elevated levels of both variables. MLR
and LR models describing the relationship between large-
scale meteorological predictors, prevailing high pollution
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levels and local-scale events, performed well enough to be-
come practical tools for predicting daily MDA8O3 concentra-
tions as well as combined ozone-temperature events.
Projections of o-t-events assuming stationary of the statistical
relationships under historical and scenario conditions until the
end of the twenty-first century were evaluated for the 2031—
2050 and 2081-2100 time windows. A sharp increase of o-t-
events was projected under RCP4.5 and RCP8.5 scenario as-
sumptions. It became evident that south- to central-eastern
parts of the study area represented hotspot regions with more
frequent occurrences of these combined events in the o-t-sea-
son. High levels of ozone and temperature will increasingly
coincide in these areas, thus posing an even intensified threat
to human life as a result of their associated individual and
combined health effects. Special attention should be paid to
these vulnerable regions by the formulation and implementa-
tion of consensual European climate change mitigation strat-
egies. MT500, LagO3, and STRD can be considered as pow-
erful predictors to assess days with concurrent thermal and air
pollution load and should consequently be interpreted as main
drivers of o-t-events. GH850, VWind500, and RH500 became
also apparent to substantially influence co-occurring elevated
levels of surface daily ozone and temperature levels. The re-
sults suggest that ozone persistence is particularly relevant for
subsequent pollution levels.
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